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Abstract. We study the behaviour of solutions of the nonlinear diffusion
equation in the half-line, R+ = (0,∞), with a nonlinear boundary condition,

8
<
:

ut = uuxx, (x, t) ∈ R+ × (0, T ),
−ux(0, t) = up(0, t), t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ R+,

with p > 0. We describe in terms of p and the initial datum when the solution
is global in time and when it blows-up in finite time. For blowing up solutions
we find the blow-up rate and the blow-up set and we describe the asymptotic
behaviour close to the blow-up time in terms of a self-similar profile. The
stationary character of the support is proved both for global solutions and
blowing-up solutions. Also we obtain results for the problem in a bounded
interval.

1. Introduction and main results

In this paper we deal with the problem

(1.1)





ut = uuxx, (x, t) ∈ R+ × (0, T ),
−ux(0, t) = up(0, t), t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ R+,

with p > 0. We assume that u0 is a non-trivial, continuous, non-increasing and
compactly supported function. We also consider in the last section the problem
posed in a bounded interval [0, L] ⊂ R+ with a zero flux boundary condition on the
right border, ux(L, t) = 0.

Problem (1.1) can be thought of as a model for nonlinear heat propagation. In
this case u stands for the temperature and the boundary condition represents a
nonlinear radiation law. This kind of boundary conditions appear also in combus-
tion problems when the reaction happens only at the boundary of the container,
for example because of the presence of a solid catalyzer, see [21] for a justification.

Local in time existence of weak solutions, defined in the usual integral way,
can be easily established as for instance in [6], see Section 2. In fact, classical
theory implies that the solution is smooth when positive. On the contrary it is only
Lipschitz at the boundary of the support. The time T is the maximal existence
time for the solution, which may be finite or infinite. If T < ∞, then u becomes
unbounded in finite time and we say that it blows up. If T = ∞ we say that the
solution is global.

In this article we are interested in the blow-up phenomenon, a subject that has
deserved a great deal of attention in recent years, see for example the book [23] and
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the surveys [7,20]. For specific references about blow-up in problems with nonlinear
boundary conditions see [4, 10].

Problem (1.1) can be viewed as a limit case for the family of problems

(1.2)





ut = uruxx, (x, t) ∈ R+ × (0, T ),
−ux(0, t) = up(0, t), t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ R+,

with p > 0 and r ∈ R. If r 6= 1 we can write problem (1.2) in divergence form by
means of the change of variables v = u1−r/|1− r|, thus getting the problem

(1.3)





vt = (vm−1vx)x, (x, t) ∈ R+ × (0, T ),
−cvm−1vx(0, t) = vq(0, t), t ∈ (0, T ),
v(x, 0) = v0(x), x ∈ R+,

with m = 1/(1− r), q = pm, c = |m|q−mm and v0 = u1−r
0 /|1− r|. If r < 1, we have

m > 0, q > 0, c > 0, and problem (1.3) is the well known porous medium equation
(the classical heat equation if r = 0, the fast diffusion equation if r < 0) with
reaction. The blow-up phenomenon for this problems has been extensively studied
in the works [8,11,12,14,17,22], both for the half-line or a bounded interval. If on
the contrary r > 1, we obtain m < 0, q < 0 and c < 0. We are thus in presence
of superfast diffusion with a singular absorption, which produces a phenomenon
known as quenching; only the case q = m in a bounded interval has been studied,
see [9].

Also related with our problem are the works [6, 16,24] on the problem




ut = u(∆u + up), (x, t) ∈ Ω× (0, T ),
u = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

where the reaction is produced at the interior of the domain Ω ⊂ Rn. The blow-up
in those examples depends on the exponent p but also on the initial datum in some
cases, and even on the domain if p = 1.

Our first aim is to study when the solutions to problem (1.1) are globally defined
or they blow up in finite time. The picture depends obviously on p, but also crucially
on the initial data. In fact, there always exist global solutions for every p > 0,
contrary to what occurs for problem (1.2) with r < 1, where every solution blows
up if (2− r)/2 < p ≤ 2− r independently of the initial condition, see [8,14]. In the
sequel we assume that u0 has compact support [0, N ]. We prove that the critical
global existence exponent for problem (1.1) is p = 1 in the following sense:

Theorem 1.1. Let supp(u0) = [0, N ]. We have,
i) if p < 1 the solution is global;
ii) if p = 1 the solution is global if and only if N ≤ 1;
iii) assume p > 1; if u0(x) ≤ A(1− Ap−1x)+ for some A > 0 then the solution is
global; if u0(0) > N−1/(p−1) then the solution blows up.

Once we have characterized for which exponents the solution to problem (1.1)
can or cannot blow up, we want to study the way the blowing up solutions behave
as approaching the blow-up time. This means that we must investigate where the
solutions blow up (the blow-up set), the speed at which they blow up (the blow-up
rate) and the shape of the solutions close to the blow-up time (the blow-up profile).
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To this purpose we consider from now on exponents p ≥ 1 and u a blowing up
solution with blow-up time T .

