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Abstract. In this work we study the behaviour of the solutions to the following Dirichlet
problem related to the p(x)−Laplacian operator

� −div(|∇u|p(x)−2∇u) = f(x), in Ω,
u = 0, on ∂Ω,

as p(x) → ∞, for some suitable functions f . We consider a sequence of functions pn(x) that

goes to infinity uniformly in Ω. Under adequate hypotheses on the sequence pn, basically, that
the following two limits exist,

lim
n→∞

∇ ln pn(x) = ξ(x), and lim sup
n→∞

max
x∈Ω

pn

min
x∈Ω

pn
≤ k, for some k > 0,

we prove that upn → u∞ uniformly in Ω. In addition, we find that u∞ solves a certain PDE
problem (that depends on f) in viscosity sense. In particular, when f ≡ 1 in Ω we get u∞(x) =
dist(x, ∂Ω) and it turns out that the limit equation is |∇u| = 1.
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1. Introduction

In this work we analyze the behaviour of the solutions to the inhomogeneous Dirichlet problem
involving the p(x)−Laplacian operator as p(x) →∞. More precisely, we consider

(1.1)
{ −div(|∇u|pn(x)−2∇u) = f(x), in Ω,

u = 0, on ∂Ω,

with Ω ⊂ RN being a bounded smooth domain, and a sequence of functions pn : Ω → R such that
pn ∈ C(Ω) and pn(x) > 1, for every n ≥ 1 and every x ∈ Ω. For n fixed, existence of solutions to
the previous problem (1.1) is analyzed in [11]. In this work we are interested in the behaviour of
the solutions to (1.1) when we consider a sequence of functions such that pn(x) →∞ for every
x ∈ Ω, as n →∞. As right hand side we will take a fixed function, f .

Let us give some motivation for this study. When p is constant in Ω and f ≡ 0 (in this
case we need to consider a nontrivial boundary datum u|∂Ω = g in order to obtain nontrivial
solutions) it is known that solutions to the p−Laplacian converge to a solution to ∆∞u∞ = 0,
where the infinity Laplacian, ∆∞, is given by, ∆∞u :=

(
D2u∇u

) · ∇u =
∑N

i,j=1
∂u
∂xi

∂u
∂xj

∂2u
∂xixj

.
This operator appears naturally when one considers absolutely minimizing Lipschitz extensions
of a boundary function g; see the survey [2]. A fundamental result contained in [15] establishes
that the Dirichlet problem for ∆∞ is well posed in the viscosity sense. Solutions to −∆∞u = 0
(known as infinity harmonic functions) are also used in several applications, for instance, in
optimal transportation and image processing (see, e.g., [10, 13, 4, 24, 25] and the references

1



2 M. PEREZ-LLANOS AND J. D. ROSSI

therein). Also limits of the eigenvalue problem related to the p-laplacian have been exhaustively
studied, see [6, 16, 17, 18]. When f > 0 in Ω the limit of (1.1) as p →∞ has been analyzed in
[3], and as limit of the solutions up it gives the function u∞(x) = dist(x, ∂Ω) that is a solution
to the Eikonal equation |∇u∞| = 1.

On the other hand, problems related to PDEs involving variable exponents have deserved
a great deal of attention in recent years. Its interest is widely justified with many physical
examples, such as elasticity and electrorheological fluids. Consequently, there has been an
extensive development of the functional analytical tools, needed for the analysis of such problems.
See [9, 20] and also the recent survey [14] and references therein.

Although a natural extension of the theory, the problem addressed here is a natural contin-
uation of recent papers. In [22], the authors treat the case of a variable exponent that equals
infinity in a subdomain of Ω and in [21], [23], the limit of p(x)-harmonic functions is studied,
that is, the limit as p(x) →∞ of solutions to ∆p(x)u = 0 with u = g on ∂Ω. In addition, in [26]
the authors deal with the limit of the eigenvalue problem.

