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Abstract. We deal with an optimal matching problem, that is, we want to transport two
measures to a given place, where they will match, minimizing the total transport cost that in our
case is given by the sum of the Euclidean distance that each measure is transported. We show that
such a problem has a solution. Furthermore we perform a method to approximate the solution of
the problem taking limit as p→∞ in a system of PDE’s of p−Laplacian type.
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1. Introduction. We are interested in an optimal matching problem (see [6],
[5]) that consists in transporting two commodities (say nuts and screws, we assume
that we have the same total number of nuts and screws) to a prescribed location (say
factories where we ensemble the nuts and the screws) in such a way that they match
there (each factory receive the same number of nuts and of screws) and the total cost
of the operation, measured in terms of the Euclidean distance that the commodities
are transported, is minimized.

Optimal matching problems for uniformly convex cost where analyzed in [3], [5],
[6] and have implications in economic theory (hedonic markets and equilibria), see
[6], [7], [8], [9], [5] and references therein. However, when one considers the Euclidean
distance as cost new difficulties appear since we deal with a non-uniformly convex
cost.

Clearly, the optimal matching problem under consideration is related to the clas-
sical Monge-Kantorovich’s mass transport problem. Using tools from this theory, we
prove the existence of a solution of the optimal matching problem. We show that, in
fact, the existence of solution is true changing the Euclidean norm by any norm in
ℝN . Next, one of our main contributions in this paper is to perform a method to solve
the problem taking limit as p→∞ in a system of PDE’s of p−Laplacian type, which
allows us to give more information about the matching measure and the Kantorovich
potentials for the involved transport. This procedure to solve mass transport prob-
lems (taking limit as p→∞ in a p−Laplacian equation) was introduced by Evans and
Gangbo in [12] and reveals quite fruitful, see [1], [16], [13]. We have to remark that
the limit as p→∞ in the system requires some care since the system is nontrivially
coupled and therefore the estimates for one component are related to the ones for the
other, and we believe that it is interesting by its own.

1.1. The optimal matching problem. To write the optimal matching prob-
lem in mathematical terms, we fix two non-negative compactly supported functions
f+, f− ∈ L∞, with supports X+, X−, respectively, satisfying the mass balance
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Matemática, FCEyN, U. de Buenos Aires, Buenos Aires, Argentina; julio.rossi@ua.es .
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condition

M0 :=

∫
X+

f+ =

∫
X−

f−.

We also consider a compact set D (the target set). Then we take a large bounded
domain Ω such that it contains all the relevant sets, the supports of f+ and f−, X+,
X− and the target set D. For simplicity we will assume that Ω is a convex C1,1

bounded open set. We also assume that

X+ ∩ X− = ∅,
(
X+ ∪X−

)
∩D = ∅ and

(
X+ ∪X−

)
∪D ⊂⊂ Ω.

Whenever T is a map from a measure space (X,�) to an arbitrary space Y ,
we denote by T#� the pushforward measure of � by T . Explicitly, (T#�)[B] =
�[T−1(B)]. When we write T#f = g, where f and g are nonnegative functions, this
means that the measure having density f is pushed-forward to the measure having
density g.

For Borel functions T± : Ω → Ω such that T+#f+ = T−#f−, we consider the
functional

ℱ(T+, T−) :=

∫
Ω

∣x− T+(x)∣f+(x)dx+

∫
Ω

∣y − T−(y)∣f−(y)dy.

The optimal matching problem can be stated as the minimization problem

min
(T+,T−)∈AD(f+,f−)

ℱ(T+, T−), (1.1)

where

AD(f+, f−) :=
{

(T+, T−) : T± : Ω→ Ω are Borel functions, T±(X±) ⊂ D,∫
T−1

+ (E)

f+ =

∫
T−1
− (E)

f− for all Borel subset E of Ω
}
.

If (T ∗+, T
∗
−) ∈ AD(f+, f−) is a minimizer of the optimal matching problem (1.1),

we shall call the measure �∗ := T ∗+#f+ = T ∗−#f− a matching measure to the problem.
Note that there is no reason why a matching measure should be absolutely continuous
with respect to the Lebesgue measure. In fact we shall see examples of matching
measures that are singular (see Example 4.1).

We have the following existence theorem.
Theorem 1.1. The optimal matching problem (1.1) has a solution, that is, there

exist Borel functions (T ∗+, T
∗
−) ∈ AD(f+, f−) such that

ℱ(T ∗+, T
∗
−) = inf

(T+,T−)∈AD(f+,f−)
ℱ(T+, T−).

Moreover, we can obtain a solution (T̃+, T̃−) of the optimal matching problem (1.1)
with a matching measure supported on the boundary of D.

Remark 1.2. We note that the fact that there is an optimal matching measure
supported on ∂D greatly simplifies the problem, since it allows to reduce the target
set to its boundary.

For the quadratic cost function c(x, y) = ∣y − x∣2, the existence of a matching
measure supported on the boundary of D is not true in general, see [6].
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We provide two different proofs to this existence theorem. The first one is more di-
rect but does not provide a constructive way of getting the optimal matching measure
in D, which is one of the unknowns in this problem; consequently, the construction of
optimal transport maps (that are proved to exist) remains a difficult task. The main
tool in this first proof is the use of ingredients from the classical Monge-Kantorovich
theory. The second proof is by approximation of the associated Kantorovich poten-
tials by a system of p−Laplacian type problems when p goes to ∞. This approach
provides an approximation of the potentials but also allows us to obtain the optimal
measure in the limit. In addition we present several examples (that show that, in
general, there is no uniqueness of the optimal configuration) and characterize when
the optimal matching measure is a Dirac delta.

Let us now introduce some notations, concepts and results from the Monge-
Kantorovich Mass Transport Theory (see [1], [11], [17] and [18]) that will be used
in the rest of the paper.

1.2. Monge-Kantorovich’s Mass Transport Theory. Let Ω be an open
bounded domain of ℝN . We denote byℳ(Ω) the set of all Radon measures on Ω and
by ℳ+(Ω) the non-negative elements of ℳ(Ω). Given �, � ∈ ℳ+(Ω) satisfying the
mass balance condition

�(Ω) = �(Ω) (1.2)

we denote by A(�, �) the set of transport maps pushing � to �, that is, the set of Borel
maps T : Ω→ Ω such that T#� = �. In the case � = fℒN Ω and � = gℒN Ω, we
shall write A(f, g).

The Monge problem. Given �, � ∈ ℳ+(Ω) satisfying the mass balance condition
(1.2). The Monge problem, associated with the measures � and �, is to find a map
T ∗ ∈ A(�, �) which minimizes the cost functional

ℱ̃(T ) :=

∫
Ω

∣x− T (x)∣ d�(x)

in the set A(�, �). A map T ∗ ∈ A(�, �) satisfying ℱ̃(T ∗) = min{ℱ̃(T ) : T ∈ A(�, �)},
is called an optimal transport map of � to �.

In general, the Monge problem is ill-posed. To overcome the difficulties of the
Monge problem, in 1942, L. V. Kantorovich ([14]) proposed to study a relaxed version
of the Monge problem and, what is more relevant here, introduced a dual variational
principle.

Let us define �t(x, y) := (1 − t)x + ty. Given a Radon measure  in Ω × Ω, its
marginals are defined by projx() := �0#, projy() := �1#.

The Monge-Kantorovich problem. Fix �, � ∈ℳ+(Ω) satisfying the mass balance
condition (1.2). The Monge-Kantorovich problem is the minimization problem∫

Ω×Ω

∣x− y∣ d∗(x, y) = min

{∫
Ω×Ω

∣x− y∣ d(x, y) :  ∈ Π(�, �)

}
,

where

Π(�, �) := {Radon measures  in Ω× Ω : �0# = �, �1# = �} .