We begin with the blow-up rate of blowing up solutions.

Theorem 1.2. Let u be a solution of (1.1) with finite blow-up time T . As t ap-
proaches T we have

(1.4) ‖u(·, t)‖∞ ∼ (T − t)−1/(2p−1),

where f ∼ g means that there exist finite positive constants c1, c2 such that c1g ≤
f ≤ c2g.

We continue the analysis of problem (1.1) by studying the asymptotic behaviour
of blowing up solutions. As is often the case in nonlinear problems of parabolic type,
the characteristic properties of an equation, in this case the blow-up behaviour, are
displayed by means of appropriate self-similar solutions, see for instance [3]. In our
case there also exist self-similar solutions for every p ≥ 1 (even explicit if p = 1)
see Theorem 2.1, and they in fact reflect the asymptotic behaviour of blowing up
solutions. They take the form

(1.5) U(x, t) = (T − t)−αG(ξ), ξ = x(T − t)−β ,

with the similarity exponents α = 1/(2p − 1) and β = (p − 1)α. Observe that in
the blow-up range we have α > 0, β ≥ 0. The existence of self-similar profiles is
settled in the next section. The problem satisfied by the self-similar profile G is

(1.6)
{

GG′′ − αG− βξG′ = 0, ξ > 0,
−G′(0) = Gp(0).

Let u be a solution to problem (1.1) that blows up in time T , satisfying the rate
(1.4), and change variables as,

(1.7) g(ξ, τ) = (T − t)αu(x, t), ξ = x(T − t)−β , τ = − log(1− t/T ).

For each initial value u0 we define the so-called ω-limit set of u0 as the set of possible
limits of the corresponding rescaled orbits g:

ω(u0) = { G ∈ C(R+), G ≥ 0 : ∃ τj →∞ such that

lim
τj→∞

g(·, τj) = G uniformly in compact sets of R+ }.

Theorem 1.3. The ω-limit set of any initial value u0 for which the solution u
blows up at time T is contained in the set of non-trivial solutions of the problem
(1.6), that is, the set of self-similar profiles.

Also of interest is to study the propagation properties of the solutions, i.e., the
way the support of u(·, t) behaves. In particular we prove

Theorem 1.4. The support of u(·, t) is constant in time.

This is in great contrast with problem (1.2) with 0 < r < 1, where the support
of the solutions always expands. If r ≤ 0 it expands with infinite velocity.

Next we study the blow-up set, which is defined in the following way,

B(u) = {x ∈ [0,∞) : ∃xn → x, tn ↗ T, with u(xn, tn) → +∞}.
We have single-point blow-up if p > 1 and regional blow-up if p = 1.
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Theorem 1.5. Let u be a blowing up solution of (1.1). Then
i) if p > 1 the blow-up set is B(u) = {0}.
ii) if p = 1 the blow-up set verifies [0, 1] ⊂ B(u) ⊂ [0, min{N, 2}].

Our theorem is again in contrast with the case 0 < r < 1 in problem (1.2), where
the blow-up set is a single point if p > 1, but it is the whole half-line if p < 1 and
a bounded interval if p = 1. Notice that in the case of problem (1.1), in order to
have blowing up solutions we need p ≥ 1.

As for the problem in a bounded interval, we perform at the end of the paper
the same analysis as for the previous problem. We say in advance that the critical
exponent is different: here every solution blows up independently of the initial data
for every p > 0. The rate is the same if p ≥ 1, α = 1/(2p− 1), but it is α = 1/p if
0 < p < 1.
Organization of the paper. In Section 2 we present some tools used in the rest
of the paper, including the construction of the self-similar profiles, Theorem 2.1.
In Section 3 we prove Theorem 1.1 and Theorem 1.2. Theorem 1.3 is proved in
Section 4 as well as Theorems 1.4 and 1.5 are proved in Section 5. We devote the
last section to treat the case of a bounded interval.

2. Preliminaires

Fix T > 0, put QT = R+ × [0, T ] and consider the space V = L∞(QT ) ∩
L2(0, T ;H1(R+)).

Definition 2.1. We say that u ∈ V is a weak solution to problem (1.1) if the
following equality holds for every test function ϕ ∈ V vanishing for large x,

∫∫

QT

(uϕt − ux(uϕ)x) dxdt +
∫ T

0

up+1(0, t)ϕ(0, t) dt

=
∫ ∞

0

(u(x, T )ϕ(x, T )− u0(x)ϕ(x, 0)) dx .

Following the same arguments used in [6] we have the following results. We refer
to that paper for the details. Observe that in our case the reaction term is localized
at x = 0 where the solution is strictly positive; therefore the reaction function is
smooth.

