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Abstract. In this paper we consider the elliptic system ∆u = a(x)upvq, ∆v = b(x)urvs in
Ω, a smooth bounded domain, with boundary conditions ∂u

∂ν = λu, ∂v
∂ν = µv on ∂Ω. Here λ

and µ are regarded as parameters and p, q > 1, r, s > 0 verify (p−1)(s−1) > qr. We consider
the case where a(x) ≥ 0 in Ω and a(x) is allowed to vanish in an interior subdomain Ω0,
while b(x) > 0 in Ω. Our main results include existence of nonnegative nontrivial solutions
in the range 0 < λ < λ1 ≤ ∞, µ > 0, where λ1 is characterized by means of an eigenvalue
problem, and the uniqueness of such solutions. We also study their asymptotic behavior in
all possible cases: as both λ, µ → 0, as λ → λ1 < ∞ for fixed µ (respectively µ → ∞ for
fixed λ) and when both λ, µ →∞ in case λ1 = ∞.
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1. Introduction

Reaction-diffusion systems is a broad field most of whose main branches still remain open
in multiple aspects. Namely, existence, uniqueness, bifurcation aspects together with limit
profiles of solutions when parameters approach the boundary of existence regions, stability
and dynamical behavior, maximum principles and many others (see [10], [23], [27] and [28]
for comprehensive accounts on these subjects). Only some few classes of such equations are
nowadays partially well understood. In view of their applications, specially in the realm
of population dynamics, the so-called competitive systems constitute a main case of such
systems (see, for example, [5], [6], [7], [8], [24] and the general texts cited above).

The aim of the present work is provide a detailed study of positive solutions (in both
components) of the following elliptic system of competitive type

(1.1)

{
∆u = a(x)upvq in Ω,
∆v = b(x)urvs in Ω,

complemented with the flux boundary conditions

(1.2)





∂u

∂ν
= λu on ∂Ω,

∂v

∂ν
= µv on ∂Ω.

Here Ω is a smooth bounded domain of RN (with ν the outward unit normal field), a, b ∈
C(Ω) are nonnegative functions, p, s > 1, q, r > 0. The real parameters λ, µ control the
fluxes of u, v into the domain.

A main feature in our problem (1.1)-(1.2) is that the parameters appear in the boundary
condition. In this sense this paper is a natural continuation of the two previous works [17]
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and [18] which dealt with a single equation. For the case of scalar equations, some few papers
(see for instance [2] and [29]) have considered boundary conditions with parameters, although
such conditions were nonlinear. This fact and the lack of suitable symmetries did not permit
to perform a complete study of the bifurcation diagram as the one in our preceding jobs [17]
or [18]. On the other hand, at the best of our knowledge, recent or past literature treating
the dependence on parameters of boundary conditions does not practically exist.

Our intention in the present work is to fully describe the bifurcation diagram for problem
(1.1)-(1.2). We will prove that under suitable conditions on a, b and the exponents p, q, r, s,
there exists a unique positive weak solution (uλ,µ, vλ,µ) for 0 < λ < λ1 and µ > 0, where
λ1 ≤ ∞ is defined in terms of a suitable eigenvalue problem. Furthermore, (uλ,µ, vλ,µ)
defines a global attractor for all nonnegative solutions to the corresponding parabolic system
associated to (1.1) under the boundary conditions (1.2).

On the other hand, a significative part of the results will be oriented to determine the
behavior of the solution when the parameters are varied, paying special attention to its
asymptotic behavior when λ → λ1 ≤ ∞ or µ → +∞ (or both). We will find that in
some situations there is a limit profile, which is a solution to (1.1) but with a singular
boundary condition. Moreover, depending on the vanishing properties of coefficients a, b
such finite profiles can only be sustained on certain subdomains of Ω. In some other cases
the components of the solutions just go to zero or infinity uniformly. This means that
asymptotically the system drives one of the species to extinction.

Next, we state the precise hypotheses that we impose on the weights a and b. They will
be continuous functions in Ω such that b(x) > 0, a(x) ≥ 0 for all x ∈ Ω, being a nontrivial.
In addition and to enlarge the scope of our analysis, we are allowing a to vanish in a whole
subdomain Ω0 of Ω (see [9], [11], [13], [25] and [26] for a similar situation in the case of
a single equation under Dirichlet or Robin boundary conditions which do not depend on
parameters). More precisely, we are assuming that the set {x ∈ Ω : a(x) = 0} is the closure
of a smooth (say C2) subdomain Ω0 ⊂ Ω (the case a > 0 corresponding to Ω0 = ∅). For
later use, we set Ω+ = Ω \ Ω0 together with Γ1 = ∂Ω0 ∩ ∂Ω, Γ2 = ∂Ω0 ∩ Ω, Γ+ = ∂Ω+ \ Γ2.
As in [17], [18], we are making the simplifying additional hypothesis Γ2 = Γ2 and hence

(1.3) Γ2 ⊂ Ω.

This means that ∂Ω0 ∩ Ω lies at a positive distance from ∂Ω0 ∩ ∂Ω. As studied in [19] (cf.
also [20]), suppressing (1.3) only implies a certain loss of regularity in the solutions. On the
other hand, observe that as a consequence of the smoothness of both Ω and Ω0, all Γ1, Γ2

and Γ+ consists of a finite union of smooth closed manifolds. Finally and as a simplifying
assumption it will be also supposed that a > 0 on ∂Ω whenever Ω0 ⊂⊂ Ω. All the preceding
vanishing properties of a will be referred to in the current work as hypothesis (H).

Remark 1. The connectedness requirement on the null set Ω0 of a is assumed in the present
work by the sake of simplicity. However, the positivity region Ω+ could exhibit several
components (see below).

As for the exponents p, q, r, s, we are assuming that p, s > 1, q, r > 0 with

(1.4) δ := (p− 1)(s− 1)− qr > 0.

This assumption somehow measures the coupling between the two equations in (1.1), and it
makes the system behave “essentially” as a single equation. More precisely (1.4) makes pos-
sible the construction of suitable sub and supersolutions. Indeed, as was already mentioned,
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system (1.1) is of competitive type. This implies that comparison arguments can still be
employed, although when defining sub and supersolutions one of the inequalities has to be
reversed (see [27]). On the other hand, it should be remarked that the particular prototype
(1.1) was analyzed for instance in [16] and [12] but with boundary conditions of Dirichlet
and blow-up type. See also [15] for a related system under the latter kind of boundary
conditions.

Regarding the smoothness of solutions we are always dealing with weak nonnegative so-
lutions (u, v) to (1.1)-(1.2), i.e u, v ∈ H1(Ω) such that

−
∫

Ω

∇u∇ϕ + λ

∫

∂Ω

uϕ =

∫

Ω

aupvqϕ, −
∫

Ω

∇v∇ψ + µ

∫

∂Ω

vψ =

∫

Ω

aurvsψ,

for all ϕ, ψ ∈ H1(Ω). However, such solutions are indeed more regular since it can be shown,
via an standard iteration procedure, that actually u, v ∈ L∞(Ω) (see [19], [20]). Hence
u, v ∈ W 2,q(Ω)∩C1,η(Ω) for every q > 1, η ∈ (0, 1), and are indeed strong solutions (cf. [21],
[22]).

Now we arrive to the statements of our results. The first theorem clarifies the issues of
existence and uniqueness of positive solutions to (1.1)-(1.2) and their dynamical rôle. It
turns out that the principal eigenvalue (denoted by λ1) of the problem

(1.5)





∆φ = 0 in Ω0,
∂φ

∂ν
= λφ on Γ1,

φ = 0 on Γ2,

will be determinant in the existence of positive solutions. Existence, uniqueness, variational
characterization and further features concerning λ1 were discussed in [17], [18]. Under our
assumptions it may perfectly be the case that Ω0 ⊂ Ω (and so Γ1 would be empty). If so,
we are setting λ1 = ∞.

Theorem 1. Let Ω be a C2 bounded domain of RN , and a, b ∈ C(Ω). Assume that b(x) > 0
in Ω while a(x) verifies hypothesis (H). If p, s > 1, q, r > 0 satisfy (1.4), then:

(i) Problem (1.1)-(1.2) can only have positive weak solutions if 0 < λ < λ1 ≤ ∞ and
µ > 0.

(ii) For λ ∈ (0, λ1), λ1 ≤ ∞ and µ > 0 there exists a unique positive weak solution
(uλ,µ, vλ,µ). Moreover, (uλ,µ, vλ,µ) defines an asymptotically stable equilibrium for the
associated parabolic system which is a global attractor for all nonnegative solutions.

After this important step is given, we are interested in the analysis of the dependence of
the solution (uλ,µ, vλ,µ) with respect to the parameters λ and µ.

This analysis constitutes the main contribution of this paper. We are performing a rather
complete study of this dependence, and the subsequent results will be stated in several
different theorems to clarify the exposition.

In our first statement, we gather the monotonicity properties of the solution and the
asymptotic behavior of (uλ,µ, vλ,µ) for small λ and µ.

Theorem 2. Under the assumptions of Theorem 1, let (uλ,µ, vλ,µ) be the unique positive
weak solution to (1.1)-(1.2) for 0 < λ < λ1 ≤ ∞, µ > 0. Then:

(i) uλ,µ is increasing in λ and decreasing in µ, while vλ,µ is decreasing in λ and increasing
in µ.
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Figure 1. A symbolic drawing of the five regions describing the change in
the regime for the asymptotic behavior of the solutions (uλ,µ, vλ,µ) as (λ, µ) →
(0, 0). The shadowed area in the middle stands for the region for solutions
that bifurcate from u = 0, v = 0.