Now, let us state our assumptions on the sequence pn. We will assume that pn(x) is a sequence
of C1 functions in Ω such that

(1.2) pn(x) → +∞, uniformly in Ω;

(1.3) lim sup
n→∞

p+
n

p−n
≤ k, ;

where

(1.4) p−n = min
x∈Ω

pn(x), p+
n = max

x∈Ω
pn(x),

and

(1.5) ∇ ln pn(x) → ξ(x), uniformly in Ω,

where ξ ∈ C(Ω : RN ).
Let us now present some examples of possible sequences pn(x). We are specially interested in

understanding the hypothesis (1.3) and (1.5).
(1) pn(x) = n; we have ξ = 0 and k = 1.
(2) pn(x) = p(x) + n; we get ξ = 0 and k = 1.
(3) pn(x) = np(x); now we get a nontrivial vector field ξ(x) = ∇(ln(p(x))) and k =

maxx∈Ω p

minx∈Ω p .
(4) pn(x) = nap(x/n) [scaling in x]; in this case, we have

∇(ln pn(x)) =
∇p

p
(x/n)

1
n
→ 0

and so ξ = 0. Moreover, we have also k = 1. The conclusion also holds for pn(x) =
na + p(x/n), we have ξ = 0 and k = 1.

(5) pn(x) = nap(nx); we get

∇(ln pn(x)) =
n∇p

p
(nx),

which does not have a limit as n →∞. The same happens with pn(x) = n + p(nx), for
which

∇(ln pn(x)) =
n∇p(nx)
n + p(nx)

,

that does not have a uniform limit (although it is bounded).
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(6) We can modify the previous example to get a nontrivial limit. Assume that r = r(θ) is
a function of the angular variable and that 0 6∈ Ω; then consider pn(x) = n + r(nx) to
obtain

∇(ln pn(x)) =
n∇r(nx)
n + r(nx)

→ ∇r(θ).

In this case we get k = 1.
(7) Finally, we can combine examples (3) and (6). Let pn(x) = np(x) + r(nx), with Ω as in

(6). We get

∇(ln pn(x)) =
n∇p(x) + n∇r(nx)

np(x) + r(nx)
→ ∇p(x) +∇r(θ)

p(x)
.

In this case k =
maxx∈Ω p

minx∈Ω p .

Our first result reads as follows:

Theorem 1.1. There exists a subsequence {upni
} of solutions that converge to some nontrivial

function u∞ in Cβ(Ω), for some 0 < β < 1. Moreover, the limit u∞ verifies

(1.6) ‖∇u∞‖L∞(Ω) ≤ 1,

and is a maximizer of the following problem

(1.7) max
K

∫

Ω
fv dx, K = {v ∈ W 1,∞

0 (Ω), |∇v| ≤ 1}.

Concerning the equation verified by the limit, we have the following result. For z, θ ∈ RN

and S a symmetric real matrix let

(1.8) H∞(z, θ, S) = −〈S · z, z〉 − |z|2 log(|z|)〈θ, z〉.
Theorem 1.2. A function u∞ obtained as a uniform limit of a subsequence of {upn} verifies in
the viscosity sense

(1.9) |∇u∞| ≤ 1, −|∇u∞| ≥ −1.

Moreover, it verifies the following

H∞(∇u∞, ξ, D2u∞) = 0, in Ω \ supp f,

|∇u∞| = 1, in {f > 0}◦,
−|∇u∞| = −1, in {f < 0}◦,
H∞(∇u∞, ξ, D2u∞) ≥ 0, in Ω ∩ ∂{f > 0} \ ∂{f < 0},
H∞(∇u∞, ξ, D2u∞) ≤ 0, in Ω ∩ ∂{f < 0} \ ∂{f > 0},

with H∞ defined in (1.8), and ξ given by (1.5).