The elements  ∈ Π(�, �) are called transport plans between � and �, and a minimizer
∗ an optimal transport plan. These minimizers always exist.
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The Monge-Kantorovich problem has a dual formulation that can be stated in
this case as follows (see for instance [17, Theorem 1.14]).

Kantorovich-Rubinstein Theorem. Let �, � ∈ ℳ(Ω) be two measures satis-
fying the mass balance condition (1.2). Then,

min

{∫
Ω×Ω

∣x− y∣ d(x, y) :  ∈ Π(�, �)

}

= sup

{∫
Ω

u d(�− �) : u ∈ K1(X)

}
,

(1.3)

where K1(Ω) := {u : X → ℝ : ∣u(x) − u(y)∣ ≤ ∣x − y∣ ∀x, y ∈ Ω} is the set of
1-Lipschitz functions in Ω.

The maximizers u∗ of the right hand side of (1.3) are called Kantorovich potentials.

Let us briefly summarize the contents of this paper. Section 2 is devoted to the
proof of Theorem 1.1; in Section 3 we study the limit as p → ∞ in a p−Laplacian
system obtaining more information about the solution of the matching problem; in
Section 4 we describe some examples and characterize the geometrical configurations
for which the matching measure is a point mass, finally, in Section 5 we collect final
remarks.

2. Proof of Theorem 1.1. Let us denote by

ℳ(D,M0) := {� ∈ℳ+(Ω) : supp(�) ⊂ D, �(Ω) = M0}

the set of all possible matching measures. Given � ∈ℳ(D,M0), we can consider the
following minimization problem

inf
�∈ℳ(D,M0)

inf
(T+,T−)∈A(f+,f−,�)

ℱ(T+, T−), (2.1)

where

A(f+, f−, �) := {(T+, T−) : T+ ∈ A(f+, �), T− ∈ A(f−, �)}.

We have that, in fact,

inf
�∈ℳ(D,M0)

inf
(T+,T−)∈A(f+,f−,�)

ℱ(T+, T−) = inf
(T+,T−)∈AD(f+,f−)

ℱ(T+, T−). (2.2)

Indeed, observe that given (T+, T−) ∈ AD(f+, f−), if we define

�(E) :=

∫
T−1

+ (E)

f+,

we have that � ∈ℳ(D,M0) and (T+, T−) ∈ A(f+, f−, �).

Note that in (2.1) we are considering all possible measures supported in D with
total mass M0 and then we minimize the total transport cost. This is probably the
most natural way of looking at the optimal matching problem and, as shown above,
it is equivalent to our previous formulation.
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We can see the optimal matching problem (2.1) as a kind of Monge’s problem
(recall the results gathered in the previous section). The corresponding Monge-
Kantorovich’s problem is the following

inf
�∈ℳ(D,M0)

inf
(+,−)∈Π(f+,f−,�)

∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d−,

where

Π(f+, f−, �) :=
{

(+, −) ∈ℳ+(Ω× Ω)2 : + ∈ Π(f+, �), − ∈ Π(f−, �)
}
.

For this problem, similarly to (2.2), we have that

inf
�∈ℳ(D,M0)

inf
(+,−)∈Π(f+,f−,�)

∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d−

= inf
(+,−)∈ΠD(f+,f−)

∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d−,

(2.3)

where ΠD(f+, f−) is the set{
(+, −) ∈ℳ+(Ω× Ω)2 : �0#± = f±, �1#+ = �1#−, supp(�1#±) ⊂ D

}
.

Proof. [Proof of Theorem 1.1] For a fixed � ∈ ℳ(D,M0), it is well known (see
for instance [1]) that there exist Kantorovich potentials u±,� ∈ W 1,∞(Ω), depending
on �, with ∣∇u±,�∣∞ ≤ 1, such that∫

Ω

u+,�(f+ − �) = max
u∈W 1,∞(Ω), ∣∇u∣∞≤1

∫
Ω

u(f+ − �)

= min
T∈A(f+,�)

∫
Ω

∣x− T (x)∣f+(x)dx

= min
∈Π(f+,�)

∫
Ω×Ω

∣x− y∣d

and ∫
Ω

u−,�(f− − �) = max
u∈W 1,∞(Ω), ∣∇u∣∞≤1

∫
Ω

u(f− − �)

= min
T∈A(f−,�)

∫
Ω

∣x− T (x)∣f−(x)dx

= min
∈Π(f−,�)

∫
Ω×Ω

∣x− y∣d .

Therefore,

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)� = inf
(T+,T−)∈A(f+,f−,�)

ℱ(T+, T−)

= inf
(+,−)∈Π(f+,f−,�)

∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d− .

(2.4)
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Hence, from (2.2) and (2.3), we get

W := inf
�∈ℳ(D,M0)

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)�

= inf
(T+,T−)∈AD(f+,f−)

ℱ(T+, T−)

= inf
(+,−)∈ΠD(f+,f−)

∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d− .

Now, it is easy to see that there exists �∞ ∈ℳ(D,M0) such that

inf
�∈ℳ(D,M0)

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)�

= sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)�∞.

Hence, by (2.4) for � = �∞ we get that

W = inf
(T+,T−)∈A(f+,f−,�∞)

ℱ(T+, T−)

= inf
(+,−)∈Π(f+,f−,�∞)

∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d− .

Now, the proof of existence of optimal transport maps for the matching problem
follows by [1, Theorem 6.2] which states the existence of an optimal transport map
T ∗+ transferring f+ to �∞, and an optimal transport map T ∗− transferring f− to �∞.

Now, let us show that in our optimal matching problem we can restrict ourselves
to measures supported on ∂D. Let us consider a minimizer (T ∗+, T

∗
−) of the matching

problem and ℎ∞ = T ∗+#f+ the corresponding matching measure. Let us see that we
can obtain a matching measure supported on ∂D. For x ∈ supp(f+), let

�(x) := min{� ∈ [0, 1] : (1− �)x+ �T ∗+(x) ∈ D}.

We define

T̃+(x) := (1− �(x))x+ �(x)T ∗+(x),

that is, T̃+(x) is the first point in D of the segment that goes from x to T ∗+(x). Then,∫
Ω

∣x− T ∗+(x)∣f+(x)dx

=

∫
Ω

∣x− T̃+(x)∣f+(x)dx+

∫
Ω

∣T̃+(x)− T ∗+(x)∣f+(x)dx

=

∫
Ω×Ω

∣x− y∣d((Id× T̃+)#f+)(x, y) +

∫
Ω×Ω

∣x− y∣d((T̃+ × T ∗+)#f+)(x, y).

(2.5)
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If we define the measure ℎ̃∞ := T̃+#f+, which is supported on ∂D, we have that
(Id×T̃+)#f+ is a transport plan induced by the map T̃+ between f+ and the measure
ℎ̃∞. On the other hand, since

�0#((T̃+ × T ∗+)#f+)(B) = (T̃+ × T ∗+)#f+(�−1
0 (B))

= f+(((T̃+ × T ∗+))−1(�−1
0 (B)))

= f+(T̃−1
+ (B)) = T̃+#f+(B)

= ℎ̃∞(B).

and

�1#((T̃+ × T ∗+)#f+)(B) = (T̃+ × T ∗+)#f+(�−1
1 (B))

= f+(((T̃+ × T ∗+))−1(�−1
1 (B)))

= f+(T ∗+
−1(B)) = T ∗+#f+(B)

= ℎ∞(B),

we have that ̃(x, y) := ((T̃+×T ∗+)#f+)(x, y) is a transport plan between ℎ̃∞ and ℎ∞.