(ii) If λ → 0 with fixed µ, then uλ,µ → 0 and vλ,µ → +∞ uniformly in Ω. Similarly, if
µ → 0 for fixed λ, then uλ,µ → +∞ and vλ,µ → 0 uniformly in Ω.

(iii) For λ, µ → 0 it holds:

(1.6)

uλ,µ ∼
{(

λ

a∗

)s−1 (
b∗

µ

)q
} 1

δ

,

vλ,µ ∼
{( µ

b∗

)p−1
(

a∗

λ

)r} 1
δ

,

where

a∗ =
1

|∂Ω|
∫

Ω

a(x) dx, b∗ =
1

|∂Ω|
∫

Ω

b(x) dx.

Estimates (1.6) yield a complete picture of the asymptotic behavior of the solutions
uλ,µ, vλ,µ as both λ, µ approach zero. Our next result contains the full regime of behav-
iors. To provide the information in a concise way it is convenient to introduce the following
notation. For µ1 = µ1(λ), µ2 = µ2(λ), positive functions of λ defined near zero and satisfy-
ing limλ→0 µi = 0, i = 1, 2, we say µ1 ¿ µ2 if limλ→0+ µ1/µ2 = 0, while µ1 ≈ µ2 stands for
limλ→0+ µ1/µ2 = κ, 0 < κ < ∞ (µ1 ∼ µ2 corresponds to the case κ = 1).

Theorem 3. Under the assumptions of Theorem 2 let (uλ,µ, vλ,µ) be the positive solution to

(1.1)-(1.2) and θ1 =
r

p− 1
, θ2 =

s− 1

q
.

If µ = µ(λ) defines any positive function such that µ → 0 as λ → 0 then (see Figure 1),

(1) limλ→0(uλ,µ, vλ,µ) = (0,∞) if µ À λθ1,
(2) limλ→0(uλ,µ, vλ,µ) = (0, c1) for a certain positive constant c1 if µ ≈ λθ1,
(3) limλ→0(uλ,µ, vλ,µ) = (0, 0) provided λθ2 ¿ µ ¿ λθ1,
(4) limλ→0(uλ,µ, vλ,µ) = (c2, 0), c2 certain positive constant if µ ≈ λθ2,
(5) limλ→0(uλ,µ, vλ,µ) = (∞, 0) whenever µ ¿ λθ2.

Next we describe the behavior of the unique positive weak solution to (1.1)-(1.2) when
a parameter is kept fixed (say µ) and λ is moved to reach the limiting value λ1, which
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Figure 2. A possible configuration for Ω: Ω+ has two components, the outer
one with µ+

1 < ∞, the inner one with µ+
2 = ∞, while λ1 < ∞. For µ ≤ µ+

1

the solution (uλ,µ, vλ,µ) → (∞, 0) as λ → λ1 while it keeps a finite profile in
the outer component as λ → λ1 provided µ > µ+

1 .

can be finite or not. As a surprising fact, it turns out that when λ1 < ∞ there could
exist distinguished finite values of µ separating different “spatially located” limit behaviors
of (uλ,µ, vλ,µ) as λ → λ1−. Such values are associated to the connected pieces of Ω+. In
fact and while Ω0 was assumed connected from the start (see Remark 1) this not need to
be the case with Ω+. Since Ω, Ω0 are class C2 domains then Ω+ exhibits a finite number
M of components Ω+

i all of them defining C2 domains. To each component Ω+
i such that

Γ+
i := ∂Ω+

i ∩ ∂Ω = ∅ (i.e. Ω+
i ⊂⊂ Ω) we associate the value µ+

i = ∞ meanwhile µ = µ+
i is

defined as the principal eigenvalue of the problem ([17], [18])




∆ψ = 0 in Ω+
i ,

∂ψ

∂ν
= µψ on Γ+

i ,

ψ = 0 on Γ2,i := Γ2 ∩ ∂Ω+
i ,

for all those components with Γ+
i 6= ∅. As will seen below the limit behavior of (uλ,µ, vλ,µ)

as λ → λ1− in each Ω+
i will depend on the relative values of µ and µ+

i .
On the contrary, particular values of µ have no relevance in the asymptotic behavior of

the solutions (µ fixed) when λ1 = ∞. The important information when λ1 = ∞ is whether
the exponent r is less than (p− 1)/2 or not.

In the next statement we are denoting d = dist(x, Γ2) and assuming that coefficient a(x)
under hypotheses (H) satisfies in addition the decay condition (observe that by continuity
a = 0 on Γ2):

a(x) = o(d(x)) as d(x) → 0.

Theorem 4. Assume a, b ∈ C(Ω), a satisfies (H) while Ω+
1 , . . . , Ω+

M stand for the connected
components of Ω+. Let (uλ,µ, vλ,µ) be the unique positive solution to (1.1)-(1.2) for 0 < λ <
λ1 ≤ ∞, µ > 0.

A) Suppose λ1 < ∞.
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(i) If 0 < µ ≤ µ+
i for all i ∈ {1, . . . , M}, then uλ,µ → +∞, vλ,µ → 0 uniformly in Ω as

λ → λ1−.
(ii) Assume that µ > min µ+

i . Then uλ,µ → +∞, vλ,µ → 0 uniformly in

Ω0 ∪ (∪jΩ
+

j ),

as λ → λ1−, the union being extended to those Ω+
j with µ ≤ µ+

j . Furthermore, if
a(x) satisfies in addition (d = dist(x, Γ2))

(1.7) C1d(x)σ ≤ a(x) ≤ C2d(x)σ x ∈ Ω+
i

near Γ2,i for some σ > 0 and positive constants C1, C2, then (uλ,µ, vλ,µ) converges
uniformly on compacts of the remaining components Ω+

i ∪Γ+
i where µ > µ+

i to a weak
solution of the system

(1.8)





∆u = a(x)upvq in Ω+
i , u = ∞ on Γ2,i,

∂u

∂ν
= λ1u on Γ+

i ,

∆v = b(x)urvs in Ω+
i , v = 0 on Γ2,i,

∂v

∂ν
= µv on Γ+

i ,

where Γ2,i := ∂Ω+
i ∩ Γ2.

B) Assume λ1 = ∞.

(iii) If 0 < r < (p − 1)/2, then (uλ,µ, vλ,µ) converges uniformly in compacts of Ω to the
unique positive weak solution (u∞,µ, v∞,µ) of the system




∆u = a(x)upvq in Ω u = ∞ on ∂Ω

∆v = b(x)urvs in Ω
∂v

∂ν
= µv on ∂Ω,

as λ → +∞.
(iv) If r ≥ (p− 1)/2, then uλ,µ → +∞ and vλ,µ → 0 uniformly in Ω as λ → +∞.

Remark 2. In the case Ω+ ⊂⊂ Ω (and so λ1 < ∞) no special values of µ have influence on
the limit behavior of the solutions and the conclusion of i) holds true.

Statements symmetric to those in (iii) and (iv) hold when λ is kept fixed and µ → +∞.
Thus it only remains to study the behavior of (uλ,µ, vλ,µ) when both λ and µ go to infinity.
Accordingly, the existence of positive solutions is required for λ, µ free of upper limitations.
Thus, as the weights a and b are not playing now a significative role, we are setting in the
remaining statements a(x) = b(x) = 1 (as a minor remark, observe that solutions are now
classical thanks to standard elliptic theory, see [1], [21] and [22]). We show that, depending
on the relative values of p, q, r, s and on the quotients λ/µ, µ/λ, the solutions converge
to a finite profile or not. We remark that uniqueness of positive classical solutions to the
system (1.9) below was proved in [16].

Theorem 5. Assume a(x) = b(x) = 1, and let (uλ,µ, vλ,µ) be the unique positive weak
solution to (1.1)-(1.2).

(i) If r < (p− 1)/2, q < (s− 1)/2, then (uλ,µ, vλ,µ) converges uniformly on compacts of
Ω to the unique positive weak solution (u∞, v∞) to

(1.9)

{
∆u = upvq in Ω, u = ∞ on ∂Ω,
∆v = urvs in Ω, v = ∞ on ∂Ω,

as λ, µ →∞.
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Figure 3. On the left we highlight the regions of parameters corresponding
to the asymptotic behaviors described in points i) and ii) of Theorem 5 and
on the right the parametric regime leading to the behavior in iii).

(ii) If r < p− 1, q < s− 1 and λ, µ →∞ in such a way that µ/λ is bounded and bounded
away from zero, then (uλ,µ, vλ,µ) converges uniformly on compacts of Ω to the unique
positive weak solution (u∞, v∞) to (1.9).

(iii) If r > p − 1 (resp. q > s − 1) and λ, µ → ∞ in such a way that µ/λ (resp. λ/µ) is
bounded, then uλ,µ → +∞, vλ,µ → 0 (resp. uλ,µ → 0, vλ,µ → +∞) uniformly in Ω.

As a complement of the behavior observed in point ii) of the precedent theorem, we show
that even in the regime r < p− 1, s < q − 1, solutions do not converge to a finite profile as
λ, µ → ∞ provided λ, µ vary along some curves of the form µ = Cλθ for certain values of
θ ∈ (0, 1). Such conclusion is attained under radial symmetry on x. However, we suspect
that a similar assertion is true in any smooth bounded domain of RN .