Lemma 2.1. If u is a nonnegative weak solution then for every 0 < r < 1 we have∫∫

QT

|ux|2
ur

dxdt ≤ C(r, T ).

In particular, u is Lipschitz continuous in space.

Proposition 2.1. There exists a unique weak solution of problem (1.1) which is
smooth in its positivity set. Moreover, a comparison principle holds.

Proposition 2.2. If u is a weak solution of problem (1.1) in 0 < x < R(t) satisfying
u(R(t), t) = 0, then the function v defined as v(x, t) = u(x, t) if 0 < x ≤ R(t),
v(x, t) = 0 if x > R(t), is a weak solution in R+.

Proposition 2.2 allows problem (1.1) to have always stationary solutions.

Proposition 2.3. If p > 0 problem (1.1) admits the family of stationary solutions

(2.1) zA(x) = A(1−Ap−1x)+ A > 0.
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Remark that when A increases the support of zA increases if p < 1, decreases if
p > 1 and is constant [0, 1] if p = 1.

Problem (1.1) admits also self-similar solutions, i.e. solutions in the form (1.5),
with profile satisfying (1.6).

Theorem 2.1. Problem (1.6) admits bounded solutions if and only if p ≥ 1. If
p = 1 the family of solutions is explicit, all of them having compact support:

(2.2) GR(ξ) =

{ 1
2
ξ2 −Rξ + R if 0 ≤ ξ ≤ ξR

0 if ξ ≥ ξR ,

where ξR = R−√R2 − 2R, R ≥ 2. If p > 1 the solution is unique, positive, strictly
decreasing and it satisfies

(2.3) G(ξ) ∼ ξ−1/(p−1) as ξ →∞.

The precise decay (2.3) in the case p > 1 is crucial. Other decays would lead
either to a self-similar solution with global blow-up (something which is impossible)
or to a trivial asymptotic profile. Observe also that the support of the profile GR

in (2.2) in the case p = 1 shrinks as R increases, and has limits [0, 2] and [0, 1] as
R tends to 2 or infinity, respectively.

The construction of the profiles is based in the following lemma.

Lemma 2.2. Let α > 0, β ∈ R, V ∈ R, and consider the problem

(2.4)





FF ′′ − αF − βξF ′ = 0 ξ ∈ R+,
F (0) = 1,
−F ′(0) = V.

If β < 0 there is no bounded solution. If β = 0, for every V ≥ √
2α there exists

a unique bounded solution, which has compact support, and no bounded solution
exists if 0 < V <

√
2α. If β > 0, there exists a unique value V = V∗ > 0 such

that the problem has a bounded solution, which is unique, strictly decreasing and
satisfies the decay rate (2.3).

The existence of self-similar profiles for our problem is now immediate.
Proof of Theorem 2.1. Let F1 be a solution to problem (2.4) with α = 1/(2p−1)
and β = (p−1)α. Then the scaled function Fλ(ξ) = λ2F1(ξ/λ) satisfies the equation
for the profile plus the boundary conditions Fλ(0) = λ2, −F ′λ(0) = λV . Therefore
it suffices to choose G = Fλ with λ = V 1/(2p−1). 2

Proof of Lemma 2.2. The case β = 0 can be integrated directly (F ′′ = α), thus
obtaining the explicit (unbounded) parabola F (ξ) = 1− V ξ + αξ2/2. If V ≥ √

2α,
and thanks to Proposition 2.2, we can consider the bounded solution obtained
extending F by zero for ξ > (V −√V 2 − 2α)/α.

For the general case β 6= 0 we introduce the variables

(2.5) X =
ξF ′

F
, Y =

ξ2

F
, η = log ξ.
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This kind of transformation goes back to [2, 19], and is used for instance in [8, 18].
The resulting system is

(2.6)





dX

dη
= X(1−X) + Y (α + βX) ,

dY

dη
= Y (2−X).

Assume β > 0. We look for nonnegative profiles F , so we consider only the upper
plane {Y > 0}. As we are interested in solutions with F (0) = 1 and F ′(0) finite,
the orbits we are looking for start at the critical point A = (0, 0). The local analysis
of this point is straightforward.

Proposition 2.4. The linearization of (2.6) around A = (0, 0) has matrix
(

1 α
0 2

)

with eigenvalues λ1 = 1 and λ2 = 2 and corresponding eigenvectors e1 = (1, 0) and
e2 = (α, 1). Thus A is a repeler.

To study the point at infinity in this phase-plane, we perform the inversion
change of variables H = 1/Y . We arrive at




dX

dη
= X(1−mX) +

α + βX

H
,

dH

dη
= −H(2−X).

In order to eliminate the singularity we perform the nonlinear change of variable
given implicitly by

dη

dτ
= H(η).