Now, by (2.5), (Id× T̃+)#f+ is an optimal transport plan between f+ and ℎ̃∞,
and ̃ is an optimal transport plan between ℎ̃∞ and ℎ∞.

By [1, Theorem 6.2], there exists an optimal transport map T̃− transferring f−

to ℎ̃∞. Let us see that (T̃+, T̃−) is a solution, for the matching problem, that is,

ℱ(T̃+, T̃−) = ℱ(T ∗+, T
∗
−). (2.6)

Indeed, if we consider the gluing transport of (Id × T̃−)#f− and ̂(x, y) := ̃(y, x),
we have that ∫

Ω×Ω

∣x− y∣d((Id× T ∗−)#f−)(x, y) +

∫
Ω×Ω

∣x− y∣d̂(x, y)

≥
∫

Ω×Ω

∣x− y∣d((Id× T̃−)#f−)(x, y).

Therefore,

ℱ(T ∗+, T
∗
−) =

∫
Ω

∣x− T ∗+(x)∣f+(x)dx+

∫
Ω

∣x− T ∗−(x)∣f−(x)dx

=

∫
Ω

∣x− T̃+(x)∣f+(x)dx+

∫
Ω

∣T̃+(x)− T ∗+(x)∣f+(x)dx+

∫
Ω

∣x− T ∗−(x)∣f−(x)dx

≥
∫

Ω

∣x− y∣d((Id× T̃+)#f+)(x, y) +

∫
Ω×Ω

∣x− y∣d((Id× T̃−)#f−)(x, y)

= ℱ(T̃+, T̃−).

Which implies the equality (2.6). Moreover, we also have that the gluing transport of
(Id× T̃−)#f− and ̂ is an optimal transport plan between f+ and ℎ̃∞.
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Remark 2.1. Let us remark that Theorem 1.1 is also true in the case that we
change in the cost function the Euclidean norm by any norm in ℝN . In fact, we
only need to have in mind that in this case Kantorovich potentials also exist (e.g.,
[17]), and the result in [4] that shows the existence of optimal transport maps T ∗+
transferring f+ to �∞ and T ∗− transferring f− to �∞.

Remark 2.2. Since

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

∫
Ω

v(f+ − �) + w(f− − �)

= sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

∫
Ω

vf+ − wf− + (w − v)�,

and ∫
Ω

vf+ − wf− + (w − v)�

=

∫
Ω

vf+ − (w −min
D

(w − v))f− + (w −min
D

(w − v)− v)�

≤ sup
ṽ, w̃ ∈ W1,∞(Ω)
∣∇ṽ∣∞, ∣∇w̃∣∞ ≤ 1

ṽ ≤ w̃ in D

∫
Ω

ṽf+ − w̃f− + (w̃ − ṽ)�,

we have

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

∫
Ω

v(f+ − �) + w(f− − �)

= sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�.

Therefore,

W = inf
�∈ℳ(D,M0)

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�

= sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�∞ .

If we could change inf sup by sup inf in the above expression, then we should get

W = inf
�∈ℳ(D,M0)

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�

= sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

inf
�∈ℳ(D,M0)

∫
Ω

vf+ − wf− + (w − v)�

= sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− ,
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and hence we expect that

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�∞ = sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− .

We will show that in fact the above equality is true, which is the key of our
approach to the problem. The proof of this equality is based on the approximation
of this problem by a p−Laplacian system (see the next section) and does not use
min-max arguments.

3. The limit as p → ∞ in a p−Laplacian system. In this section we show
that we can follow the ideas of Evans-Gangbo, [12], to get the matching measure, and
the Kantorovich potentials at the same time.

Take p > N in this section and recall that, for simplicity, we assumed that Ω is a
convex C1,1 bounded open set.

First, we need some preliminary results.
Lemma 3.1 (A Poincaré’s type inequality). There exists a constant C > 0 such

that

∥(f, g)∥p ≤ C
(
∥(∇f,∇g)∥p +

∣∣∣∣∫
Ω

(f + g)

∣∣∣∣)
for all (f, g) ∈W 1,p(Ω)×W 1,p(Ω), f ≤ g in D, f(x0) = g(x0) for some x0 ∈ D.

Proof. Let us argue by contradiction supposing that there exists (fn, gn) ∈
W 1,p(Ω)×W 1,p(Ω), fn ≤ gn in D, fn(xn) = gn(xn) for some xn ∈ D, such that

∥(fn, gn)∥p ≥ n
(
∥(∇fn,∇gn)∥p +

∣∣∣∣∫
Ω

(fn + gn)

∣∣∣∣) .
By homogeneity we can suppose that

∥(fn, gn)∥p = 1. (3.1)

So,

∥(∇fn,∇gn)∥p → 0 (3.2)

and ∫
Ω

(fn + gn)→ 0. (3.3)

Therefore, there exists a subsequence, denoted equal, such that

(fn, gn)→ (f, g) uniformly and weakly in W 1,p(Ω)×W 1,p(Ω),

and

xn → x ∈ D, f(x) = g(x).

Now, by (3.2), f and g are constants, so equal. And by (3.3), f = g = 0, which
contradicts the fact that they come from the uniform limit of a subsequence satisfying
(3.1).
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The following consequence is immediate.
Corollary 3.2. There exists C > 0 such that

∥(f, g)∥p ≤ C∥(∇f,∇g)∥p (3.4)

for all (f, g) ∈W 1,p(Ω)×W 1,p(Ω), f ≤ g in D, f(x0) = g(x0) for some x0 ∈ D, with∫
Ω

(f + g) = 0.

Remark 3.3. The constants that appear in Lemma 3.1 and in Corollary 3.2
may depend on p. The method used in the proof does not allow to quantify such
dependence (and it is not our aim in this paper to make this dependence precise),
then we are not allowed to use these results in the passage to the limit as p→∞, they
are used only to show existence and uniqueness of a solution of the elliptic system
under consideration. To pass to the limit we rely on a local Morrey inequality, see
the proof of Theorem 3.5 below.

Let us consider the following variational problem

min
(v, w) ∈ W1,p(Ω) ×W1,p(Ω)

v ≤ w in D

1

p

∫
Ω

∣Dv∣p +
1

p

∫
Ω

∣Dw∣p −
∫

Ω

vf+ +

∫
Ω

wf−. (3.5)

Our next result in this section deals with existence and uniqueness of solutions
for the variational problem (3.5).

Theorem 3.4. There exists a minimizer (vp, wp) of (3.5). In addition any two
minimizers differ by a constant, that is, if (vp, wp) and (ṽp, w̃p) are minimizers then
there exists a constant c with vp = ṽp + c and wp = w̃p + c.

Proof. Set

Ψ(v, w) :=
1

p

∫
Ω

∣Dv∣p +
1

p

∫
Ω

∣Dw∣p −
∫

Ω

vf+ +

∫
Ω

wf− .

Let us begin by observing that, since the functions in W 1,p(Ω) are continuous, it is
easy to see that

min
(v, w) ∈ W1,p(Ω) ×W1,p(Ω)

v ≤ w in D

Ψ(v, w) = min
(v, w) ∈ W1,p(Ω) ×W1,p(Ω)

v ≤ w in D
∃x0 ∈ D, v(x0) = w(x0)

Ψ(v, w). (3.6)

Moreover, since

Ψ(v, w) = Ψ(v − c, w − c) for any constant c,

by taking

c =
1

2

(
1

∣Ω∣

∫
Ω

v +
1

∣Ω∣

∫
Ω

w

)
,

we can minimize Ψ(v, w) between functions (v, w) with∫
Ω

v +

∫
Ω

w = 0.
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Now, by Corollary 3.2,

Ψ(v, w) :=
1

p

∫
Ω

∣Dv∣p +
1

p

∫
Ω

∣Dw∣p −
∫

Ω

vf+ +

∫
Ω

wf−

is a finite lower semicontinuous and coercive convex functional for the closed convex
subset of W 1,p(Ω)×W 1,p(Ω), ℬ, given by{

(v, w) ∈W 1,p(Ω)×W 1,p(Ω) : v ≤ w in D, v(x0) = w(x0)

for some x0 ∈ D,
∫

Ω

(v + w) = 0
}
.