Theorem 6. Assume (p − 1)/2 < r ≤ p − 1 and choose µ = Cλθ for any constant C > 0
and

(1.10) 0 < θ <
2r − p + 1

p− 1
.

If Ω is a ball or an annulus of RN then the unique positive solution (uλ,µ, vλ,µ) to (1.1)-(1.2)
satisfies uλ,µ → +∞, vλ,µ → 0 uniformly in Ω. Furthermore, the conclusion holds if Ω is an
arbitrary simply connected domain of R2.

The rest of the paper is organized as follows: Section 2 revises an already known auxiliary
problem. In addition, several kind of singular eigenvalue problems –which are interesting
by themselves– are considered in detail, and some new interesting results are obtained. In
particular, some estimates near the boundary for some equations with Dirichlet boundary
conditions and singular weights. The analysis in Section 2 will be mainly instrumental when
elucidating the limit profiles of solutions to (1.1)-(1.2). Section 3 is dedicated to prove
Theorem 1, while the results on the asymptotic behavior of the solutions for varying λ and
µ are all collected in Section 4.
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2. Some scalar auxiliary problems

In this section, we consider some auxiliary problems which will turn out to be important
in the rest of the paper. Some results are already known, but most of them are new and
interesting in their own right.

We begin by analyzing the problem

(2.1)





∆u = a(x)up in Ω,

∂u

∂ν
= λu on ∂Ω,

p > 1, which was deeply studied in [17]. However, we would like to stress that our next
result improves the knowledge of the asymptotic behavior of the solution both as λ → 0
and λ → ∞. In particular, the uniform estimates (2.4) and (2.5) below for large λ are not
contained there. We denote by λ1 the first eigenvalue of problem (1.5).

Theorem 7. Assume a ∈ C(Ω) verifies (H). Then problem (2.1) admits a unique positive
weak solution Uλ ∈ H1(Ω) ∩ L∞(Ω) for every λ with 0 < λ < λ1 ≤ ∞, while no positive
solutions exist if λ ≤ 0 or λ ≥ λ1 if λ1 < ∞. In addition, Uλ is increasing and continuous
in λ, and we have that

(2.2) Uλ ∼
(

λ

a∗

) 1
p−1

as λ → 0+, where a∗ =
1

|∂Ω|
∫

Ω
a. When λ1 < ∞, Uλ → ∞ uniformly in Ω0 as λ → λ1−,

provided that a(x) = o(d) as d → 0, d = dist (x, Γ2), while Uλ converges in C1,ν(Ω ∪ Γ+),
0 < ν < 1, to the minimal solution of the problem,





∆u = a(x)up in Ω+,
u = ∞ on Γ2

∂u

∂ν
= λ1u on Γ+,

where the latter boundary condition is removed provided Γ+ = ∅.
In case λ1 = ∞, we have that Uλ converges to the minimal solution U∞ to

(2.3)

{
∆u = a(x)up in Ω,
u = ∞ on ∂Ω.

In addition, there exists a positive constant C which does not depend on λ such that

(2.4) Uλ(x) ≥ C
(
d(x) +

α

λ

)−2/(p−1)

in Ω for λ ≥ λ0, where α = 2/(p− 1). If a > 0 on ∂Ω then we also have the complementary
upper estimate

(2.5) Uλ(x) ≤ C ′
(
d(x) +

α

λ

)−2/(p−1)

in Ω, for λ ≥ λ0, where C ′ is a positive constant which does not depend on λ.
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Remark 3. To simplify somewhat the notation, we will denote by Vµ the unique solution to
the corresponding problem for v where b(x), s, µ replace a(x), p, λ in (2.1). More precisely,

(2.6)





∆v = b(x)vs in Ω,

∂v

∂ν
= µv on ∂Ω.

Proof. Our analysis in [17] dealt with existence, uniqueness and limit profile properties of
classical solutions to the more regular version of (2.1) where a ∈ Cα(Ω) for some 0 < α < 1.
In addition, the existence of a H1 weak solution to (2.1) was obtained there by a variational
approach covering the more general framework a ∈ L∞(Ω). Furthermore, it was shown in
[19] (see also [20]) that H1 solutions are also in L∞(Ω) and so they are unique and define
strong solutions (see above) to (2.1). Therefore, we are only proving (2.2), (2.4) and (2.5),
the remaining assertions being essentially contained in Theorems 1, 2 and 3 of [17].

To show (2.2), let λn → 0, and denote for simplicity un = Uλn . Proceeding as in the proof
of Theorem 1 in [17] it follows that |un|∞ → 0. Thus vn := un/|un|∞ solves

(2.7)

{
∆v = a(x)|un|p−1

∞ vp in Ω,
∂v

∂ν
= λnv on ∂Ω.

The right-hand side of the equation in (2.7) is bounded and so, also proceeding as in [17],
one obtains a subsequence, still named vn, such that vn → v in C1,η(Ω) for every η ∈ (0, 1),
being v a strong solution to {

∆v = 0 in Ω,
∂v

∂ν
= 0 on ∂Ω,

with |v|∞ = 1. Hence v = 1. On the other hand, integrating the equation in (2.7) we get

λn

∫

∂Ω

vn = |un|p−1
∞

∫

Ω

a(x)vp−1
n ,

and we arrive at

un ∼ |un|∞ ∼
(

1

∂Ω

∫

Ω

a(x)

)− 1
p−1

λ
1

p−1
n .

Since the sequence λn is arbitrary, this proves (2.2).
To prove (2.4), we construct a suitable subsolution in a neighborhood of the boundary.

Since Ω is C2, there exists δ0 such that d(x) is C2 in 0 < d < δ0 and |∇d| = 1 there (cf.
[21]). We search for our subsolution in the form

(2.8) u = ε(d(x) + θ)−α,

where ε is small, α = 2/(p− 1) and θ > 0 is to be chosen. On the boundary we have,(
∂u

∂ν
− λu

) ∣∣
∂Ω

=

(
−∂u

∂d
− λu

) ∣∣
d=0

= ε
(
αθ−α−1 − λθ−α

)
,

so it suffices with setting θ = α/λ. On the other hand:

∆u− a(x)up = ε(d + θ)−α−2(α(α + 1)− α(d + θ)∆d− a(x)εp−1).

Thus u will be a subsolution provided

α
(
(α + 1)− (d +

α

λ
)∆d

)
≥ εp−1 sup

0<δ<δ0

a.
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We can choose λ0 and diminish δ0 if necessary to have

inf
0<d<δ0

{
(α + 1)− (d +

α

λ
)∆d

}
> 0

for λ ≥ λ0. This allows us to take a conveniently small ε (independent of λ) so that u is
a subsolution in 0 < d < δ0. Notice that δ0 is also independent of λ. Next consider the
problem 




∆u = a(x)up in 0 < d < δ0,
∂u

∂ν
= λu on d = 0,

u = Uλ on d = δ0,

which has a unique solution u = Uλ. If we choose a sufficiently small ε, we have u ≤ Uλ on
d = δ0. Since Uλ is increasing in λ, this choice can still be made independent of λ. Moreover,
MUλ is a supersolution for M > 1 large enough, and MUλ > u in 0 < d < δ0. It follows
that u ≤ Uλ in 0 < d < δ0, that is

Uλ(x) ≥ C
(
d(x) +

α

λ

)−2/(p−1)

if λ ≥ λ0, 0 < d(x) < δ0, where C does not depend on λ. Finally, since Uλ converges to a
finite profile as λ → ∞, this estimate is valid throughout Ω for λ ≥ λ0, taking a smaller C
if necessary. This proves (2.4).

When a > 0 in ∂Ω, a supersolution similar to the subsolution in (2.8) can be constructed
near ∂Ω, so the proof of (2.5) is entirely similar. We leave the details to the reader. ¤

We are now concerned with a more general version of problem (2.1). We are allowing
the weight a(x) to be discontinuous but keeping its boundedness. We also assume that it
depends on a parameter ε and becomes singular –in two different possible ways– as ε → 0.
More precisely, we consider

(2.9)





∆u = Aε(x)us in Ω,

∂u

∂ν
= µu on ∂Ω,

s > 1, µ > 0, where we are assuming that Aε ∈ L∞(Ω), ε > 0, is a family of bounded
functions which verify either of the two following conditions. Namely,

(2.10) Aε(x) →∞ uniformly in Ω′

as ε → 0 in a smooth subdomain Ω′ of Ω satisfying the structure conditions of Ω0 in

hypothesis (H) (cf. Section 1). In this scenario we define Ω′′ = Ω \Ω
′
and we are supposing

in addition that Aε remains uniformly bounded in Ω′′.
An alternative condition that we are studying is

(2.11) Aε(x) ≥ C (d(x) + ε)−θ in Ω

for a certain θ ≥ 1 and a positive constant C.
We are interested in analyzing the behavior of the unique positive solution Uµ,ε to (2.9)

as ε → 0, for fixed µ > 0. We remark that the results in Theorem 7 still hold for bounded
weights with no essential modifications. The main features of problem (2.9) when the coef-
ficient Aε behaves in the singular way that are described below.
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Theorem 8. Suppose Aε ∈ L∞(Ω), ε > 0, is a family of functions such that Aε(x) decreases

in ε > 0, verifies (2.10) and remains uniformly bounded in Ω \Ω
′
. Then the unique solution

u = Uµ,ε to (2.9) converges uniformly to zero in Ω
′

as ε → 0. Furthermore, Uµ,ε also
converges uniformly to zero in every connected piece Ω′′

i of Ω′′ such that µ ≤ µ1,i where
µ1,i = ∞ if Ω′′

i ⊂⊂ Ω or µ = µ1,i stands for the principal eigenvalue to the problem ([17],
[18]) 




∆ψ = 0 x ∈ Ω′′
i ,

ψ = 0 x ∈ ∂Ω′′
i ∩ Ω,

∂ψ

∂ν
= µψ x ∈ ∂Ω′′

i ∩ ∂Ω.