Observe that this change preserves the direction of the flow on the upper half-plane
{H > 0}, which is the same, {Y > 0}. Then X, H satisfy

(2.7)





dX

dτ
= HX(1−X) + (α + βX) ,

dH

dτ
= −H2(2−X).

The proper behaviour (2.3) in these variables corresponds to the critical point
B = (−α/β, 0). The local analysis around this point is again straightforward.

Proposition 2.5. The critical point B = (−α/β, 0) is a saddle-node. The lin-

earization of (2.7) around B = (−α/β, 0) has matrix

(
β −α(α+β)

β2

0 0

)
with eigen-

values λ1 = β and λ2 = 0 and corresponding eigenvectors e1 = (1, 0) and e2 =
(1, β3/(α(α + β))). The point B is a repeler on the half-plane {H < 0} and a
saddle on the half-plane {H > 0}.

Existence of the connection. We are looking for an orbit connecting the critical
points A and B. As there is a unique orbit σ∗ arriving at B, we just have to trace
back where it comes from. In the XY -plane the critical point B corresponds to
(−α/β, +∞). We observe that dY/dη > 0 for every X < 0, Y > 0, dX/dη < 0 for
X < −α/β and that dX/dη > 0 for X = 0, Y > 0. Then the orbit σ∗ necessarily
comes from A.
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Figure 1. The trajectories in the XY –plane for p > 1.

We now have to look more carefully at the behaviour of this trajectory near the
point A. From Proposition 2.4, we have that in the second quadrant, {X < 0, Y >
0}, all the trajectories exit the origin tangent to the horizontal axis. Moreover, it is
easy to check that they do this quadratically. In particular our trajectory exits A
like Y ∼ ΛX2 for some Λ > 0. This gives the value V∗ = 1/

√
Λ. Even more, X < 0

implies that the profile F∗ corresponding to the orbit σ∗ is strictly decreasing.
In order to give a complete understanding of the picture in the upper plane

{Y > 0}, and prove that σ∗ gives the unique profile, we consider all the trajectories
starting at the origin (X,Y ) = (0, 0) and check that other choices of V give profiles
that are either unbounded or defined only in a bounded interval.

First of all, from the equation of the profile (2.4), it is easy to see that once the
function F satisfies F ′(ξ0) ≥ 0 for some ξ0 ≥ 0, then F ′(ξ) > 0 for every ξ > ξ0,
and the profile becomes unbounded. This corresponds to the trajectories in the
XY -plane that exit the origin in the first quadrant (V ≤ 0) and also those in the
second quadrant that cross the vertical axis (0 < V < V∗).

We also observe that the trajectory σ∗ is a separatrix in the second quadrant
between those trajectories that cross the vertical axis and those trajectories that
cross the vertical line X = −α/β. We now prove that these last trajectories, which
correspond to taking V > V∗, give profiles that vanish at a finite value of ξ, thus not
being defined in the whole R+. To see this let Y = Y (X) be a trajectory passing
through a point (−α/β,D), D > 0, at a time η0 ∈ R. The first equation in (2.6)
gives, for η > η0,

dX

dη
≤ −X2,

since α + βX < 0, Y > 0. This implies that there exists a finite η∞ such that

(2.8) lim
η→η∞

X(η) = −∞.

This also implies limη→η∞ Y (η) = Y∞ > 0. We obtain a profile F with compact
support [0, ξ∞], ξ∞ = eη∞ . By Lemma 2.1 we have that F ′(ξ∞) is finite. This
gives, using (2.5), that there exists the limit limη→η∞ X/Y = C and it is finite.
But now (2.6) and L’Hôpital’s rule gives

C = lim
η→η∞

dX

dY
= lim

η→η∞

−X2 + βXY

−XY
= C − β,
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and we arrive at a contradiction. These profiles have F ′(ξ∞) = −∞ and will be
useful in comparison arguments.

If β < 0 the critical point at infinity (−α/β,∞) has moved to the first quadrant,
and every profile is unbounded since the orbits cross the vertical axis. 2

3. Global existence versus blow-up

First section we characterize when the solutions to problem (1.1) are global in
time or they blow up.
Proof of Theorem 1.1. i) If p < 1 we can use as a supersolution the function
zA of (2.1) with A large, so by comparison every solution is bounded.

ii) If p = 1 and N ≤ 1, the function zA(x) = A(1 − x) also works as a
supersolution, and hence u is bounded. If N > 1 we use comparison with the
self-similar blowing-up solution U(x, t) = (T0 − t)−1GR(x), the profile GR given in
(2.2). If R and T0 are large we can get u0(x) ≥ U(x, 0). Thus u blows up at time
less than T0.

iii) The condition for global existence is obvious, as seen in the previous cases.
If now u0(0) > A > N−1/(p−1) and u′′0 ≥ 0, we compare from below with a function
of the form

(3.1) W (x, t) = (T0 − t)−1λ−2GR(λx),

for some T0, λ and R properly chosen, and with GR given in (2.2). First of all we
observe that W is a solution to the problem