Then, by [2, Corollary 3.23], Ψ attains its infimum on ℬ, which is equivalent to say
that

inf
(v, w) ∈ W1,p(Ω) ×W1,p(Ω)

v ≤ w in D

Ψ(v, w)

is attained.
Finally, let us show uniqueness of the minimizer up to an additive constant.

Equivalently, we prove uniqueness of the minimizer when we impose the constraint∫
Ω

v +

∫
Ω

w = 0.

Assume that we have two pairs (vp, wp) and (ṽp, w̃p) of minimizers and that∫
Ω

vp +

∫
Ω

wp =

∫
Ω

ṽp +

∫
Ω

w̃p = 0. (3.7)

By the strict convexity of the function � 7→ ∥�∥p (we have 1 < p <∞) we obtain
that Dvp = Dṽp and Dwp = Dw̃p. Then there are constants c1 and c2 such that
vp = ṽp + c1 and wp = w̃p + c̃2. Hence, from (3.7) we get that

c1 + c2 = 0.

Therefore, we obtain

Ψ(vp, wp) = Ψ(ṽp, w̃p)− c1
(∫

Ω

f+ +

∫
Ω

f−
)

and we conclude that

c1 = c2 = 0

from the fact that both pairs are minimizers.
Now we prove that we can pass to the limit as p→∞ in the sequence of minimizer

functions.
Theorem 3.5. Let (vp, wp) be minimizer functions of (3.5). Then, up to a

subsequence,

lim
p→∞

(vp, wp) = (v∞, w∞) uniformly,
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where (v∞, w∞) is a solution of the variational problem

max
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf−. (3.8)

Remark 3.6. As we will see, the limit (v∞, w∞) gives a pair of Kantorovich po-
tentials for our optimal matching problem. But in fact this limit procedure gives much
more since it allows us to identify the optimal matching measure (see Theorem 3.11
below).

Proof. [Proof of Theorem 3.5] Let us take (vp, wp) ∈ ℬ a minimizer of (3.5). For
(v, w) ∈W 1,∞(Ω)×W 1,∞(Ω), with ∣∇v∣∞, ∣∇w∣∞ ≤ 1 and v ≤ w in D, we have that

−
∫

Ω

vpf
+ +

∫
Ω

wpf
− ≤ 1

p

∫
Ω

∣Dvp∣p +
1

p

∫
Ω

∣Dwp∣p −
∫

Ω

vpf
+ +

∫
Ω

wpf
−

≤ 1

p

∫
Ω

∣Dv∣p +
1

p

∫
Ω

∣Dw∣p −
∫

Ω

vf+ +

∫
Ω

wf−

≤ 2
∣Ω∣
p
−
∫

Ω

vf+ +

∫
Ω

wf−.

(3.9)

Now, by (3.6), we can assume that there exists xp ∈ D such that vp(xp) = wp(xp).
We can also assume that vp(z∞) = 0 for all p, for any z∞ ∈ Ω. Hence, as p > N , we
have:

∥vp∥∞ ≤ C1∥Dvp∥p, (3.10)

and

∥wp∥∞ ≤ C1 (∥Dwp∥p + ∥Dvp∥p) , (3.11)

with C1 not depending on p. Indeed, for a fixed x ∈ Ω, there exists x = x0, x1, ..., xm =
z∞ and m balls Qi (i = 1, 2, ...,m) of certain fixed diameter r > 0, such that xi, xi+1 ∈
Qi+1 and r ⋅ m is bounded independently of x, z∞ and m. Then, local Morrey’s
inequality (see, e.g., the Remark in page 268 of [10] or [2]), implies

∣vp(x)∣ = ∣vp(x)− vp(z∞)∣ ≤
m∑
i=1

∣vp(xi)− vp(xi+1)∣

≤ C0r
1−N/pm∥∇vp∥p ≤ C1∥∇vp∥p,

being Ci independent of p. With the same argument, but changing the extreme points
and the function, we obtain

∣wp(x)∣ = ∣wp(x)− wp(xp)∣+ ∣vp(xp)∣ ≤
m̃∑
i=1

∣wp(yi)− wp(yi+1)∣+ ∣vp(xp)∣

≤ C0r
1−N/pm̃∥∇wp∥p + ∣vp(xp)∣ ≤ C1∥∇wp∥p + ∣vp(xp)∣.

From (3.9), using Hölder’s inequality and having in mind (3.10) and (3.11), we
get

1

p

∫
Ω

∣Dvp∣p +
1

p

∫
Ω

∣Dwp∣p ≤ C2(∥vp∥Lp(Ω) + ∥wp∥Lp(Ω) + 1)

≤ C3(∥Dvp∥Lp(Ω) + ∥Dwp∥Lp(Ω) + 1),
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with Ci independent of p. Hence,

∥∇vp∥p−1
Lp(Ω), ∥∇wp∥

p−1
Lp(Ω) ≤ pC4 ∀p > N, (3.12)

with C4 independent of p.
Therefore, ∥vp∥W 1,p(Ω) and ∥wp∥W 1,p(Ω) are bounded uniformly in p, and, by

Morrey’s inequality (e.g. [2] or [10])⎧⎨⎩ ∣vp(x)− vp(y)∣ ≤ C5∣x− y∣1−
N
p ,

∣wp(x)− wp(y)∣ ≤ C5∣x− y∣1−
N
p ,

for some constant C5 not depending on p. Then, by Arzela-Ascoli’s compactness
criterion we can extract a sequence pi →∞ such that

vpi → v∞ uniformly in Ω,

wpi → w∞ uniformly in Ω,

and, so, v∞ ≤ w∞ in D. Moreover, by (3.12), we have

∥∇v∞∥∞, ∥∇w∞∥∞ ≤ 1.

Finally, passing to the limit in (3.9), we get∫
Ω

v∞f
+ − w∞f− = sup

v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− .

This ends the proof.

Remark 3.7. Remark that the convergence as p → ∞ is only along a subse-
quence. The main content of our result is that there is enough compactness to pass
to the limit along subsequences and moreover that all possible limits are solutions to
the maximization limit problem.

We now prove some properties of the minimizers and their limits that show that
we have found (in the limit) Kantorovich potentials and an optimal matching measure
for our matching problem.

We divide the proof of these properties in a series of lemmas.
Lemma 3.8. Let (vp, wp) be minimizer functions of problem (3.5). Then, there

exists a positive Radon measure ℎp of mass M0 such that
1. ⎧⎨⎩ −Δpvp = f+ − ℎp in Ω,

∣∇vp∣p−2∇vp ⋅ � = 0 on ∂Ω,⎧⎨⎩ −Δpwp = ℎp − f− in Ω,

∣∇wp∣p−2∇wp ⋅ � = 0 on ∂Ω.