Proof. We are using the notation uε instead Uµ,ε for simplicity. In addition we put Γ′1 =
∂Ω′ ∩Ω, Γ′′ = ∂Ω′′ ∩ ∂Ω, Γ′ = ∂Ω′ ∩Ω = ∂Ω′′ ∩Ω. Remark that, according to (H), Γ′ ⊂ Ω is
a closed manifold which is always nonempty while either Γ′1 or Γ′′ could be possibly empty,
but not simultaneously. We are next dealing with the more elaborate case where both Γ′1
and Γ′′ are nonempty (the remaining possibilities are handled in the same way). We also
denote A0(x) = supε>0 Aε(x) = limε→0 Aε(x) for x ∈ Ω′′. Observe that A0 ∈ L∞(Ω′′).

The auxiliary problem:

(2.12)





∆u = A0u
s x ∈ Ω′′,

u = 0 x ∈ Γ′,

∂u

∂ν
= µu x ∈ ∂Ω′′,

has a unique positive strong solution û0 ∈ W 2,p(Ω′′)∩C1,η0(Ω
′′
) for every p > 1, 0 < η0 < 1.

On the other hand, the positive strong solution uε to (2.9) belongs to W 2,p(Ω)∩C1,η0(Ω),
p > 1, 0 < η0 < 1, and is increasing in ε. Therefore the function u0 given as

u0(x) = lim uε(x) = inf
ε>0

uε(x), x ∈ Ω,

is well defined, lies in L∞(Ω) while the limit holds in Lp(Ω) for all p ≥ 1. We are next
showing that u0 = 0 a. e. in Ω′ together with u0(x) = û0(x) for all x ∈ Ω′′.

First, observe that û0 ∈ H1
Γ′(Ω

′′) = {u ∈ H1(Ω′′) : u|Γ′ = 0} defines the minimum of the
variational problem

inf
u∈H1

Γ′ (Ω
′′)

J0(u),

where,

J0(u) =
1

2

∫

Ω′′
|∇u|2 +

1

s + 1

∫

Ω′′
A0u

s+1 − µ

2

∫

Γ′′
u2.

Similarly, Jε(uε) = infH1(Ω) Jε(u) where

Jε(u) =
1

2

∫

Ω

|∇u|2 +
1

s + 1

∫

Ω

Aεu
s+1 − µ

2

∫

∂Ω

u2.

Thus, by letting u0 ∈ H1(Ω) be the extension by zero of û0 to Ω, we achieve

(2.13) Jε(uε) ≤ Jε(u0) ≤ J0(û0) ε > 0.
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This implies the boundedness of uε in H1(Ω), hence uε ⇀ u0 and so u0 ∈ H1(Ω). It follows
in addition from (2.13) that

mε

∫

Ω′
us+1

ε = O(1) as ε → 0,

with mε → ∞. From this u0 = 0 a. e. in Ω′ which implies that the restriction of u0 to Ω′′

belongs to H1
Γ′(Ω

′′). By taking now limits in (2.13) we obtain

J0(u0) ≤ J(û0).

From the uniqueness of the weak solution to (2.12) we conclude u0 = û0 a.e. in Ω′′. However,
the interior version of the W 2,p estimates in [1] can be used to show that the convergence
uε → u0 actually occurs in C1,η0(Ω′′ ∪ Γ′′), 0 < η0 < 1. Thus u0 ∈ C1,η0(Ω′′ ∪ Γ′′) which in
turn ensures that u0(x) = û0(x) for every x ∈ Ω′′.

Let us finish by showing the uniform convergence of uε to zero in Ω
′
. For δ > 0 small

define Qδ = {x ∈ Ω : dist (x, Ω′) < δ} the δ neighborhood of Ω′ in Ω, Γ′δ = {x ∈ ∂Qδ :
dist (x, Ω′) = δ}. Observe that

−∆uε + muε ≤ muε,

for m > 0 conveniently large, so that we achieve

uε(x) ≤ ũε,δ(x) x ∈ Qδ,

where u = ũε,δ ∈ C1,η0(Qδ) stands for the strong positive solution to the problem

(2.14)





−∆u + mu = muε x ∈ Qδ,

u = uε x ∈ Γ′δ,

∂u

∂ν
= µu x ∈ Γ′1.

Observe now that Γ′δ ⊂ Ω′′ and thus we get uniform estimates of the W 2−1/p,p(Γ′δ) norm of
uε. By employing the W 2,p estimates in [1] we conclude that ũε,δ → ũ0,δ in C1,η0(Qδ), being
ũ0,δ the strong solution to the problem

(2.15)





−∆u + mu = mu0 x ∈ Qδ,

u = û0 x ∈ Γ′δ,

∂u

∂ν
= µu x ∈ Γ′1.

Therefore,

(2.16) u0(x) ≤ ũ0,δ(x) for all x ∈ Qδ.

We are finally proving that ũ0,δ converges uniformly to zero in Ω
′
as δ → 0. In fact, a smooth

family of diffeomorphisms x = Tδ(y), Tδ : Ω
′ → Qδ exists which leave invariant Ω

′ \ Uδ, Uδ

a small δ-varying neighborhood of Γ′δ in Qδ and such that Tδ(Γ
′) = Γ′δ for every δ > 0 (see

[25]). Setting y = Hδ(x) := T−1
δ (x) the inverse diffeomorphism, the “mayorant” problem
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(2.15) is transformed into
(2.17)




−
N∑

k,l=1

〈∇(Hδ)k,∇(Hδ)l〉
∂2v

∂yk∂yl

−
N∑

k=1

∆(Hδ)k

∂v

∂yk

+ mv = mu0(Tδ(y)) y ∈ Ω′,

v = û0(Tδ(y)) y ∈ Γ′,

∂v

∂ν
= µv x ∈ Γ′1.

The unique strong solution to (2.17) is provided by vδ = ũ0,δ ◦ Tδ. Since û0 ∈ W 2,p(Ω′′) ∩
C1,η0(Ω

′′
) we are in possession of uniform bounds in W 2−1/p,p(Γ′) of û0 ◦ Tδ. Therefore, the

W 2,p estimates in [1] once again imply the convergence vδ → v0 in W 2,p(Ω′)∩C1,η0(Ω
′
) where

v0 is the unique solution of the limit problem obtained from (2.17) as δ → 0. Taking into
account that 〈∇(Hδ)k,∇(Hδ)l〉 = δkl and ∆(Hδ)k = 0 at δ = 0 or 1 ≤ k, l ≤ N ([25]) the
limit problem becomes

(2.18)





−∆v + mv = 0 x ∈ Ω′

v = 0 x ∈ Γ′

∂v

∂ν
= µv x ∈ Γ′1.

However, if m is large enough the unique solution of (2.18) is v0 = 0. Therefore and taking
limits in (2.16) as δ → 0 it is obtained that u0 = 0 at every x ∈ Ω′. The uniform character
of the convergence uε → 0 in Ω′ is implicit in the preceding argument. Alternatively, Dini’s
theorem can be employed.

At the present moment Ω′′ has been regarded as a “whole”. The proof of the theorem is
completed with the additional remark that û0 = 0 at every connected piece Ω′′

i of Ω′′ such
that either Ω′′

i ⊂⊂ Ω′ or µ ≤ µ1,i (cf. [17]). ¤
A second result describing the behavior of positive solutions to problem (2.9) when the

weight Aε develops a singularity on the boundary is the following.

Theorem 9. Consider a family Aε ∈ L∞(Ω), ε > 0, which is decreasing in ε and verifies
the condition (2.11) for a certain θ ≥ 1 while u = Uµ,ε stands for the unique positive solution
to (2.9). Then Uµ,ε → 0 uniformly in Ω as ε → 0.

Proof. To simplify, let us define as before uε = Uµ,ε the unique positive solution to (2.9).
Since Aε is decreasing in ε, uε is increasing in ε, and then uε → u0 as ε → 0, where u0 is
a nonnegative function. In addition, such a convergence holds in Lp(Ω) for all p > 1 while
proceeding as in the proof of Theorem 8 it follows that both uε → u0 weakly in H1(Ω) and
in C1,η0(Ω), 0 < η0 < 1. We deduce from (2.9) and (2.11) that

C

∫

Ω

(d(x) + ε)−θ us+1
ε ≤ 2

s + 1

∫

Ω

Aε(x)us+1
ε = µ

∫

∂Ω

u2
ε −

∫

Ω

|∇uε|2 ≤ µ

∫

∂Ω

u2
ε.

We can now pass to the limit as ε → 0, use Fatou’s theorem and obtain

(2.19) C

∫

Ω

d(x)−θup+1
0 ≤ µ

∫

∂Ω

u2
0.