(3.2)





Wt = WWxx (x, t) ∈ R+ × (0, T0),
−Wx(0, t) = λW (0, t) t ∈ (0, T0),
W (x, 0) = T−1

0 λ−2GR(λx) x ∈ R+,

On the other hand, since ut is nonnegative, u is a supersolution to this problem if
we choose λ = Ap−1 and provided we can compare the initial values. This is done
by taking R large enough in order to get 1 < ξR < NAp−1 (see the comment below
Theorem 2.1) and then T0 large. Observe that the support of W is [0, ξR/λ] ( [0, N ].
Thus u blows up before T0. For the general case we consider a convex initial function
below u0 satisfying the required conditions. Comparison finishes the proof. 2

For positive initial values, u0 > 0, we only prove

Theorem 3.1. Assume u0(x) > 0 for every x ≥ 0. Then for problem (1.1),
i) if p ≤ 1/2 the solution is global;
ii) if p ≥ 1 the solution blows up.

Proof. i) We compare with a self-similar solution w to the problem with p = 1/2
in the form w(x, t) = ertG(xe−st). The existence of such solution can be obtained
in a completely analogous way as in the proof of Theorem 2.1. This function w is
a supersolution to our problem and is globally defined.

ii) This case follows easily from comparison with a blowing up subsolution with
large support, see Theorem 1.1. 2

Contrary to what occurs for compactly supported solutions, the global solutions
are not globally bounded if they are positive.

Proposition 3.1. Let p < 1. If u0 > 0 and u is global then it is unbounded.
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Proof. Assume by contradiction that there exists a constant K > 0 such that
u(0, t) ≤ K for every t > 0. We use the same argument than in the proof of
Theorem 1.1, iii). Consider the function (3.1) with any R ≥ 2, which is a solution
to problem (3.2). If we take λ = Kp−1, and noting that necessarily p < 1 if u is
global, then u is a supersolution to that problem (provided T0 is large in order to
compare the initial values), and comparison implies that u must blow up. 2

We now concentrate in obtaining estimates of the growth of the solutions, i.e.,
we obtain the blow-up rates.
Proof of Theorem 1.2. The main ingredient in this proof is the use of the
intersection comparison principle: given two solutions of the equation, the number
of intersections does not increase in the interior of the domain as time evolves.

For a solution u with blow-up time T we will use the self-similar function,

(3.3) W (x, t) = (T − t)−αG(x(T − t)−β),

where G is a solution of (1.6) in its support. These profiles G were constructed in
the previous section.

Let us begin with the lower estimate. We consider W given by (3.3) with G
an unbounded profile such that W (x, 0) = T−αG(xT−β) has only one intersection
with u0(x) with W (0, 0) < u0(0). This can be achieved taking G(0) small enough.
The number of intersections does not increase. In fact, the Hopf Lemma implies
that no new intersection may appear at x = 0. Since G is unbounded and u is
compactly supported no new intersection can neither appear at infinity. Therefore,
the number of intersections between u(x, t) and W (x, t) is at most one. If we have
no intersections, u(x, t) � W (x, t) for t ≥ t0, the strong maximum principle implies
that u(x, t) < W (x, t) for t > t0 hence both functions can not blow up at the same
time T . This contradiction implies that the number of intersections is always one,
hence u(0, t) > W (0, t) = c(T − t)−α for all t ∈ (0, T ).

To obtain the upper estimate we proceed in a similar way but in this case we
consider a self-similar solution with G(0) large. This gives us a decreasing self-
similar profile with compact support [0, ξ0]. Recall that for p > 1 we have G′(ξ0) =
−∞ and hence W is not a solution in the whole R+. We then consider the problem
in [0, ξ0(T − t)β ]× (0, T ) with Dirichlet boundary condition on the right end. Since
G(0) is large we may assume that W (x, 0) and u0(x) have only one intersection
with W (0, 0) > u0(0). Remark that at the right boundary ξ0(T − t)β the solution
u is strictly positive, therefore no new intersection may appear there. As before,
we can conclude that the number of intersections is at most one. The fact that
u(x, t) is a supersolution of the above Dirichlet problem implies that the number
of intersections is always one. This gives u(0, t) < W (0, t) = C(T − t)−α for all
t ∈ (0, T ). 2

We end this section with an estimate of the blow-up time in the case p = 1. It is
based on the fact that the self-similar profiles have compact support and they are
even explicit.

Proposition 3.2. Let p = 1 and GR any self-similar profile given by (2.2), then
we have

(3.4) inf
x>0

GR(x)
u0(x)

≤ T ≤ sup
x>0

GR(x)
u0(x)

.
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Proof. To prove the upper estimate, assume T̂ = supx>0 GR(x)/u0(x) < ∞.
Otherwise the estimate holds trivially and is meaningless. By comparison, u(x, t) ≥
(T̂−t)−1GR(x), which implies T ≤ T̂ . The estimate from below follows in the same
way. 2

4. Asymptotic behaviour

Proof of Theorem 1.3. Recall that for a solution u that blows up in time T we
put

(4.1) g(ξ, τ) = (T − t)αu(x, t), ξ = x(T − t)−β , τ = − log(1− t/T ).