The rest of the paper is organized as follows. In the next Section we introduce some notation
and preliminary results. Section 3 is devoted to the study of Problem (1.1), we find the conver-
gence as pn(x) → ∞ to some function and determine the equation satisfied by this limit. We
also give some explicit examples in special cases.
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2. Preliminaries

First of all, let us give some brief introduction to variable exponent Sobolev and Lebesgue
spaces, and some of their main properties, that we will use in the sequel. See [8], [9], [12], [20]
and the survey [14] for more details. The variable exponent Lebesgue space Lp(x)(Ω) is defined
as follows

Lp(x)(Ω) =
{

u such that u : Ω → R is measureable and
∫

Ω
|u(x)|p(x) dx < +∞

}
,

and is endowed with the norm

|u|p(x) = inf

{
τ > 0 such that

∫

Ω

∣∣∣∣
u(x)

τ

∣∣∣∣
p(x)

dx ≤ 1

}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is given by

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)
}

,

with the norm

‖u‖ = inf

{
τ > 0 such that

∫

Ω

∣∣∣∣
∇u(x)

τ

∣∣∣∣
p(x)

+
∣∣∣∣
u(x)

τ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Let us denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). The following result holds.

Proposition 2.1.

i) The spaces
(
Lp(x)(Ω), | · |p(x)

)
,

(
W 1, p(x)(Ω), ‖ · ‖

)
and(

W
1, p(x)
0 (Ω), ‖ · ‖

)
are separable, reflexive and uniformly convex Banach spaces.

ii) Hölder’s inequality holds, namely
∫

Ω
|uv| dx ≤ 2|u|p(x)|v|q(x), ∀u ∈ Lp(x)(Ω), ∀v ∈ Lq(x)(Ω),

where 1
p(x) + 1

q(x) = 1.

iii) If q ∈ C(Ω) and 0 < q(x) < p∗(x) for every x ∈ Ω, then the imbedding from W 1, p(x)(Ω)
to Lq(x)(Ω) is compact and continuous, where p∗(x) is given by

p∗(x) =





Np(x)
N − p(x)

, p(x) < N,

∞, p(x) > N.

iv) There exists a constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x), for every u ∈ W
1,p(x)
0 (Ω).

Therefore, |∇u|p(x) and ‖u‖ are equivalent norms on W
1,p(x)
0 (Ω).

Let us introduce now some results concerning to problem (1.1) for fixed n, see [11] for details.
Namely, we consider the problem

(2.1)
{ −div(|∇u|p(x)−2∇u) = f(x), in Ω,

u = 0, on ∂Ω.
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Definition 2.1. We say that u ∈ W
1,p(x)
0 (Ω) is a weak solution to problem (2.1) if

∫

Ω
|∇u|p(x)−2∇u∇v dx =

∫

Ω
fv dx, ∀v ∈ W

1,p(x)
0 (Ω).

Let us denote X = W
1,p(x)
0 (Ω) and define the operator

J(u) =
∫

Ω

1
p(x)

|∇u|p(x) dx.

It is well known that J ∈ C1(X,R) and that the p(x)−Laplacian operator is the derivative in
the weak sense of J , see [5]. Let us denote J ′ := L : X → X∗ that is given by

(L(u), v) =
∫

Ω
|∇u|p(x)−2∇u∇v dx.

In [11] it is shown that L is a continuous, bounded and strictly monotone operator. Moreover,
L is a homeomorphism. With those properties the authors of [11] obtain the following existence
result.

Theorem 2.1. If f ∈ Lα(x)(Ω), where α ∈ C(Ω), α > 1 in Ω, satisfies 1
p(x) + 1

α(x) = 1, then
(2.1) has a unique weak solution. Moreover, the solution minimizes the following functional

(2.2) inf
v∈X,v 6=0

∫

Ω

1
p(x)

|∇v|p(x)dx−
∫

Ω
fv dx.

As we mentioned in the introduction, our purpose is to show that if we take limit in (1.1) as
the function pn(x) goes to infinity the solutions converge uniformly in C(Ω) to some function
u∞. Thus, in order to identify the limit problem satisfied by any cluster point u∞ we introduce
the concept of viscosity solutions to problem (1.1). Formally, if we expand the derivatives of upn

in (1.1), we get

(2.3)

−|∇upn |pn(x)−2

(
∆upn + log(|∇upn |)

N∑

i=1

∂upn

∂xi

∂pn(x)
∂xi

)

−(pn(x)− 2)|∇upn |pn(x)−4
N∑

i,j=1

∂upn

∂xi

∂upn

∂xj

∂2upn

∂xi∂xj
= f(x).