We claim that the convergence of the integral in the right-hand side of (2.19) implies, in view
of θ ≥ 1, that u0 = 0 on ∂Ω. Thus (2.19) and the continuity of u0 readily give u0(x) = 0
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for every x ∈ Ω. We are next showing the uniform convergence to zero in Ω. First, u = uε

satisfies for 0 < ε < ε0,
−∆u + mu ≤ mu,

for a conveniently large m. That is why

uε(x) ≤ ûε(x) for all x ∈ Ω,

where u = ûε is the unique strong (even classical!) solution to the majorant problem

(2.20)




−∆u + mu = muε x ∈ Ω′,

∂u

∂ν
= µu x ∈ ∂Ω.

By arguing as in the proof of Theorem 8 it follows that ûε converges in C1,η0(Ω) to the unique
solution û0 to the limit problem of (2.20), namely




−∆u + mu = 0 x ∈ Ω′,

∂u

∂ν
= µu x ∈ ∂Ω.

Choosing a large m guarantees that û0(x) = 0 for every x ∈ Ω and so uε → 0 uniformly in
Ω.

We finally outline the proof of the claim: observe first that if a nonnegative u lies in say
H1(I), I = (0, 1) the unit interval, and makes finite the integral

∫ ρ

0
x−θu(x) dx for a certain

ρ > 0 then, since u ∈ C[0, 1], u(0) must be necessarily zero provided θ ≥ 1. In the N -
dimensional case above, after a change of variables near the boundary, u0 belongs to H1(Iδ)
where Iδ stands for a uniform one-dimensional interval of length δ > 0 on the normal inner
semiline to ∂Ω, for “almost all normal lines”, the “almost all” being considered with respect
to the N − 1 dimensional measure on ∂Ω. Moreover, an integral exactly as the considered
above must be finite for almost all those normals. Therefore, u0(x) = 0 for almost all x ∈ ∂Ω
and we are done. ¤

Our next step is to consider problem (2.1), when the weight is allowed to be singular on
∂Ω, that is, we study

(2.21)

{
∆v = B(x)vs in Ω,
∂v

∂ν
= µv on ∂Ω,

where the weight B(x) is a continuous, positive function in Ω, and we require an upper
bound for the singularity of the form

(2.22) B(x) ≤ Cd(x)−τ

for some τ < 1 and C > 0 (for its use in Section 4, we have replaced a(x), p, λ by B(x), s, µ).
Then we have the following result.

Theorem 10. Let B be a positive continuous function in Ω which verifies (2.22). Then
problem (2.21) admits a unique positive weak solution Ṽµ ∈ H1(Ω)∩L∞(Ω) for every µ > 0.

Moreover, Ṽµ is increasing in µ and converges as µ → ∞ to the minimal positive solution

Ṽ∞ to

(2.23)

{
∆V = B(x)V s in Ω,
V = ∞ on ∂Ω.
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Proof. Let us first show existence. We truncate the weight B multiplying by a smooth cut-off
function. To this aim, let ψ ∈ C∞(R) such that 0 ≤ ψ ≤ 1, ψ(t) = 0 if t ≤ 1 while ψ(t) = 1
for t ≥ 2, and ψ is increasing. If we denote Bk(x) = ψ(kd(x))B(x), we obtain a family of
increasing, bounded weights such that Bk → B uniformly on compacts of Ω as k →∞. We
consider the truncated problem

(2.24)

{
∆v = Bk(x)vs in Ω,
∂v

∂ν
= µv on ∂Ω,

which has a unique positive weak solution vk for every µ > 0, thanks to Theorem 7. Moreover,
vk is decreasing in k, since vk+1 is a subsolution to problem (2.24) while Mvk is a supersolution
with a large enough M . To be able to pass to the limit, we need a uniform subsolution, to
guarantee that vk is bounded away from zero. Recall that Bk(x) ≤ B(x) ≤ Cd(x)−τ , and
let φ be the unique (positive) solution to the equation

(2.25)

{ −∆φ = Cd(x)−τ in Ω,
φ = 0 on ∂Ω.

We remark that (2.25) has a solution φ ∈ C1,1−τ (Ω) since τ < 1, thanks to Theorem 8.34 in
[21]. We are taking the subsolution as v = ε− εsφ, for small positive ε. We have

∆v = εsCd(x)−τ ≥ εsBk(x) ≥ Bk(x)εs(1− εs−1φ)s = Bk(x)vs,

in Ω, while
∂v

∂ν
= −εs ∂φ

∂ν
≤ µε = µv

on ∂Ω, for small ε. Since there are large supersolutions, we deduce vk ≥ v in Ω. Moreover:
∫

Ω

|∇vk|2 = µ

∫

∂Ω

v2
k −

∫

Ω

Bk(x)vs+1
k ≤ µ

∫

∂Ω

v2
k,

so that vk → v weakly in H1(Ω), strongly in L2(Ω), and v ≥ v. In particular, since for every
ψ ∈ H1(Ω) we have

(2.26)

∫

Ω

∇vk∇ψ − µ

∫

∂Ω

vkψ =

∫

Ω

Bk(x)vs
kψ

and 0 ≤ Bk ≤ B ∈ L1(Ω) (due to τ < 1), the dominated convergence theorem allows us to
pass to the limit in (2.26) and obtain that v is a weak positive solution to (2.21).

To show uniqueness we first observe that every nonnegative weak solution w ∈ H1(Ω)
to (2.21) lies necessarily in L∞(Ω) (see [20]). This in particular implies, in virtue of the
uniqueness of solutions to (2.24) that w ≤ v. If, however, w is nontrivial (and so positive)
since B ∈ L1(Ω), we can argue as in [17] to obtain that w = v. Thus problem (2.21) admits
a unique positive solution.

Finally, the asymptotic behavior of Ṽµ is obtained as in [17] (we refer also to [4] for
existence and uniqueness results on problem (2.23) and related ones). ¤

Another problem that will be necessary in Section 4 is obtained when the weight function
is supported in a subdomain Ω+ of Ω, and different boundary conditions are imposed on
two parts of ∂Ω+. More precisely, we are interested in the case Ω+ = Ω \ Ω0, where Ω0 is
the same as in hypothesis (H) on a(x) and Ω+ might exhibit multiple connected pieces Ω+

i .
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Recalling the notation Γ+ = ∂Ω+ \Γ2 (with Γ2 = ∂Ω0∩Ω) we are dealing with the following
problem, related to (2.1) but with a singular boundary condition

(2.27)





∆w = A(x)wp in Ω+,
w = ∞ on Γ2,

∂w

∂ν
= λw on Γ+.

The function A(x) essentially behaves as a power of the distance d(x) = dist(x, Γ2). Problem
(2.27) for bounded weights was considered in [17] (although no estimates were provided
there). We are also including here for completeness the case of singular weights.

Our result for problem (2.27) is as follows.

Theorem 11. Let A be a continuous positive function in Ω+ ∪ Γ+ such that

C1d(x)τ ≤ A(x) ≤ C2d(x)τ ,

d(x) = dist(x, Γ2), for some positive constants C1, C2 and τ > −2. Then the problem (2.27)
admits a unique positive weak solution wλ. Moreover, there exist positive constants D1, D2

such that

(2.28) D1d(x)−
2+τ
p−1 ≤ wλ(x) ≤ D2d(x)−

2+τ
p−1 x ∈ Ω.

Proof. The proof is an adaptation of that of Theorem 1 in [4]. We may assume τ < 0, since
when τ ≥ 0 the existence result is contained in [17]. We first fix n ∈ N and truncate the
weight A(x) as in the proof of Theorem 10 to obtain a bounded weight Ak(x) and deal with
the family of problems,

(2.29)





∆w = Ak(x)wp in Ω+,
w = n on Γ2,

∂w

∂ν
= λw on Γ+.

Problem (2.29) admits for every k, n ∈ N a unique strong solution wk,n, which is in addition
unique thanks to Lemma 8 in [17]. In fact, w = 0 is a subsolution. To construct large
supersolutions we distinguish two cases. For λ > λ1, λ1 the principal eigenvalue to (1.5)
regarded in Ω+, and a small enough δ, the problem




∆u = Ak(x)up in Ω+
δ ,

u = 0 on Γ2,δ,

∂u

∂ν
= λu on Γ+,

with Ω+
δ = Ω ∪ Γ2 ∪ {x : dist (x, Γ2) < δ}, Γ2,δ = {x ∈ ∂Ω+

δ : dist (x, Γ2) = δ} admits a
unique positive strong solution uλ,δ. To see this it suffices with proceeding as in [17] where an
entirely similar problem is considered. Thus, since uλ,δ is positive on Γ2, w = Muλ,δ defines,
for large M > 0, a supersolution as large as desired. In the second case, where λ ≤ λ1 and
a small enough δ > 0 again, the eigenvalue problem ([17])





∆φ = σφ in Ω+
δ ,

φ = 0 on Γ2,δ,

∂φ

∂ν
= λφ on Γ+,
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admits a unique principal eigenvalue σ = σ1 < 0 with a positive associated eigenfunction
φ1,δ. Being φ1,δ positive on Γ2 it then clear that w = Mφ1,δ defines a large supersolution to
(2.29) modulated by M > 0. Notice in addition that this choice of w also works in the present
case for λ > λ1 since A is positive in Ω (our previous construction covers A nonnegative).