This rescaled function g verifies

(4.2)





gτ = ggξξ − αg − βξgξ, (ξ, τ) ∈ R+ × R+,
−gξ(0, τ) = gp(0, τ), τ ∈ R+,
g(ξ, 0) = T−αu0(T βξ), ξ ∈ R+.

Thanks to the blow-up rate (1.4) we know that g is bounded. The behaviour of u
near t = T is translated into the behaviour of g as τ →∞.

It is easy to see that there exists a sequence τj →∞ such that

(4.3) lim
j→∞

g(ξ, τ + τj) = g∗(ξ, τ)

uniformly in compact sets of R+. We want to prove that the function g∗ does not
depend on τ and therefore it coincides with a stationary solution G constructed in
Section 2.

First, let us consider the case p = 1, i.e., β = 0. In this case the convergence
follows from the existence of the explicit Lyapunov functional

(4.4) Lg(τ) =
∫ ∞

0

(1
2
(gξ)2(ξ, τ) + g(ξ, τ)

)
dξ − 1

2
g2(0, τ),

which is decreasing along the orbits,

(4.5)
dLg

dτ
(τ) = −4

∫ ∞

0

((g1/2)τ )2(ξ, τ) dξ ≤ 0,

and bounded from below (thanks to the blow-up rates (1.4)). Therefore we conclude
in a rather standard way the convergence of the orbits to a stationary solution, see
for instance [1, 13]. Indeed,

∥∥∥g1/2(·, τj + τ)− g1/2(·, τj)
∥∥∥

2

L2([0,∞])
=

∫ ∞

0

∣∣∣g1/2(ξ, τj + τ)− g1/2(ξ, τj)
∣∣∣
2

dξ

≤ τ

∫ ∞

0

∫ τj+τ

τj

∣∣∣(g1/2)τ

∣∣∣
2

(ξ, s) ds dξ → 0

as j → ∞, uniformly for bounded τ . Therefore, the sequence g1/2(ξ, τj + τ) con-
verges in the space L∞([0, τ ] : L2([0,∞))) for every τ > 0. The limit does not
depend on τ and is a stationary solution of (4.2) in [0,∞) and hence it is one of
the stationary profiles found in Section 2.

If now p > 1 we construct a Lyapunov function for g following the ideas of
[13, 25], taking note of the boundary condition. See those papers for the details,
specially for the regularization needed to justify the formal calculations. We write
the equation for g in (4.2) in the following way

gτ = g(gξξ + b(ξ, g, gξ)),



BLOW-UP FOR A PROBLEM NOT IN DIVERGENCE FORM 11

where b(ξ, g, z) = −βξz/g − α. Consider the function

Lg(τ) =
∫ ∞

0

Φ(ξ, g(ξ, τ), gξ(ξ, τ)) dξ − 1
p + 1

gp+1(0, τ).

Differentiating and integrating by parts, we get
d

dτ
Lg(τ) = −(gp(0, τ) + Φz(0, g, gξ))gτ (0, τ)

−
∫ ∞

0

1
g
Φzz(gτ )2 dξ +

∫ ∞

0

(Φg − Φξz − Φgzgξ + bΦzz)gτ dξ.

We can eliminate the last integral by choosing appropriately the function Φ using
the method of characteristics. It is given formally by

Φ(ξ, g, z) =
∫ z

0

(z − s)ρ(ξ, g, s) ds−
∫ g

0

b(ξ, s, 0)ρ(ξ, s, 0) ds,

where ρ(ξ, g, z) = exp
(∫ ξ

0
bz(η) dη

)
, and bz is evaluated along the characteristic

φ(η, ξ, g, z), solution to

(4.6)
{

φ′′ + b(η, φ, φ′) = 0 0 < η < ξ,
φ(ξ) = g, φ′(ξ) = z.

Thus, from the study performed in Section 2 we know that there exists a unique
solution which is decreasing for every g > 0, z ≤ 0, but there is no solution if g = 0.
Let us define the function ρ as

ρ(ξ, g, z) =





exp
(
− β

∫ ξ

0

ηφ−1(η, ξ, g, z) dη
)
, if g > 0,

0, if g = 0.

It is then clear that whenever β > 0, as in our case, we have ρ ≤ 1. A lower estimate
for ρ is crucial in our Lyapunov argument. The lower bound that we have is

(4.7) ρ(ξ, g, z) ≥ e−βξ2/(2g).