Equation (2.3) is nonlinear but elliptic (degenerate), thus it makes sense to consider viscosity
subsolutions and supersolutions of it. Let y ∈ R, z, θ ∈ RN , and S a real symmetric matrix.
Let us consider the following continuous function

(2.4)
Hpn(x)(y, z, θ, S) = −|z|pn(x)−2

(
trace(S) + log(|z|)〈z, θ〉

)

−(pn(x)− 2)|z|pn(x)−4〈S · z, z〉 − f(x).

Let us state now the definition of viscosity super and subsolutions of this partial differential
equation. We refer to [7] for the notion of viscosity solutions.

(2.5)
{

Hpn(x)(upn ,∇upn ,∇pn, D2upn) = 0, in Ω,
upn = 0 on ∂Ω.
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Definition 2.2. An upper semicontinuous function u defined in Ω is a viscosity subsolution
of (2.5) if, u|∂Ω ≤ 0 and, whenever x0 ∈ Ω and ψ ∈ C2(Ω) are such that u(x0) = ψ(x0) and
u(x) < ψ(x), if x 6= x0, then

Hpn(x)(φ(x0),∇ψ(x0),∇pn(x0), D2ψ(x0)) ≤ 0.

Definition 2.3. A lower semicontinuous function u defined in Ω is a viscosity supersolution
of (2.5) if, u|∂Ω ≥ 0 and, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that u(x0) = φ(x0) and
u(x) > φ(x), if x 6= x0, then

Hpn(x)(φ(x0),∇φ(x0),∇pn(x0), D2φ(x0)) ≥ 0.

In the sequel we will keep the notation used in the above definitions. That is, by φ we will
denote the test functions touching from bellow the graph of u∞ and by ψ the test functions
touching the graph of u∞ from above.

Note that in both of the above definitions the strict inequality can be relaxed, since the second
condition is required just in a neigbourhood of x0. We refer to [7] for more details about general
theory of viscosity solutions, and [16], [19] for viscosity solutions related to the ∞−Laplacian
and the p−Laplacian operators. The following result can be shown as in [18], see also [22], but
we include the proof for completeness.

Lemma 2.1. A continuous weak solution to (1.1) is a viscosity solution to (2.5).

Proof. We omit the subscript n along this proof. Let us show that if u is a continuous weak
supersolution then, it is a viscosity supersolution. Let x0 ∈ Ω and a let φ be a test function such
that u(x0) = φ(x0) and u− φ has a strict minimum at x0. We want to show that

−∆p(x0)φ(x0) = −|∇φ(x0)|p(x0)−2∆φ(x0)− (p(x0)− 2)|∇φ(x0)|p(x0)−4∆∞φ(x0)

−|∇φ(x0)|p(x0)−2 ln(|∇φ|)(x0) 〈∇φ(x0),∇p(x0)〉
≥ f(x0).

Assume, ad contrarium, that this is not the case; then there exists a radius r > 0 such that
B(x0, r) ⊂ Ω and

−∆p(x)φ(x) = −|∇φ(x)|p(x)−2∆φ(x)− (p(x)− 2)|∇φ(x)|p(x)−4∆∞φ(x)

−|∇φ(x)|p(x)−2 ln(|∇φ|)(x)〈∇φ(x),∇p(x)〉
< f(x),

for every x ∈ B(x0, r). Set
m = inf

|x−x0|=r
(u− φ)(x)

and let Φ(x) = φ(x) + m/2. This function Φ verifies Φ(x0) > u(x0), Φ < u on ∂B(x0, r) and

(2.6) −∆p(x)Φ = −div(|∇Φ|p(x)−2∇Φ) < f(x), in B(x0, r).