Moreover, since Ak is increasing in k, wk,n is decreasing in k, and it is increasing in n. By
fixing n it follows that wk,n converges in C1,η0(Ω+ ∪ Γ+) ∪W 2,q(Ω+ ∩ {d > δ}) to a strong
solution wn of the equation satisfying the flux condition. To achieve the continuity up to
Γ2 we can now argue as in [4] to construct a local barrier near Γ2. Thus we obtain that wn

defines a strong solution to




∆w = A(x)wp in Ω+,
w = n on Γ2,

∂w

∂ν
= λw on Γ+.

In addition, wn is increasing in n. Since A(x) ≥ A0 > 0 in Ω, it follows that wn is locally
bounded in Ω. Indeed, the upper bound is provided by the minimal solution to the previous
problem with A(x), n replaced by A0,∞, respectively. Thus we can pass to the limit to
obtain that wn → w locally uniformly, where w is a weak solution to (2.27).

Estimates (2.28) are proved exactly as in Theorem 3.1 in [4] (we remark that the estimates
are local in nature). Finally, the uniqueness is a consequence of the estimates (2.28) by
proceeding as in Theorem 3.4 of [4]. ¤

We finally turn to consider the perhaps most interesting of our auxiliary problems. In
this case, the weight is singular on Γ2 (behaving essentially as a power of the distance
d(x) = dist(x, Γ2)) and a homogeneous Dirichlet condition is imposed there. Such boundary
condition makes that the problem can always be solved independently of the singularity of
the weight, in contrast for example with Theorem 11. Imitating our framework described
in hypothesis (H) we are considering a bounded smooth domain Ω+ (in future applications
such domain will be a connected piece of {a > 0}) whose boundary splits off in two separate
groups Γ2, Γ+, of closed N − 1 dimensional manifolds. Our next problem will be,

(2.30)





∆z = B(x)zs in Ω+,

z = 0 on Γ2,

∂z

∂ν
= µz on Γ+,

with B positive and continuous in Ω+∪Γ+ but singular on Γ2. As mentioned above, the case
where B is continuous up to Γ2 can be treated as in [17], to show that there exists a unique
weak solution provided µ > µ+, where µ = µ+ is the principal eigenvalue of the problem





∆φ = 0 in Ω+,

φ = 0 on Γ2,

∂φ

∂ν
= µφ on Γ+.

When B is singular, the existence of solutions is not at all straightforward. We remark that
the hard task in this case is to obtain estimate near Γ2 for the (unique) solution. These
estimates will be important later on.
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Theorem 12. Let B be continuous and positive in Ω+∪Γ+, and assume there exist positive
constants C1, C2 and τ such that

C1d(x)−τ ≤ B(x) ≤ C2d(x)−τ x ∈ Ω+,

where d(x) = dist(x, Γ2). Then problem (2.30) can only have positive solutions if µ > µ+

and in fact such solutions exist for each µ > µ+. Furthermore, provided τ 6= s + 1, positive
weak solutions are unique in that range. More importantly, if z = zµ stands for the solution
to (2.30), then there exist positive constants D1, D2 such that

(2.31) D1d(x)θ ≤ zµ(x) ≤ D2d(x)θ

in Ω, where θ = max{1, (τ − 2)/(s− 1)}.
Remark 4. A close analysis of symmetric cases shows that estimates (2.31) fail when τ = s+1
and in fact zµ decays near Γ2 as h(d)d with h involving a negative power of log d−1. However,
since this precise information is not to be used in this paper we are not sharpening the
estimates in this case.

Proof of Theorem 12. Let us show that no positive solutions exist when µ ≤ µ+. Assume
there exists a positive weak solution z to (2.30). Let Ω+

n = {x ∈ Ω+ : d(x) > 1/n},
d(x) = dist(x, Γ2), and µ+

n , φn the principal eigenvalue and corresponding eigenfunction in
Ωn of 




∆φ = 0 in Ω+
n ,

φ = 0 on Γ2,n,

∂φ

∂ν
= µφ on Γ+,

where Γ2,n = ∂Ω+
n \ Γ+. It is not hard to show that µ+

n → µ+, while φn → φ uniformly on
compacts of Ω+∪Γ+ (notice that only the Dirichlet boundary condition is perturbed). If we
multiply (2.30) by φn and integrate in Ω+

n we get,

(2.32)

∫

Ω+
n

B(x)zsφn = (µ− µ+
n )

∫

Γ+

zφn −
∫

Γ2,n

∂φn

∂ν
z.

The last term goes to zero as n → ∞. Indeed, notice that estimates (2.31) – which will be

proved later on – imply that z ∈ C(Ω
+
) and z = 0 on Γ2 in the usual pointwise sense. Thus,

given a small ε > 0 and taking a large enough n we can assume that 0 < z ≤ ε on Γ2,n.
Thus, ∣∣∣∣∣

∫

Γ2,n

∂φn

∂ν
z

∣∣∣∣∣ ≤ −ε

∫

Γ2,n

∂φn

∂ν
= ε

∫

Γ+

∂φn

∂ν
= εµ+

n

∫

Γ+

φn = O(ε),

as ε → 0+. Since ε is arbitrary, we can pass to the limit in (2.32) by means of the dominated
convergence theorem to arrive at∫

Ω+

B(x)zsφ = (µ− µ+)

∫

Γ+

zφ,

and we deduce µ > µ+, since z and φ are strictly positive on Γ+.
Now assume µ > µ+, and let us show that there exists a positive solution to (2.30). Since

B(x) is bounded in Ω+
n and µ > µ+

n for a sufficiently large n, it follows that (2.30) has a
solution in Ω+

n (by replacing Ω+ by Ω+
n and Γ2 by Γ2,n). This solution is in addition unique,

thanks to Lemma 8 in [17]. Let us denote it by zn. We have zn ≤ zn+1, since zn+1 is a
supersolution to the problem in Ω+

n , while εzn is a subsolution for small positive ε. On the
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other hand, it is possible to obtain a uniform bound by taking MZµ, where Zµ is the solution
to (2.30) with B ≡ 1 (notice that Zµ > 0 on Γ2,n) where M is large and independent of n.
We deduce then that zn ≤ MZµ. It is now standard to conclude that zn → z in C1(Ω+∪Γ+),
where z is a positive weak solution to (2.30). Notice that z = 0 on Γ2, since z ≤ MZµ and
Zµ = 0 on Γ2.

Let us now prove that every positive solution to (2.30) satisfies the estimates (2.31).
Notice first that, thanks to Hopf’s maximum principle, Zµ(x) ≤ Cd(x). Thus, every positive
solution z verifies z ≤ Cd. Now we use an argument from [4]. Take x near Γ2, and introduce
the function

w(y) = d(x)−σz(x + d(x)y)

with σ = (τ−2)/(s−1) and y ∈ B1/2(0). We have ∆w ≥ Cws in B1/2(0), and hence w ≤ W ,
the unique solution to ∆W = CW s in B1/2 with W|∂B1/2

= ∞. Setting y = 0, we arrive at

z(x) = w(0)d(x)σ ≤ W (0)d(x)σ. Thus we have shown

z(x) ≤ Cd(x)θ,

where θ = max{1, (τ − 2)/(s− 1)}.
The lower estimate is more delicate. If σ > 1, it is easily seen that u = εd(x)σ is a

subsolution in a neighborhood of Γ2 of the form 0 < d < δ provided ε and δ are small
enough. Indeed,

∆u−B(x)us ≥ εσ(σ − 1)dσ−2 + εσdσ−1∆d− Cεsd−τ+sσ

= εdσ−2(σ(σ − 1) + σd∆d− Cεs−1),

and this quantity can be made positive when σ > 1, by taking ε and δ adequately small.
Now let z be a positive solution to (2.30). Then w = z clearly satisfies (d = dist(x, Γ2))




∆w = B(x)ws in 0 < d < δ,

w = 0 on d = 0,

w = z on d = δ.

By diminishing ε if necessary, we can achieve u < z on d = δ. This implies u ≤ z in
0 < d < δ. In fact, let D = {u > z} ∩ {0 < d < δ}, and assume D 6= ∅. In D we have
∆u > ∆z, and by the maximum principle, since u = z on ∂D, we arrive at u ≤ z in D,
which is impossible. Hence, D = ∅, that is, z ≥ u, so that

z(x) ≥ Cd(x)σ,

provided σ > 1.
We are now considering the case σ < 1. For x0 ∈ Γ2, take an annulus A = {x : R1 <

|x − x̃| < R2}, tangent to Γ2 at x0, and such that A ⊂ Ω+. With no loss of generality, we
can assume x̃ = 0. Consider the problem

(2.33)





∆w = C(R2 − |x|)−τws in A,

w = ε on |x| = R1,

w = 0 on |x| = R2,

where C > 0 and ε is sufficiently small. Problem (2.33) has at least a radial solution w, which
can be constructed as before, by approximating A by sub-annulus which avoid the boundary
|x| = R2. Moreover, it follows again that z ≥ w. Notice in addition that w ≤ C(R2 − r).
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Let us obtain a lower estimate for w near |x| = R2. To this aim, we perform in the radial
version of (2.33) the change of variables:

y =





1

N − 2

(
1

rN−2
− 1

RN−2
2

)
N ≥ 3,

log

(
R2

r

)
N = 2,

where r = |x|, and obtain, in the new variable y:{
w′′ = b(y)ws, y > 0,
w(0) = 0,

where b(y) is continuous in y > 0 and verifies C1y
−τ ≤ b(y) ≤ C2y

−τ near y = 0. Also,
w(y) ≤ Cy, and we have to prove that

(2.34) lim inf
y→0

w(y)

y
> 0.