We now calculate

Φz(0, g, gξ) =
∫ gξ

0

ρ(0, g, s) ds = gξ(0, τ) = −gp(0, τ).

Putting all together we get
d

dτ
Lg(τ) = −

∫ ∞

0

1
g
ρ(ξ, g, gξ)(gτ )2 dξ.

Since b(ξ, g, 0) ≤ 0 and the function g is bounded, we have that Lg(τ) ≥ −C.
On the other hand, we claim that if we restrict ourselves to 0 < ξ < R for any

given R > 0, we get g ≥ C(R) > 0 and thus ρ ≥ C(R) > 0. Assume this claim.
The previous estimates imply

4
∫ τ2

τ1

∫ R

0

((g1/2)τ )2 dξ dτ ≤ 1
C(R)

∫ τ2

τ1

∫ ∞

0

1
g
ρ(ξ, g, gξ)(gτ )2 dξ dτ

=
1

C(R)
(Lg(τ1)− Lg(τ2)) ≤ C.

We conclude as for the case p = 1 the convergence of the orbits to a stationary
solution in [0, R]. Hence

(4.8) lim
τ→∞

g(ξ, τ) = G(ξ), in [0, R],
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where G is a stationary profile, decreasing and positive in [0, R].
In order to finish the proof we only have to prove the claim and to extend the

above convergence to the whole [0, +∞).
To do this, consider the following problem

(4.9)





wτ = wwξξ − αw, (ξ, τ) ∈ R+ × R+,
w(0, τ) = c, τ ∈ R+,
w(ξ, 0) = w0(ξ), ξ ∈ R+.

First of all, the lower bound for the blow-up rate gives that g(ξ, τ) is a supersolution
if w0 and c are small enough. On the other hand, the function w(ξ) = (a−αξ/2)2+ is
a subsolution if a is small. A comparison argument gives g(ξ, τ) ≥ w(ξ). Therefore
we obtain a lower bound for g(ξ, τ) in [0, a/α]. Thanks to our previous arguments
we obtain the desired convergence to a positive profile in [0, a/α]. Let us extend it
to the whole R+. Define R∗ = sup{R > 0, (4.8) holds }. Assume that R∗ < ∞. It
is easy to see that G(R∗) > 0 and thus g(ξ, τ) > 0 for every ξ ∈ [R∗, R∗ + δ] for
some δ > 0 and τ large. This implies that we can obtain the lower estimate of ρ
in the set [0, R∗ + δ] proving the convergence to a stationary profile in [0, R∗ + δ].
A contradiction that proves that R∗ = ∞. Finally, the limit profile is the unique
positive profile obtained in Section 2. 2

5. Propagation of the support. Blow-up sets

In this section we obtain the blow-up sets and study the (no) evolution of the
support.
Proof of Theorem 1.4. The fact that the support of the solution does not shrink
follows from comparison with any solution v that has initial data v0 ≤ u0 with the
same support as u0, convex and compatible with the boundary conditions. Observe
that v remains convex and hence nondecreasing in time.

To prove that the support does not increase we observe the following easy fact

Proposition 5.1. Take any point 0 < x∗ < N . Let K > 0 be such that u(x∗, t) ≤
K for every t1 ≤ t ≤ t2, then supp(u(·, t)) ⊂ [0, N ] for every t1 ≤ t ≤ t2.

Proof: We use as comparison the function P (x) = K ′(N −x)+/(N −x∗), for some
K ′ > K large enough. It is a supersolution to the problem




wt = wwxx, x > x∗, t ∈ (t1, t2),
w(x∗, t) = K, t ∈ (t1, t2),
w(x, t1) = u(x, t1), x > x∗ ,

as well as u is a subsolution. 2

Proof of Theorem 1.5. i) Using the estimate from above in the blow rate (1.4),
we can compare u with the solution w to the peaking problem




wt = 1
2 (w2)xx, (x, t) ∈ R+ × (0, T ),

w(0, t) = c(T − t)−1/(2p−1), t ∈ (0, T ),
w(x, 0) = u0(x), x ∈ R+,

This problem has been considered in the work [15], in which the authors prove
single-point blow-up if p > 1.

ii) The fact that in the case p = 1 the blow-up set B(u) contains the interval
[0, 1] comes from the fact that every self-similar profile is positive in [0, 1] together
with the convergence result, Theorem 1.3. We also know, Theorem 1.4, that B(u) ⊂
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[0, N ]. Finally, to prove that B(u) ⊂ [0, 2], we can use again the convergence result
plus the fact that all the self-similar solutions have support contained in [0, 2].
Then we know that g(x, τ) goes to zero for every x > 2. We now can apply the
technique developed in [5], used also in [9], to show that for x > 2 we have the
decay g(x, τ) ≤ Ce−τ , that is, u(x, t) ≤ C. 2

6. The problem in a bounded interval

We consider in this section the problem

(6.1)





ut = uuxx, (x, t) ∈ (0, L)× (0, T ),
−ux(0, t) = up(0, t), t ∈ (0, T ),
−ux(L, t) = 0, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ [0, L],

with p > 0 and continuous initial datum u0(x) ≥ δ > 0. The maximum principle
implies u(x, t) ≥ δ. Observe that if u0(L) = 0, Theorem 1.4 implies that problem
(6.1) reduces to problem (1.1).