2. The positive measure ℎp is supported on {x ∈ D : vp(x) = wp(x)}.
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Proof. Recall that since p > N , we have W 1,p(Ω) ⊂ C(Ω). For any ', ∈
W 1,p(Ω) such that ' =  in D, since (vp, wp) is a minimizer of Ψ in the set

{(v, w) ∈W 1,p(Ω)×W 1,p(Ω) : v ≤ w in D},

the function

I1(t) := Ψ(vp + t', wp + t )

has a minimum at t = 0. Therefore, I ′1(0) = 0, from where it follows that∫
Ω

∣∇vp∣p−2∇vp∇'+

∫
Ω

∣∇wp∣p−2∇wp∇ =

∫
Ω

f+'−
∫

Ω

f− . (3.13)

Observe that, taking  = ' in (3.13), we get that⎧⎨⎩ −Δpvp −Δpwp = f+ − f− in Ω,

∣∇vp∣p−2∇vp ⋅ � + ∣∇wp∣p−2∇wp ⋅ � = 0 on ∂Ω.
(3.14)

Similarly, for any ' ∈W 1,p(Ω), ' ≥ 0, and any t > 0, we have

I2(t) := Ψ(vp − t', wp)−Ψ(vp, wp) ≥ 0

and

I3(t) := Ψ(vp, wp + t')−Ψ(vp, wp) ≥ 0.

Then, by taking limits in Ii(t)
t i = 2, 3, as t→ 0, we get⎧⎨⎩ −Δpvp ≤ f+ in Ω,

−Δpwp ≥ −f− in Ω.

Therefore, ℎp := Δpvp + f+ defines a positive measure which, thanks to (3.14), is
equal to f− − Δpwp. The fact that ℎp is supported on {x ∈ D : vp(x) = wp(x)}
follows from the fact that, for ' ∈ D(Ω) supported on Ω ∖ {x ∈ D : vp(x) = wp(x)}
and t ∕= 0 small enough,

I4(t) := Ψ(vp + t', wp)−Ψ(vp, wp) ≥ 0.

Again, by taking limits in I4(t)
t as t→ 0, we conclude. This gives the proof of (2).

Given ' ∈ D(ℝN ), if we take  ∈ D(Ω) such that ' =  en D, (3.13) says that∫
Ω

∣∇vp∣p−2∇vp∇'+

∫
Ω

∣∇wp∣p−2∇wp∇ =

∫
Ω

f+'−
∫

Ω

f− .

But, since  ∈ D(Ω) and supp(ℎp) ⊂ D, we have∫
Ω

∣∇wp∣p−2∇wp∇ =

∫
Ω

 dℎp −
∫

Ω

f− =

∫
Ω

'dℎp −
∫

Ω

f− .

Then, from the two above expressions, by density we obtain that∫
Ω

∣∇vp∣p−2∇vp∇' =

∫
Ω

f+'−
∫

Ω

'dℎp, ∀' ∈W 1,p(Ω), (3.15)
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which shows the first statement in (1) for the first problem. Similarly, we obtain the
second one. From here, now, it is an easy consequence that (just take ' = 1 in (3.15))∫

Ω

dℎp = M0,

and the proof concludes.
Lemma 3.9. Under the same assumptions of Lemma 3.8, up to a subsequence,

ℎp ⇀ ℎ∞ as p→∞, weakly∗ as measures,

with ℎ∞ a positive Radon measure of mass M0 supported on {x ∈ D : v∞(x) =
w∞(x)}. And the limit (v∞, w∞) obtained in Theorem 3.5 satisfies:

v∞ is a Kantorovich potential for the transport of f+ to ℎ∞,

w∞ is a Kantorovich potential for the transport of ℎ∞ to f−,

with respect to the Euclidean distance.
Proof. From the last equality in the proof of the previous lemma,∫

Ω

dℎp = M0,

we can assume that there exists a positive Radon measure ℎ∞ of mass M0 such that,
up to a subsequence,

ℎp ⇀ ℎ∞.

Let ' ∈ D(Ω) be supported on Ω ∖ {x ∈ D : v∞(x) = w∞(x)}. Then, since

lim
p

(vp, wp) = (v∞, w∞) uniformly,

there exists p0 > N such that ' is supported on Ω ∖ {x ∈ D : vp(x) = wp(x)} for all
p ≥ p0. Therefore, ∫

Ω

'dℎ∞ = lim
p→∞

∫
Ω

'dℎp = 0.

Consequently, ℎ∞ is supported on {x ∈ D : v∞ = w∞}.
Since ∣�∣p − ∣�∣p ≤ p∣�∣p−2� ⋅ (� − �) for any �, � ∈ ℝN , we have

1

p

∫
Ω

∣∇vp∣p−
∫

Ω

(f+−dℎp)vp+

∫
Ω

∣∇vp∣p−2∇vp ⋅ (∇'−∇vp)−
∫

Ω

(f+−dℎp)('− vp)

≤ 1

p

∫
Ω

∣∇'∣p −
∫

Ω

(f+ − dℎp)'

for every ' ∈W 1,p(Ω). Then, having in mind (3.15), we have∫
Ω

∣∇vp∣p−2∇vp ⋅ (∇'−∇vp)−
∫

Ω

(f+ − dℎp)('− vp)) = 0,
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and we arrive to

1

p

∫
Ω

∣∇vp∣p−
∫

Ω

(f+−dℎp)vp ≤
1

p

∫
Ω

∣∇'∣p−
∫

Ω

(f+−dℎp)' ∀' ∈W 1,p(Ω). (3.16)

Therefore, for any v ∈W 1,∞(Ω), ∣∇v∣∞ ≤ 1,

−
∫

Ω

(f+ − dℎp)vp ≤ 1

p

∫
Ω

∣∇vp∣p −
∫

Ω

(f+ − dℎp)vp

≤ 1

p

∫
Ω

∣∇v∣p −
∫

Ω

(f+ − dℎp)v ≤ 1

p
∣Ω∣ −

∫
Ω

(f+ − dℎp)v.

Taking limit as p→∞ in the last inequality, we get∫
Ω

(f+ − dℎ∞)v ≤
∫

Ω

(f+ − dℎ∞)v∞,

from where it follows that∫
Ω

(f+ − dℎ∞)v∞ = sup
v ∈ W1,∞(Ω)
∣∇v∣∞ ≤ 1

∫
Ω

v(f+ − dℎ∞),

and consequently, v∞ is a Kantorovich potential for the transport of f+ to ℎ∞, with
respect to the Euclidean distance. The proof for w∞ is similar.

Lemma 3.10. (v∞, w∞) and ℎ∞ satisfy∫
Ω

v∞f
+ − w∞f−

= inf
�∈ℳ(D,M0)

sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�

= min
(+,−)∈ΠD(f+,f−)

{∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d−
}

= inf
(T+,T−)∈AD(f+,f−)

∫
Ω

∣x− T+(x)∣f+(x)dx+

∫
Ω

∣x− T−(x)∣f−(x)dx.

(3.17)

Proof. From Lemma 3.9 we have∫
Ω

v∞(f+ − dℎ∞) = inf
�∈A(f+,ℎ∞)

∫
∣x− y∣d� =

∫
∣x− y∣d�0,

�0 ∈ A(f+, ℎ∞) and∫
Ω

w∞(dℎ∞ − f−) = inf
�∈A(ℎ∞,f−)

∫
∣x− y∣d� =

∫
∣x− y∣d�0,

�0 ∈ A(ℎ∞, f
−). Then, by adding the above inequalities and since

∫
Ω

(w∞−v∞)ℎ∞ =
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0, we get∫
Ω

v∞f
+ − w∞f−

=

∫
Ω

v∞f
+ − w∞f− + (w∞ − v∞)dℎ∞ =

∫
∣x− y∣d�0 +

∫
∣x− y∣d�0

≥ inf
(+,−)∈ΠD(f+,f−)

{∫
Ω×Ω

∣x− y∣d+ +

∫
Ω×Ω

∣x− y∣d−
}

= sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�∞

≥ sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− ,

(3.18)

where �∞ is the optimal measure given in Section 2.
Theorem 3.11. The measure ℎ∞ is a matching measure to the optimal matching

problem (1.1).
Proof. From Lemma 3.9, there exists a positive measure ℎ∞ and Lipschitz con-

tinuous functions v∞, w∞ satisfying:

v∞ is a Kantorovich potential for the transport of f+ to ℎ∞,

w∞ is a Kantorovich potential for the transport of ℎ∞ to f−,

with respect to the Euclidean distance. Moreover, ℎ∞ is supported on {x ∈ D : v∞ =
w∞}. Then, by [1, Theorem 2.1] and Kantorovich-Rubinstein Theorem (e.g. [17,
Theorem 1.14]), we have ∫

Ω

∣x− T ∗+(x)∣f+(x)dx

= min

{∫
Ω×Ω

∣x− y∣ d(x, y) :  ∈ Π(f+, ℎ∞)

}
=

∫
Ω

v∞(f+ − ℎ∞)

and ∫
Ω

∣y − T ∗−(x)∣f−(x)dx

= min

{∫
Ω×Ω

∣x− y∣ d(x, y) :  ∈ Π(ℎ∞, f
−)

}
=

∫
Ω

w∞(ℎ∞ − f−).