Notice first of all that w is convex. Thus, w′ is increasing and we deduce that necessarily
w′ ≥ 0 for y > 0 small, since w(0) = 0 and w > 0. Moreover, w′ has a limit at y = 0.
Assume for a contradiction that (2.34) does not hold, so that limy→0 w′(y) = 0.

Choose y0 > 0 and integrate the equation between y0 and y; we obtain:

w(y) = w(y0) + w′(y0)(y − y0) +

∫ y

y0

∫ t

y0

b(r)w(r)sdrdt.

Let wδ = sup[0,δ] w(y)/y. We already know that wδ ≤ C for sufficiently small δ. Hence:

w(y) ≤ w(y0) + w′(y0)(y − y0) + Cws
δ((y

−τ+s+2 − y−τ+s+2
0 )− y−τ+s+1

0 (y − y0)),

where C is a positive constant, whose exact value is irrelevant. Now observe that −τ +s+1 >
0 – since σ < 1 – so that, letting y0 → 0 and dividing by y we obtain,

w(y)

y
≤ Cws

δy
−τ+s+1.

Taking supremums and dividing by wδ, we arrive at 1 ≤ Cws−1
δ δ−τ+s+1, which is a clear

contradiction when δ → 0. Thus (2.34) holds.
Going back to the original variables, we have shown w(r) ≥ C(R2 − r), so that

z(x) ≥ Cd(x).

when σ < 1, which concludes the proof of (2.31).
Finally we prove uniqueness. Let z, w be positive solutions to (2.30). Thanks to (2.31),

it follows that z/w, w/z are bounded functions. Moreover, B(x)zs+1 and B(x)ws+1 are
integrable. Hence, we can proceed as in [17] (see also [3]) to obtain uniqueness. ¤

3. Existence and uniqueness

This section is devoted to the proof of Theorem 1. We begin by showing that positive
weak solutions exist only when 0 < λ < λ1 ≤ ∞ (see Section 1 for the definition of λ1)
and µ > 0. Let us remark that, since p, s > 1, the strong maximum principle implies that
nonnegative solutions (u, v) to (1.1)–(1.2) verify u > 0, v > 0 in Ω unless u ≡ 0 or v ≡ 0 in
Ω. We also mention in passing that when λ = 0 (respectively µ = 0) there exist semitrivial
solutions (u, v) = (k, 0), k ∈ R (resp. (u, v) = (0, k′), k′ ∈ R).
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Lemma 13. Problem (1.1)–(1.2) can only have positive solutions when 0 < λ < λ1 ≤ ∞,
µ > 0.

Proof. Assume there exists a positive solution (u, v) to (1.1)–(1.2). Integrating the first
equation in (1.1) in Ω we get, ∫

Ω

a(x)upvq = λ

∫

∂Ω

u,

so that if λ ≤ 0 then u ≡ 0 or v ≡ 0 by the strong maximum principle. This contradicts the
positiveness of both u and v. When µ ≤ 0 we proceed similarly. Hence both λ, µ must be
positive.

Let us see now that 0 < λ < λ1 is also necessary. Denote by φ the positive normal-
ized eigenfunction associated to λ1. Multiplying the first equation in (1.1) by φ, and then
integrating by parts in Ω0 we obtain,

0 =

∫

Ω0

φ∆u = (λ− λ1)

∫

Γ1

uφ−
∫

Γ2

u
∂φ

∂ν
.

Since u > 0 in Ω, φ > 0 on Γ1 and ∂φ/∂ν < 0 on Γ2, we obtain λ < λ1. ¤
Now we show that when 0 < λ < λ1, µ > 0, problem (1.1)–(1.2) has at least a positive

solution (u, v). We use the notations introduced in Section 2.

Lemma 14. Assume 0 < λ < λ1 ≤ ∞, µ > 0. Then problem (1.1)–(1.2) admits a positive
weak solution (u, v).

Proof. We are obtaining sub and supersolutions by means of the solutions Uλ, Vµ of the
auxiliary problems (2.1) and (2.6), respectively. By choosing a small ε and a large M ,
the pair (εUλ,MVµ) defines a subsolution. Notice indeed that the boundary conditions are
automatic, while {

∆(εUλ) = εa(x)Up
λ ≥ a(x)εpUp

λM qV q
µ

∆(MVµ) = Mb(x)V s
µ ≤ b(x)εrU r

λM sV s
µ

holds provided

(3.1) εp−1M q sup
Ω

V q
µ ≤ 1, εrM s−1 inf

Ω
U r

λ ≥ 1.

By setting M = ε−γ, (3.1) can be achieved for small ε if γ is chosen to satisfy p− 1− γq >
0 > r − γ(s− 1), that is,

(3.2)
r

s− 1
< γ <

p− 1

q

which is of course possible since (p−1)(s−1)− qr > 0. A large supersolution is constructed
similarly. Hence, for 0 < λ < λ1, µ > 0, problem (1.1)–(1.2) has a positive solution. ¤

We now turn to consider the question of uniqueness of positive solutions. Although an
argument similar to the one employed later on in Section 4 could be used, we prefer to obtain
it by means of a sweeping argument.

Lemma 15. Assume 0 < λ < λ1 ≤ ∞ and µ > 0 then problem (1.1)–(1.2) admits a unique
positive solution (uλ,µ, vλ,µ). Moreover, (uλ,µ, vλ,µ) is an asymptotically stable equilibrium for
the parabolic system associated to (1.1)-(1.2) which is globally attractive among nonnegative
solutions.
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Proof. Let (u1, v1), (u2, v2) be positive solutions to (1.1)–(1.2). If t ≥ 1 and exponent γ > 0
is selected as in (3.2), (tu1, t

−γv1) is a supersolution. Indeed:
{

∆(tu1) = ta(x)up
1v

q
1 ≤ a(x)tpup

1t
−γqvq

1

∆(t−γv1) = t−γb(x)ur
1v

s
1 ≥ b(x)trur

1t
−γsvs

1

holds provided tp−1−γq ≥ 1, tr−γ(s−1) ≤ 1, that is, when t ≥ 1, while the boundary conditions
remain unchanged. We now use a sweeping argument. If t is large enough, we have tu1 > u2,
t−γv1 < v2. Set t0 = inf{t > 1 : tu1 > u2, t−γv1 < v2}. We claim that t0 = 1. To prove the
claim, choose M > 0 such that the function f(τ) = a(x)τ pvq

2 −Mτ is decreasing (with fixed
x) in the interval [inf u2, sup(t0u1)]. Then

∆(t0u1)−M(t0u1) ≤ a(x)(t0u1)
p(t−γ

0 v1)
q −M(t0u1) ≤ a(x)(t0u1)

pvq
2 −M(t0u1)

≤ a(x)up
2v

q
2 −Mu2 = ∆u2 −Mu2.

By the strong maximum principle and Hopf’s principle, we deduce that either t0u1 > u2 in
Ω or t0u1 ≡ u2. Assume t0u1 > u2. An argument like the one we have just used implies
t−γ
0 v1 < v2 or t−γ

0 v1 ≡ v2. Let us see that t−γ
0 v1 < v2. As a matter of fact, if t−γ

0 v1 ≡ v2, then
we would obtain t−γ

0 ∆v1 = ∆v2, that is t−γ
0 ur

1v
s
1 = ur

2v
s
2, and hence

u1 = t
− γ(s−1)

r
0 u2 ≤ t−1

0 u2,

which is not possible. Thus t0u1 > u2, t−γ
0 v1 < v2 in Ω, contradicting the minimality of t0.

The unique possible option is t0u1 ≡ u2, which leads to t−γ
0 v1 ≡ v2. Substituting in the

equation we arrive at t0 = 1. Hence u1 ≥ u2, v1 ≤ v2, and the symmetric argument proves
u1 = u2, v1 = v2. Uniqueness is proved.

The asymptotic stability of (uλ,µ, vλ,µ) comes from the fact that it is the unique solution
to (1.1)-(1.2) located between a sub and a supersolution (cf. [27]). Regarding the global
attractiveness of (uλ,µ, vλ,µ), it can be shown that every nontrivial and nonnegative solution to
the parabolic problem becomes, immediately after the initial time, positive and sufficiently
smooth. Thus, it enters an interval bounded by a sub and a supersolution and, by the
preceding assertion, asymptotically converges to (uλ,µ, vλ,µ) (cf. [5], [24] and Theorem 1 in
[17]). This concludes the proof. ¤

4. Dependence on λ and µ

In this final section we prove Theorems 2, 3, 4, 5 and 6 that describe the dependence of
the solution (uλ,µ, vλ,µ) to (1.1)–(1.2) on the parameters λ and µ.

Proof of Theorem 2 (i). Let µ > 0 be fixed. Then if λ < λ′, (uλ,µ, vλ,µ) is a subsolution to
(1.1)–(1.2) with λ′, µ. Since we have arbitrarily large supersolutions, we arrive at uλ,µ < uλ′,µ,
vλ,µ > vλ′,µ. Hence, uλ,µ is increasing in λ and vλ,µ decreasing in λ for fixed µ. Similarly, for
fixed λ, uλ,µ is decreasing in µ and vλ,µ increasing in µ. ¤
Proof of Theorem 2 (ii) and (iii). Let us obtain some estimates for the solutions which will
turn to be useful for small λ or µ. To this aim, we are selecting “optimal” sub and super-
solutions, and take advantage of the uniqueness. The best subsolutions can be achieved by
imposing the equality in (3.1). This gives for ε and M :

ε =

(
infΩ U r

λ

supΩ V s−1
µ

) q
δ

, M =

(
supΩ V q

µ

infΩ Up−1
λ

) r
δ

.
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Since there exist arbitrarily large supersolutions, we arrive at

uλ,µ ≥
(

infΩ U r
λ

supΩ V s−1
µ

) q
δ

Uλ, vλ,µ ≤
(

supΩ V q
µ

infΩ Up−1
λ

) r
δ

Vµ.