Theorem 6.1. The solution to problem (6.1) always blows up for every p > 0 and
every initial value.

Proof. The proof follows three steps. We first show that the solution is unbounded.
Next, we consider the case 0 < p < 1 and a convex, decreasing, compatible with
the boundary conditions initial data. Finally we deal with the general case by
comparison.

Integrating the equation ut/u = uxx we get

d

dt

∫ L

0

log u(x, t) dx = up(0, t) ≥ δp > 0.

Therefore u is not bounded. Let us now consider the case 0 < p < 1, and assume
by the previous calculation that u(0, t) > 1. Integrating by parts the equation in
(6.1) we get, for M(t) =

∫ L

0
u(x, t) dx,

(6.2)
M ′(t) = up+1(0, t)−

∫ L

0

(ux)2(x, t) dx

≥ up+1(0, t)− u2p(0, t)L ≥ Cup+1(0, t).

On the other hand, if u′′0 ≥ 0 we have uxx ≥ 0 and then, by the Mean Value
Theorem, we obtain

(6.3) u(x, t) ≥ u(0, t)
(
1− up−1(0, t)x

)
+

for every x, t > 0. This estimate gives, if 0 < p < 1, the equivalences

(6.4) u(x, t) ∼ u(0, t) ∼ M(t)

for every 0 ≤ x ≤ L and t > 0. This implies M ′(t) ≥ CMp+1(t), which means
that M(t) blows up in finite time, and so does u. Observe that for any strictly
positive initial data we may consider a convex decreasing function below it. A
comparison argument gives blow-up for positive initial data for 0 < p < 1. The
case p ≥ 1 follows immediately by comparison, since solutions to the problem (6.1)
with p1 are supersolutions to the problem with a different power p2 < p1, provided
u(0, t) > 1. 2
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As in the case of the half-line we characterize the self-similar blowing up solutions
in the case p = 1. Let HR be the parabola, if 0 < R ≤ 2,

HR(x) =
1
2
x2 −Rx + R,

and H̃R the truncated parabola (see (2.2)), if R ≥ 2,

H̃R(x) =

{ 1
2
x2 −Rx + R if 0 ≤ x ≤ xR

0 if x ≥ xR ,

where xR = R − √
R2 − 2R. We have that problem (6.1) admits the family of

solutions
U(x, t) = (T − t)−1G(x).

The profiles are:
i) if 0 < L ≤ 1, then G = HL is the only profile;

ii) if 1 < L < 2, then G = HL and also G = H̃R with R >
L2

2(L− 1)
;

iii) if L ≥ 2, then G = H̃R with R ≥ 2.

Theorem 6.2. Let u be a solution to problem (6.1) which blows up at time T .
i) If 0 < p < 1 and u′′0 ≥ 0, then ‖u(·, t)‖∞ ∼ C(T − t)−1/p.

ii) If p ≥ 1, then ‖u(·, t)‖∞ ∼ c(T − t)−1/(2p−1).

Proof. i) The case 0 < p < 1 follows from the proof of the previous theorem,
since we have in fact, instead of (6.2), M ′(t) ∼ Mp+1(t). This gives the rate
M(t) ∼ (T − t)−1/p, and (6.4) implies the rate for u.

ii) Let α = 1/(2p − 1) and β = (p − 1)α. Let us consider, as in the proof of
Theorem 1.2, a self similar solution W (x, t) = (T − t)−αG(x(T − t)−β) with G(0)
small. The initial data u0 and W (x, 0) have at most one intersection. As before
this implies that u(0, t) ≥ W (0, t) = c(T − t)−α.

The proof of the upper bound is exactly the same as the one of Theorem 1.2. In
this case we only have to observe that u and W may have one or zero intersections.
If the number of intersections is zero, it may increase by one from x = L. The rest
of the proof follows exactly as before. 2

As a consequence of the above results we obtain global blow-up for 0 < p < 1.
If p ≥ 1 the blow-up set can be characterized as in the case of the half-line.

Theorem 6.3. Let u be a blowing up solution of (6.1) with u0 convex. Then
i) if p > 1 the blow-up set is B(u) = {0}.
ii) if p = 1 the blow-up set verifies [0,min{1, L}] ⊂ B(u) ⊂ [0, min{2, L}].
iii) if 0 < p < 1 and u′′0 ≥ 0 the blow-up set is B(u) = [0, L].

Proof. The first two assertions follows as in Theorem 1.5. The last one comes
from (6.3). 2
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