Multiplying (2.6) by (Φ− u)+, which vanishes on the boundary of B(x0, r), we get∫

B(x0,r)∩{Φ>u}
|∇Φ|p(x)−2∇Φ · ∇(Φ− u) dx <

∫

B(x0,r)∩{Φ>u}
f(x)(Φ− u) dx.

On the other hand, taking (Φ− u)+, extended by zero outside B(x0, r), as test function in the
weak formulation of the problem, we obtain∫

B(x0,r)∩{Φ>u}
|∇u|p(x)−2∇u · ∇(Φ− u) dx =

∫

B(x0,r)∩{Φ>u}
f(x)(Φ− u) dx.
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Upon subtraction and using a well known inequality we conclude

0 >

∫

B(x0,r)∩{Φ>u}

(
|∇Φ|p(x)−2∇Φ− |∇u|p(x)−2∇u

)
· ∇(Φ− u) dx

≥ c

∫

B(x0,r)∩{Φ>u}
|∇Φ−∇u|p(x) dx,

a contradiction.
This proves that u is a viscosity supersolution. The proof that u is a viscosity subsolution

runs as above and we omit the details. 2

3. The limit problem as pn(x) →∞.

Our purpose in this section is to analyze the behaviour of the solutions to problem (1.1) as
the function pn(x) goes to infinity as n →∞. First we show that there exists a nontrivial limit
that maximizes (1.7).

Proof of Theorem 1.1. If we consider the trivial function in (2.2) we get
∫

Ω

1
pn(x)

|∇upn |pn(x)dx−
∫

Ω
fupn dx ≤ 0.

Then,
∫

Ω

1
pn(x)

|∇upn |pn(x)dx ≤
∫

Ω
fupn dx ≤ ‖f‖Lq′ (Ω)‖upn‖Lq(Ω) ≤ C(Ω, f, q)‖∇upn‖Lq(Ω),

where 1
q + 1

q′ = 1 to apply Hölder inequality. Now we claim that

(3.1) ‖∇upn‖Lq(Ω) ≤ C(Ω, q)|∇upn |pn(x).

Indeed, if we apply Hölder inequality for variable exponent Sobolev spaces, see Proposition 2.1,
we get

‖∇upn‖q
Lq(Ω) ≤ 2|1|a′n(x)||∇upn |q|an(x) ≤ 2max{1, µ(Ω)}|∇upn |qpn(x),

where qan(x) = pn(x) and 1
an(x) + 1

a′n(x) = 1. Hence, from the above estimate (3.1) straight
follows. Thus summing up we have shown that

(3.2)
∫

Ω

1
pn(x)

|∇upn |pn(x)dx ≤ C(Ω, f, q)|∇upn |pn(x).

Next, we take τ0 such that

(3.3)
1
2
≤

∫

Ω

∣∣∣∣
∇upn

τ0

∣∣∣∣
pn(x)

dx ≤ 1.

Taking into account (3.2) and (3.3) we deduce that

(3.4)
min{τp+

n
0 , τp−n

0 }
2p+

n
≤

∫

Ω

1
pn(x)

|∇upn |pn(x)dx ≤ C(f, Ω, q)τ0,

with p+
n , p−n defined in (1.4). Now we claim that

(3.5) |∇upn |pn(x) ≤ C(n), with C(n) → 1, as n →∞.
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If |∇upn |pn(x) ≤ 1, then (3.5) easily follows. Then let us assume that |∇upn |pn(x) > 1 and let
τ0 > 1 such that (3.3) holds. Note that, taking into account (1.3) it holds that

(3.6) lim sup
n→∞

log(p+
n )

p−n − 1
= 0.

Therefore, by (3.4) and (3.6) we obtain that

τ0 ≤ (C(f, Ω, q)p+
n )

1

p−n−1 → 1, as n →∞,

which proves (3.5). By iii) in Proposition 2.1 it follows that upn is uniformly bounded in
W 1,pn(Ω). We can assume that pn > q > N for every x ∈ Ω assuring that W 1,q(Ω) embeds
compactly into Cβ(Ω), for some 0 < β < 1. Then, from (3.5) we get for a subsequence {upni (x)}
that

(3.7) upni (x) ⇀ u∞, weakly in W 1,q(Ω) and upni (x) → u∞, strongly in Cβ(Ω).