Therefore, having in mind (3.17), we get

inf
(T+,T−)∈AD(f+,f−)

∫
Ω

∣x− T+(x)∣f+(x)dx+

∫
Ω

∣x− T−(x)∣f−(x)dx

=

∫
Ω

∣x− T ∗+(x)∣f+(x)dx+

∫
Ω

∣y − T ∗−(x)∣f−(x)dx ,
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which finishes the proof.
Observe that the above result gives an alternative proof for the first statement

in Theorem 1.1. We will see in Theorem 3.14 that in some cases this approach also
selects a matching measure supported on the boundary of the target set, which is the
second statement of Theorem 1.1.

Remark 3.12. Note that, for the measure �∞ given in Section 2, it also holds
that ∫

Ω

(w∞ − v∞)�∞ = 0, (3.19)

which implies that �∞ is, in fact, supported where v∞ = w∞ in D. Indeed, by (3.18),∫
Ω

v∞f
+ − w∞f− = sup

v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf− + (w − v)�∞

≥
∫

Ω

v∞f
+ − w∞f− + (w∞ − v∞)�∞ ≥

∫
Ω

v∞f
+ − w∞f− ,

which implies (3.19).
Lemma 3.13. If (vp, wp) is a pair solving the equations in Lemma 3.8 for a

positive measure ℎp, and

vp ≤ wp in D,

supp(ℎp) ⊂ {x ∈ D : vp(x) = wp(x)},

then, (vp, wp) is a minimizer in the minimization problem (3.5).
Proof. We have that

1

p

∫
Ω

∣∇vp∣p −
∫

Ω

(f+ − dℎp)vp ≤
1

p

∫
Ω

∣∇'∣p −
∫

Ω

(f+ − dℎp)' ∀' ∈W 1,p(Ω),

and

1

p

∫
Ω

∣∇wp∣p −
∫

Ω

(dℎp − f−)wp ≤
1

p

∫
Ω

∣∇ ∣p −
∫

Ω

(dℎp − f−) ∀ ∈W 1,p(Ω).

Adding up both expressions, since ℎp is supported in D where vp = wp, and vp ≤ wp
in D,

1

p

∫
Ω

∣∇vp∣p +
1

p

∫
Ω

∣∇wp∣p −
∫

Ω

f+vp +

∫
Ω

f−wp

≤ 1

p

∫
Ω

∣∇'∣p +
1

p

∫
Ω

∣∇ ∣p −
∫

Ω

f+'+

∫
Ω

f− 

for all ',  ∈W 1,p(Ω), ' ≤  in D.

Theorem 3.14. Assume that D is the closure of a smooth domain Θ, then ℎp is
supported on ∂D and hence ℎ∞ is concentrated on the boundary of D.
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Proof. Let ṽp, w̃p be minimizers of

min
(v, w) ∈ W1,p(Ω) ×W1,p(Ω)

v ≤ w in ∂D

Ψ(v, w),

and let ℎ̃p be a positive measure, supp(ℎ̃p) ⊂ {x ∈ ∂D : ṽp(x) = w̃p(x)}, such that⎧⎨⎩ −Δpṽp = f+ − ℎ̃p in Ω,

∣∇ṽp∣p−2∇ṽp ⋅ � = 0 on ∂D,

⎧⎨⎩ −Δpw̃p = ℎ̃p − f− in Ω,

∣∇w̃p∣p−2∇w̃p ⋅ � = 0 on ∂D.

Set now vp = ṽp in Ω ∖D, and define vp in D as the solution of{
−Δpv = 0 in Θ,

v = ṽp on ∂D.

Similarly we define wp. Observe that, by the the Maximum Principle,

vp ≤ wp in D

and also ∫
Θ

∣Dvp∣p ≤
∫

Θ

∣Dṽp∣p,
∫

Θ

∣Dwp∣p ≤
∫

Θ

∣Dw̃p∣p.

Then,

Ψ(vp, wp) =
1

p

∫
Ω

∣Dvp∣p +
1

p

∫
Ω

∣Dwp∣p −
∫

Ω

vpf
+ +

∫
Ω

wpf
−

=
1

p

∫
Ω∖D
∣Dṽp∣p +

1

p

∫
Θ

∣Dvp∣p +
1

p

∫
Ω∖D
∣Dw̃p∣p +

1

p

∫
Θ

∣Dwp∣p

−
∫

Ω

ṽpf
+ +

∫
Ω

w̃pf
−

≤ 1

p

∫
Ω∖D
∣Dṽp∣p +

1

p

∫
Θ

∣Dṽp∣p +
1

p

∫
Ω∖D
∣Dw̃p∣p +

1

p

∫
Θ

∣Dw̃p∣p

−
∫

Ω

ṽpf
+ +

∫
Ω

w̃pf
−

= Ψ(ṽp, w̃p).

In fact, since vp ≤ wp in ∂D,

Ψ(vp, wp) = Ψ(ṽp, w̃p).

Hence, by Theorem 3.4, there exists a constant c such that (vp, wp) = (ṽp+ c, w̃p+ c),
and consequently,⎧⎨⎩ −Δpvp = f+ − ℎ̃p in Ω,

∣∇vp∣p−2∇vp ⋅ � = 0 on ∂Ω,

⎧⎨⎩ −Δpwp = ℎ̃p − f− in Ω,

∣∇wp∣p−2∇wp ⋅ � = 0 on ∂Ω.

Then, since vp ≤ wp in D, by Lemma 3.13, we have (vp, wp) is a minimizer of Problem
(3.5). Therefore, by Theorem 3.4, there exists a constant c such that (vp, wp) =

(vp + c, wp + c), and consequently, ℎp = ℎ̃p, which implies that ℎ∞ is supported
on ∂D.
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4. Examples. Let us first compute some examples that illustrate our results
and next characterize when the optimal matching measure is a delta.

Example 4.1. Consider the optimal matching problem for the data: Ω =]−4, 4[,
f+ = b�]−3,−2[ + (1− b)�]2,3[, f

− = �
]−2,−1[ and D = [0, 1], where 0 ≤ b ≤ 1 is fixed.

Then, any matching measure in D is of the form b�0 + �, for any positive Radon
measure �, of mass 1− b, supported on D. Indeed, it is easy to see that, for

T ∗+(x) =

{
0 if − 3 < x < −2

t∗+(x) in other case,

where t∗+ is any optimal transport map transporting (1− b)�]2,3[ to �, and

T ∗−(x) =

{
0 if − 2 < x < −2 + b

t∗−(x) in other case,

where t∗− is any optimal transport map transporting �]−2+b,−1[ to �,

ℱ(T ∗+, T
∗
−) = 4.

Also, for

v∗(x) :=

{
−x if x ≤ 0

x if x ≥ 0,

and

w∗(x) = x,

∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx = 4.