Moreover, by the convergence in (3.7) and the lower semicontinuity of the norm, we have that

|∇u∞|Lq(Ω) ≤ lim inf
n→∞ |∇upn |Lq(Ω) ≤ lim inf

n→∞

(
2max{1, µ(Ω)}

) 1
q |∇upn |pn(x)

≤ lim inf
n→∞

(
2max{1, µ(Ω)}

) 1
q
C(n) =

(
2max{1, µ(Ω)}

) 1
q
,

Passing to the limit as q →∞ in the previous estimate we get

|∇u∞|L∞(Ω) ≤ 1,

that is, (1.6).
It remains to see that u∞ maximizes (1.7), (thus u∞ is nontrivial). Note that for n fixed, by

(2.2) we have that
∫

Ω

1
pn(x)

|∇upn |pn(x)dx−
∫

Ω
fupn dx ≤

∫

Ω

1
pn(x)

dx−
∫

Ω
fv dx,

for any v ∈ K. Neglecting the first positive term on the left hand side and rearranging we obtain
∫

Ω
fv dx ≤

∫

Ω
fupn dx +

∫

Ω

1
pn(x)

dx.

Now, passing to the limit as n → ∞ in the previous expression, taking into account (1.2) and
(3.7), we get that ∫

Ω
fv dx ≤

∫

Ω
fu∞ dx,

for any function v ∈ K, thus (1.7) holds. 2

We will see that (1.7) will allow us to find some explicit examples of limits u∞. But before,
let us determine the equation satisfied by u∞. We give now some results that will be useful for
such task. The next Lemma can be found in [3].

Lemma 3.1. Assume that ‖∇u∞‖L∞(Ω) ≤ 1. If ψ ∈ C2(Ω) is such that u∞ − ψ attains its
maximum at x0 ∈ Ω, then |∇ψ(x0)| ≤ 1. Analogously, if x0 is a local minimum for u∞ − φ,
then |∇φ(x0)| ≤ 1.
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We have all the ingredients to compute the limit of the equation given in (2.4),

Hpn(x)(upn ,∇upn ,∇pn, D2upn) = 0,

as pn(x) →∞ in the viscosity sense, that is, to identify the limit equation verified by any limit
u∞ as in (3.7). In the sequel we assume that we have a subsequence pni(x) → ∞ with the
assumptions stated in the introduction such that upni

→ u∞ as i →∞ uniformly in Ω. We will
still denote the solution as upn for readable reasons (understanding that we are considering only
a convergent sequence).

Proof of Theorem 1.2. We observe that (1.9) follows directly from (1.6) and Lemma 3.1. Also
it is clear that u∞ = 0 on ∂Ω.

Now, as usual, we consider a point x0, where u∞ − φ attains a minimum or u∞ − ψ attains
a maximum. Depending on the sign of the function f at that point we have a different limit of
the equation (2.5). Let us consider separately each case.

1. Let x0 be in Ω \ supp f : Since upn converge uniformly to u∞ (see Theorem 1.1), there
exists a sequence of points xpn ∈ Ω\ supp f , where upn−φ attains a minimum, with φ satisfying
equation (2.3) with the inequality ‘≥’. Let us suppose that |∇φ(x0)| 6= 0. Then, |∇φ(xpn)| 6= 0
for n large and we can multiply equation (2.3) by (pn(xn)− 2)−1|∇φ(xn)|−(pn(xn)−4) to obtain

−|∇φ(xn)|2
(
∆φ(xn) + log(|∇φ(xn)|)〈∇pn(xn),∇φ(xn)〉

)

pn(xn)− 2
− 〈∇φ(xn)D2φ(xn),∇φ(xn)t〉 ≥ 0.