Then, our assertion follows from∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx

≤ sup
v, w ∈ W1,∞(Ω)
∣∇v∣∞, ∣∇w∣∞ ≤ 1

v ≤ w in D

∫
Ω

vf+ − wf−

= inf
(T+,T−)∈AD(f+,f−)

ℱ(T+, T−) ≤ ℱ(T ∗+, T
∗
−).

Observe also that, in this case, the cost for the usual transport of f+ to f− is
(b− 2)2.

We distinguish three cases:
1. If b = 1, �0 is the unique matching measure.
2. If 0 < b < 1, there are infinitely many matching measures but all of them with

singular part.
3. If b = 0, we also have infinitely many matching measures, infinitely many

without singular part and infinitely many with singular part. Moreover, only in this
case, the cost of the matching problem is the same as the cost of the classical transport
problem of f+ to f−.
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So we can not expect uniqueness of ℎ∞ in general, but it may hold for some
special configurations of the masses and the target set. Uniqueness of ℎ∞ holds in
one-dimension if and only if the target set D is located to the left or to the right from
the supports of f+ and f−, while if there is some mass of f+ to the left of D and
some mass of f− to the right (or viceversa) then there are infinitely many optimal
measures ℎ∞.

Moreover, in one dimension there is necessarily a singular part in the optimal
measure ℎ∞ if the masses f+ and f− has some part of both of them to the left or to
the right of D, while if f+ is completely on the right and f− completely on the left of
D then there are optimal ℎ∞ without singular part.

Now, let us come back to the symmetric situation given in the case b = 0. In this
case we can also compute optimal pairs (vp, wp). Let

zp(x) =
p− 1

p
∣x∣

1
p−1x.

This antisymmetric function zp is a solution to −(∣z′∣p−2z′)′(x) = −1 for x > 0 with
z′(0) = 0. Note that (zp)

′(1) = 1 and zp(1) = p−1
p . Also note that

zp(x)→ x as p→∞.

With the aid of this zp let us define vp,c and wp,c as follows. For any c ∈ [0, 1] we
consider the functions

vp,c(x) =

⎧⎨⎩

0, −4 ≤ x ≤ 0,

cx, 0 ≤ x ≤ 1,

x+ c− 1, 1 ≤ x ≤ 2,

zp(x− 3) + 2p−1
p + c, 2 ≤ x ≤ 3,

2p−1
p + c, 3 ≤ x ≤ 4,

and

wp,c(x) =

⎧⎨⎩

− 2p−1
p , −4 ≤ x ≤ −2,

zp(x+ 2)− 2p−1
p , −2 ≤ x ≤ −1,

x, −1 ≤ x ≤ 0,

cx, 0 ≤ x ≤ 1,

c, 1 ≤ x ≤ 4.

A simple computation gives

−(∣(vp,c)′∣p−2(vp,c)
′)′ = f+ − (cp−1�0 + (1− cp−1)�1)

and

−(∣(wp,c)′∣p−2(wp,c)
′)′ = (1− cp−1)�0 + cp−1�1 − f−.

Hence, taking

c =

(
1

2

) 1
p−1

,
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if we define vp := vp,c and wp := wp,c, we have

−Δpvp = f+ − ℎp and −Δpvp = ℎp − f−,

being ℎp := 1
2�0 + 1

2�1. Moreover vp ≤ wp in D and ℎp is supported on {x ∈ D :
vp(x) = wp(x)}. Therefore we have obtained a sequence of minimizers (vp, wp) that
gives in the limit the matching measure 1

2�0 + 1
2�1. In addition it can be checked that

the optimal Kantorovich potentials that appear in this limit procedure are just given
by

v∞(x) =

⎧⎨⎩
0, −4 ≤ x ≤ 0,

x, 0 ≤ x ≤ 3,

3, 3 ≤ x ≤ 4,

and

w∞(x) =

⎧⎨⎩
−2, −4 ≤ x ≤ −2,

x, −2 ≤ x ≤ 1,

1, 1 ≤ x ≤ 4.

Note that (vp, wp) is unique, up to a constant, that is, any other minimizer is of
the form (vp + c, wp + c), c constant. Therefore, this example shows that not every
possible optimal matching measure can be obtained using this procedure.

Let us characterize now, in any space dimension, the set of configurations for
which the matching measure is a delta concentrated at a point z0 ∈ D.

Theorem 4.2. Assume that there is a point z0 ∈ D such that for any pair of
points x ∈ X+ and y ∈ X− we have

min
z∈D
{∣x− z∣+ ∣y − z∣} = ∣x− z0∣+ ∣y − z0∣, (4.1)

then the measure M0�z0 is an optimal matching measure.
Conversely, if M0�z0 is an optimal matching measure, then for any pair of points

x ∈ X+ and y ∈ X− we have (4.1).

Proof. Let â(x) := ∣x − z0∣ for x ∈ X+ and b̂(x) = −∣x − z0∣ for x ∈ X−. Both
are 1–Lipschitz functions.

Let now a(x) := supy∈X+
{â(x)− ∣x− y∣} for x ∈ Ω, and b(x) := infy∈X−{b̂(x) +

∣x − y∣} for x ∈ Ω, the lower 1–Lipschitz extension of a to Ω and the upper 1–
Lipschitz extension of b to Ω, respectively (in fact these are the McShane and Whitney
extensions, see [15, 19]).

Let us see that a ≤ b on D. By (4.1) we have that, for z ∈ D,

∣x− z0∣ − ∣x− z∣ ≤ −∣y − z0∣+ ∣y − z∣ ∀x ∈ X+ and ∀y ∈ X−;

therefore, taking the supremum in x and the infimum in y we get that a(z) ≤ b(z).
Let us see now that (a, b) is a maximizer of (3.8). Let (v, w) a pair of test functions,

then

v(x) ≤ v(z0) + ∣x− z0∣ ∀x ∈ X+

and

w(y) ≥ w(z0)− ∣y − z0∣ ∀y ∈ X−.
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Therefore, using that v ≤ w in D, we get∫
Ω

vf+ −
∫

Ω

wf− ≤ (v(z0)−w(z0))

∫
Ω

f+ +

∫
Ω

∣x− z0∣f+(x)dx+

∫
Ω

∣y− z0∣f−(y)dy

≤
∫

Ω

∣x− z0∣f+(x)dx+

∫
Ω

∣y − z0∣f−(y)dy =

∫
Ω

af+ −
∫

Ω

bf−.

Observe now that, setting T ∗+(x) = z0 for x ∈ X+ and T ∗−(x) = z0 for x ∈ X−,∫
Ω

af+ −
∫

Ω

bf− =

∫
Ω

∣x− T ∗+(x)∣f+(x)dx+

∫
Ω

∣y − T ∗−(y)∣f−(y)dy .

Therefore, M0�z0 is an optimal matching measure.
To see the converse we argue by contradiction. Hence, assume that M0�z0 is an

optimal matching measure and that there are two points x0 ∈ X+ and y0 ∈ X− such
that (4.1) does not hold, that is, there exists z1 ∈ D such that

∣x0 − z1∣+ ∣y0 − z1∣ < ∣x0 − z0∣+ ∣y0 − z0∣.