If we pass to the limit as n →∞ in this expression taking into account (1.2) and (1.5) we get

(3.8) H∞(∇φ, ξ,D2φ)(x0) ≥ 0.

On the other hand, if |∇φ(x0)| = 0 then (3.8) trivially holds. Arguing analogously for a test
function ψ we deduce that

(3.9) H∞(∇ψ, ξ, D2ψ)(x0) ≤ 0,

and we have shown the first statement in Theorem 1.2.
2. Let x0 be in {f > 0}◦. In this case there exists xpn → x0 such that f(xpn) > 0 where

upn − φ attains a minimum. It implies that |∇φ(xpn)| 6= 0 for n large, so we can multiply (2.3)
again by (pn(xn)− 2)−1|∇φ(xn)|−(pn(xn)−4) getting
(3.10)

−|∇φ(xn)|2
(
∆φ(xn) + log(|∇φ(xn)|)〈∇pn(xn),∇φ(xn)〉

)

pn(xn)− 2
− 〈∇φ(xn)D2φ(xn),∇φ(xn)t〉

≥ f(xpn)
(pn(xpn)− 2)|∇φ(xpn)|pn(xpn )−4

.

Now we observe that the left hand side of this inequality is bounded for every n. Therefore, the
limit as n →∞ on the right hand side cannot diverge. Hence, |∇φ(x0)| ≥ 1. By Lemma 3.1 we
know that |∇ψ(x0)| ≤ 1. Thus, it holds that

|∇u∞| = 1,

in the viscosity sense and this case is complete.
3. Let x0 be in {f < 0}◦. This case is analogous to the previous one, but we sketch the proof

for completeness. We begin by considering first the viscosity subsolutions. Arguing as above
we get that (3.10) holds for ψ with the reverse inequality, where f(xpn) < 0. It follows that
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|∇ψ(x0)| ≥ 1 for this limit to be finite. For the viscosity supersolutions we get that |∇φ(x0)| ≤ 1
by Lemma 3.1 and then

−|∇u∞| = −1.

4. Let x0 be in Ω∩ ∂{f > 0} \ ∂{f < 0}. In other words, we have that f(x0) = 0 and we can
approximate x0 by points in {f > 0} or in {f = 0}. Let us consider the sequence xpn , where
upn − φ attains a minimum. At least for a subsequence we have that f(xpn) > 0 or f(xpn) = 0.
In case that f(xpn) = 0 we can argue as in the first step to obtain (3.8). If f(xpn) > 0 we
can proceed as in step 2 and conclude that for the viscosity supersolutions (3.8) holds. For the
subsolutions, if f(xpn) = 0 we can argue as in step 1 to deduce (3.9). On the other hand, if
f(xpn) > 0 we get |∇u∞| ≤ 1. Summing up, we conclude for this case that u∞ verifies

H∞(∇u∞, ξ, D2u∞)(x0) ≥ 0,

together with the general viscosity estimates for the gradient in the whole domain, (1.9).
5. Let x0 be in Ω∩ ∂{f < 0} \ ∂{f > 0}. In an analogous way, we can show that in this case

u∞ satisfies
H∞(∇u∞, ξ, D2u∞)(x0) ≤ 0,

together with the general viscosity estimates for the gradient in the whole domain, (1.9).
6. Finally, let us consider x0 in Ω∩ ∂{f > 0} ∩ ∂{f < 0}. That is, x0 is such that f(x0) = 0,

and it can be reached by sequences contained either in {f > 0}, either in {f = 0}, either in
{f < 0}. Using the same arguments as in the previous cases we get for this set that u∞ satisfies
(1.9). 2

Explicit examples. We finish this article giving some examples in which the limits u∞ can
be computed.

Example 1. If f(x) > 0 in Ω, then u∞(x) = dist(x, ∂Ω). To prove this fact, we will see that
dist(·, ∂Ω) is the unique maximizer to (1.7). Any v ∈ K verifies that v(x) ≤ dist(x, ∂Ω). Thus,
since f > 0 we have that ∫

Ω
vf dx ≤

∫

Ω
dist(·, ∂Ω)f dx,

and the inequality is strict, unless dist(·, ∂Ω) ≡ v in Ω. Therefore, u∞(x) = dist(x, ∂Ω).

Example 2. If f(x) < 0 in Ω, then u∞(x) = −dist(x, ∂Ω). The proof of this fact runs as
before.

Example 3. Let us consider f ≥ 0 in Ω with f > 0 in D ⊂ Ω. By the same arguments used
in the first example we know that u∞(x) = dist(x, ∂Ω) in suppf . To find an explicit solution in
the whole domain, let us restrict to the case Ω = [0, L] with L > 2 and suppf = [0, 1]. Then,
u∞ is the straight line with slope 1 in [0, 1], whereas in [1, L], according to Theorem 1.2, verifies

−u′′∞(u′∞)2 − (u′∞)2 log(|u′∞|)ξu′∞ = 0.

After some computations, where we have assumed that u′ < 0 in [1, L], we obtain that

u∞(x)− u∞(L) =
∫ L

x
exp

(
K exp

(
−

∫ t

1
ξ(s) ds

))
dt,

where K is a constant to be determined. Now, since u∞(L) = 0 we have to choose the free
constant K such that

1 = u(1) =
∫ L

1
exp

(
K exp

(
−

∫ t

1
ξ(s) ds

))
dt.
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Note that the previous expression is continuous and decreasing in K. If K = 0 the right hand
side is L − 1 > 1, while if K → −∞, then the right hand side tends to zero. Therefore, there
exists some K0 < 0 such that u∞(1) = 1. This value K0 is unique.

When L ≤ 2 the analysis performed before shows that u∞(x) = dist(x, ∂Ω), that is

u∞(x) =
{

x, 0 ≤ x < L/2;
−x + L, L/2 ≤ x < L.

Example 4. Finally let us consider a function f that changes sign, that is, f > 0 in D1 ⊂ Ω
and f < 0 in D2 ⊂ Ω. To find an explicit limit solution, we again consider this case in one
dimension. Let us take Ω = [−1, 1] and assume that f is an odd function which is strictly
positive in [−1, 0). In addition we assume that the exponents pn(x) are even for every n. In this
case the limit u∞ is also odd, thus u∞(0) = 0. Since we showed that u∞ maximizes (1.7), then
we have an unique possible choice for u∞, which is

u∞(x) =





x + 1, −1 ≤ x < −1/2;
−x, −1/2 ≤ x < 1/2,
x− 1, 1/2 ≤ x ≤ 1.

Note that, according to Theorem 1.2 in [−1, 1] \ {0} it holds that |u′∞| = 1 in (−1, 0) and
−|u′∞| = −1 in (0, 1).

Remark 3.1. We wish to stress that, in case f does not change sign and does not vanish, that
is, examples 1 and 2, the limit solution u∞ does not depend on the sequence pn(x) and coincides
with the limit of the problems ∆pu = f as p →∞, with p constant, that is u∞(x) ≡ dist(x, ∂Ω).

Moreover, even in the case that f ≥ 0 and f > 0 in some set D ⊂ Ω containing the all the
points in Ω at which the function dist(·, Ω) is not differentiable, then we can deduce also that
u∞(x) = dist(x,Ω) in Ω. Note that it is not the case of example 3 with L > 2.
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[9] L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in:

FSDONA04 Proceedings, Drabek and Rakosnik (eds.), pp. 38–58, Milovy, Czech Republic, 2004.
[10] L.C. Evans and W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer prob-

lem, Mem. Amer. Math. Soc. 137 (1999), no. 653.



12 M. PEREZ-LLANOS AND J. D. ROSSI

[11] X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52
(2003), 1843-1852.

[12] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of the p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl.,
302, (2005), 306–317.
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Av. Rovisco Pais 1049-001, Lisboa,
PORTUGAL.
mayte@math.ist.utl.pt

Julio D. Rossi
Departamento de Análisis Matemático,
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