By continuity we can find a positive number � and two small radii r1 and r2 such that

∣x− z1∣+ ∣y − z1∣ < ∣x− z0∣+ ∣y − z0∣ − �, (4.2)

for every x ∈ Br1(x0) and every y ∈ Br2(y0) and such that∫
Br1

(x0)

f+(x) dx =

∫
Br2

(y0)

f−(y) dy = k > 0. (4.3)

Note that, thanks to this mass balance condition (4.3), we have an optimal trans-
port map x = S(y) that sends f−�Br2

(y0) to f+
�
Br1

(x0). In particular S satisfies∫
Br1

(x0)

A(x)f+(x) dx =

∫
Br2

(y0)

A(S(y))f−(y) dy

for every continuous function A. Hence,∫
Br1 (x0)

∣x− zi∣f+(x)dx =

∫
Br2 (y0)

∣S(y)− zi∣f−(y)dy, i = 0, 1;

and using (4.2), we obtain that∫
Br1

(x0)

∣x− z1∣f+(x)dx+

∫
Br2

(y0)

∣y − z1∣f−(y)dy

=

∫
Br2

(y0)

(∣S(y)− z1∣+ ∣y − z1∣)f−(y)dy

≤
∫
Br2

(y0)

(∣S(y)− z0∣+ ∣y − z0∣)f−(y)dy − k�

=

∫
Br1 (x0)

∣x− z0∣f+(x)dx+

∫
Br2 (y0)

∣y − z0∣f−(y)dy − k�.
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Now let us define

T̃+(x) =

{
z0, x ∈ X+ ∖Br1(x0),
z1, x ∈ Br1(x0),

and

T̃−(y) =

{
z0, y ∈ X− ∖Br2(y0),
z1, y ∈ Br2(y0).

This pair corresponds to the transport of f+ and f− to the measure (M0−k)�z0 +k�z1
that is supported in D. We have∫

Ω

∣x− T̃+(x)∣f+(x)dx+

∫
Ω

∣y − T̃−(y)∣f−(y)dy

=

∫
X+∖Brx (x0)

∣x− z0∣f+(x)dx+

∫
X−∖Bry (y0)

∣y − z0∣f−(y)dy

+

∫
Brx (x0)

∣x− z1∣f+(x)dx+

∫
Bry (y0)

∣y − z1∣f−(y)dy

<

∫
X+

∣x− z0∣f+(x)dx+

∫
X−

∣y − z0∣f−(y)dy − k�,

a contradiction with the fact that M0�z0 is an optimal matching measure.
Let us compute a more geometrical form of the condition (4.1) in case that D is

convex.
Assume that (4.1) holds, then differentiation of ∣x − z∣ + ∣y − z∣ with respect to

z gives that z0 ∈ D satisfies〈
x− z0

∣x− z0∣
+

y − x0

∣y − z0∣
, z − z0

〉
≤ 0 for all x ∈ X+, y ∈ X− and z ∈ D (4.4)

(note that z0 may belong to ∂D). Hence (4.1) implies (4.4).
The converse also holds: if z0 ∈ D satisfies (4.4) then (4.1) holds. Indeed, arguing

by contradiction, suppose that for some z ∈ D, we have,

∣x− z∣+ ∣y − z∣ < ∣x− z0∣+ ∣y − z0∣. (4.5)

Now, by convexity of z 7→ ∣x− z∣+ ∣y − z∣, for 0 < t < 1,

∣x− (tz + (1− t)z0)∣+ ∣y − (tz + (1− t)z0)∣

≤ t(∣x− z∣+ ∣y − z∣) + (1− t)(∣x− z0∣+ ∣y − z0∣)

= t(∣x− z∣+ ∣y − z∣ − ∣x− z0∣ − ∣y − z0∣) + ∣x− z0∣+ ∣y − z0∣,

that is

1

t
(∣x− (tz + (1− t)z0)∣+ ∣y − (tz + (1− t)z0)∣ − ∣x− z0∣ − ∣y − z0∣)

≤ ∣x− z∣+ ∣y − z∣ − ∣x− z0∣ − ∣y − z0∣.
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Therefore, taking limit as t→ 0, and using (4.5),

−
〈
x− z0

∣x− z0∣
+

y − z0

∣y − z0∣
, z − z0

〉
≤ ∣x− z∣+ ∣y − z∣ − ∣x− z0∣ − ∣y − z0∣ < 0,

which gives a contradiction.
Remark 4.3. Since we know that the target set in this problem can be reduced

to the boundary, it is worth to search for a z0 ∈ ∂D such that, for any pair of points
x ∈ X+ and y ∈ X−,

min
z∈∂D

{∣x− z∣+ ∣y − z∣} = ∣x− z0∣+ ∣y − z0∣;

which also ensures the existence of a matching measure M0�z0 , now concentrated on
the boundary of D.

5. Extensions. With the same ideas we can also consider the situation in which
the cost is different for the transport of f+ to the set D and for f− to the set D. In
fact we can consider the following cost functional∫

Ω

1

A
∣x− T+(x)∣f+(x)dx+

∫
Ω

1

B
∣x− T−(x)∣f−(x)dx.

With the constants A and B we are taking into account that the cost of transporting
nuts and screws can be different (for example due to a difference in the weight).

For this kind of problems we only have to modify the p−Laplacian approximation
replacing the Lp-norm of the gradient with

1

p

∫
Ap∣Dv∣p.

In fact, doing this we are lead to consider variational problems of the form

min
(v, w) ∈ W1,p(Ω) ×W1,p(Ω)

v ≤ w in D

1

p

∫
Ω

Ap∣Dv∣p +
1

p

∫
Ω

Bp∣Dw∣p −
∫

Ω

vf+ +

∫
Ω

wf−,

and when we pass to the limit as p→∞ we arrive to

max
v, w ∈ W1,∞(Ω)

A∣∇v∣∞, B∣∇w∣∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf−.

Note that the constraint A∣∇v∣∞, B∣∇w∣∞ ≤ 1 is equivalent to

∣v(x)− v(y)∣ ≤ 1

A
∣x− y∣, ∣w(x)− w(y)∣ ≤ 1

B
∣x− y∣.

Hence we find Kantorovich potentials for the optimal matching problem of minimizing∫
Ω

1

A
∣x− T+(x)∣f+(x)dx+

∫
Ω

1

B
∣x− T−(x)∣f−(x)dx.

Another possible extension is the following. We can consider a matching problem
with more than two commodities. Let f1, f2, ... ,fn, be nonnegative functions with
the same total mass, that is, ∫

f i = M0
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for every i. Given a target set D we can look at the minimization problem

min
(Ti)∈AD

n∑
i=1

∫
Ω

∣x− Ti(x)∣f i(x)dx.

where

AD :=
{

(Ti) : Ti : Ω→ Ω are Borel functions, Ti(supp(f i)) ⊂ D,∫
T−1
i (E)

f i =

∫
T−1
j (E)

f j for all Borel subset E of Ω
}
.

To handle this situation, say for three commodities, the minimization problem to
take into account is given by

min
(v, w, z) ∈ (W1,p(Ω))3

v + w + z ≤ 0 in D

1

p

∫
Ω

∣Dv∣p +
1

p

∫
Ω

∣Dw∣p +
1

p

∫
Ω

∣Dz∣p−
∫

Ω

vf1−
∫

Ω

wf2−
∫

Ω

zf3.

Note that this is similar to what we did before since (3.5) can be rewritten as

min
(v, w) ∈ W1,p(Ω) ×W1,p(Ω)

v + w ≤ in D

1

p

∫
Ω

∣Dv∣p +
1

p

∫
Ω

∣Dw∣p −
∫

Ω

vf+ −
∫

Ω

wf−.

We presented the details for only two masses since this simpler case shows how
to handle the main mathematical difficulties.

Remark 5.1. One can try to solve the optimal matching problem for the Eu-
clidean distance by taking the optimal matching measures for the cost ∣x − y∣r with
r > 1 (these are uniformly convex costs) and then take the limit as r → 1. This
passage to the limit seems delicate and hence we preferred to perform instead the
p−Laplacian approximation since it gives us not only the optimal matching measure
but also gives the Kantorovich potentials.
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