With a similar argument, we arrive at a lower bound for vλ,µ and an upper one for uλ,µ.
Thus:

(4.1)

(
infΩ U r

λ

supΩ V s−1
µ

) q
δ

Uλ ≤ uλ,µ ≤
(

supΩ U r
λ

infΩ V s−1
µ

) q
δ

Uλ

(
infΩ V q

µ

supΩ Up−1
λ

) r
δ

Vµ ≤ vλ,µ ≤
(

supΩ V q
µ

infΩ Up−1
λ

) r
δ

Vµ.

Several conclusions can be drawn at once from (4.1). Let µ > 0 be fixed. Then

uλ,µ → 0, vλ,µ → +∞
uniformly in Ω as λ → 0+, thanks to Theorem 7, since Uλ → 0 uniformly in Ω as λ → 0+.
In the same way, if λ > 0 is kept fixed while µ → 0:

uλ,µ → +∞, vλ,µ → 0

uniformly in Ω.
On the other hand, if λ, µ → 0, we obtain, thanks to estimates (2.2) in Theorem 7:

uλ,µ ∼ (a∗)−
s−1

δ (b∗)
q
δ

(
λs−1

µq

) 1
δ

, vλ,µ ∼ (b∗)−
p−1

δ (a∗)
r
δ

(
µp−1

λr

) 1
δ

,

with a∗ =
1

|∂Ω|
∫
Ω

a, b∗ =
1

|∂Ω|
∫

Ω
b. This finishes the proof. ¤

Proof of Theorem 3. It follows easily from estimates (1.6) and the proof of Theorem 2. ¤
We are next elucidating the asymptotic behavior of (uλ,µ, vλ,µ) as λ → λ1, for fixed µ. We

recall that λ1 = ∞ implies Ω0 ⊂⊂ Ω, and thus a > 0 on ∂Ω.

Proofs of Theorem 4 (i) and first assertion in (ii). As µ is going to be kept fixed here we use
the shorter (uλ, vλ) instead of (uλ,µ, vλ,µ).

In case i), λ1 < ∞, 0 < µ ≤ µ+
i for all 1 ≤ i ≤ M . We know from Theorem 7 that

Uλ → +∞ uniformly in Ω0. Thanks to (4.1), we obtain that uλ → +∞ uniformly in Ω0.
Let us see next that vλ → 0 uniformly on Ω. Notice that uλ(x)r ≥ (infΩ0 uλ)

rχΩ0
+ c0χΩ+ ,

for some c0 > 0, and denote

Aλ(x) = b(x)

(
(inf

Ω0

uλ)
rχΩ0

+ c0χΩ+

)
,

so that Aλ(x) → ∞ uniformly in Ω0 while it keeps uniformly bounded in Ω+ as λ → λ1−.
It follows that vλ ≤ Vλ, the unique solution to




∆V = Aλ(x)V s in Ω,

∂V

∂ν
= µV on ∂Ω.

According to Theorem 8 we obtain that Vλ → 0 uniformly in Ω0 as λ → λ1−, and hence
vλ → 0 uniformly in Ω0. Furthermore, it also follows from that result that vλ → 0 uniformly
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in Ω+
i for each component Ω+

i of Ω+ such that λ ≤ µ+
i . In case i) this means that vλ → 0

uniformly in Ω as λ → λ1−.
Let us show now that uλ → +∞ uniformly in Ω. Take ε > 0 as small as desired. There

exists λε, 0 < λ∗ < λε < λ1 (λ∗ not depending on ε) such that for λ ∈ (λε, λ1), we have
vλ ≤ ε in Ω. Thus

∆uλ ≤ εqa(x)up
λ in Ω,

and we deduce that
uλ ≥ ε−

q
p−1 Uλ ≥ ε−

q
p−1 Uλ∗ ,

which implies that uλ → +∞ uniformly in Ω.
As for the first part of ii) let Ω+

i be a connected piece with µ ≤ µ+
i < ∞. We already

know that uλ →∞ on Γ2,i while vλ → 0 uniformly in Ω
+

i as λ → λ1−. For ε > 0 given and
λ ≥ λε, u = uλ defines a supersolution to




∆u = aεqup x ∈ Ω+
i ,

u = uλ x ∈ Γ2,i,

∂u

∂ν
= λu x ∈ Γ+

i .

Taking limits as λ → λ1− we obtain that

lim
λ→λ1

uλ ≥ ε−q/(p−1)v∞,

u = v∞ being the minimal solution to (see [17] for a discussion of this and other related
problems) 




∆u = aup x ∈ Ω+
i ,

u = ∞ x ∈ Γ2,i,

∂u

∂ν
= λu x ∈ Γ+

i .

The desired conclusion follows from the precedent estimate by letting ε → 0. The proof in
the case Ω+

i ⊂⊂ Ω is identical. ¤
Proof of Theorem 4 (ii) completed. It only remains to show that (uλ,µ, vλ,µ) converges to a
finite profile in Ω+

i as λ → λ1 in every connected piece Ω+
i of Ω+ with associated µ+

i smaller
than µ. To abbreviate we write (uλ, vλ) instead (uλ,µ, vλ,µ).

It is enough to find a convenient supersolution in Ω+
i . This can be done with the aid of

the auxiliary problems (2.27) and (2.30) which were analyzed in Section 2. Indeed, once the
weights A(x), B(x) are properly chosen, there exists a supersolution of the form (twλ1 , t

−γzµ),
where γ verifies (3.2), t > 0 is large enough and wλ1 , zµ stand for the solutions to (2.27) with
λ = λ1 and (2.30), respectively, now regarded in Ω+

i and boundary conditions in Γ2,i and
Γ+

i . Such solutions are provided by Theorems 11 and 12 while condition µ > µ+
i is required

for the existence of zµ.
To find A(x) and B(x) first notice that the pair (twλ1 , t

−γzµ) is a supersolution to (1.1)
in Ω+

i provided

A(x) ≤ a(x)tp−1−γqzq
µ B(x) ≥ b(x)tr−γ(s−1)wr

λ1

in Ω+
i . Thanks to the choice of γ and property (1.7) on a(x), it is enough to have for some

positive constant C

(4.2) A(x) ≤ Cd(x)σzq
µ, CB(x) ≥ wr

λ1
,
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where d(x) = dist(x, Γ2). Let us now choose B(x) = d(x)−τ , for some τ > (s + 1) > 2 to be
found. Then, according to Theorem 12, the solution zµ verifies

C1d(x)θ ≤ zµ(x) ≤ C2d(x)θ

where θ = (τ − 2)/(s − 1) > 1. We now set A(x) = d(x)σzq
µ, so that the first inequality in

(4.2) holds for C > 1. To verify the second inequality it suffices with seeing that

wλ1(x) ≤ Cd(x)−
τ
r .

Since wλ1(x) ≤ Cd(x)−β, where β = (σ + 2 + qθ)/(p− 1), this reduces to have β ≤ τ/r, that
is

δ

s− 1
τ ≥ (σ + 2)r − 2

qr

s− 1
,

which can always be achieved by taking τ large enough. Thus (twλ1 , t
−γzµ) is a supersolution

to (1.1) in Ω+
i , provided that t > 0 is large enough.

Now notice that for our solution uλ < ∞ while vλ > 0 on Γ2,i, so the boundary conditions
are coherent with the chosen supersolution, while the corresponding ones in Γ+

i are exactly
verified. Thus uλ < twλ1 , vλ > t−γzµ. This gives local interior bounds for uλ while vλ

is uniformly bounded and remains bounded away from zero in Ω+
i . It is then standard to

conclude that (uλ, vλ) → (u∞, v∞) in C1,η0(Ω+
i ), where (u∞, v∞) stands here for a positive

weak solution to (1.1) in Ω+. Finally, from the analysis in the proof of part i) and Theorem
8 it follows that (uλ, vλ) → (∞, 0) uniformly in Γ2, in particular in Γ2,i. This means that
(u∞, v∞) defines a positive weak solution to the boundary value problem (1.8). ¤
Proof of Theorem 4 (iii). In the present situation, λ1 = ∞ and 0 < r < (p− 1)/2. To show
that the solution (uλ, vλ) = (uλ,µ, vλ,µ) converges to a finite profile, it suffices again with

finding a large supersolution. We are looking for it in the form (tU∞, t−γṼµ), t > 1, where
U∞ is the unique solution to

(4.3)

{
∆u = a(x)up in Ω,
u = ∞ on ∂Ω,

and Ṽµ is to be chosen. Notice that a > 0 on ∂Ω, and hence U∞ is unique and verifies in

particular U∞(x) ≤ Cd(x)−
2

p−1 , d(x) = dist(x, ∂Ω), for some positive constant C (see for
instance [4]). This implies that B(x) = b(x)U r

∞ verifies (2.22), with τ = 2r/(p − 1) < 1.
Thus, thanks to Theorem 10, there exists a unique positive solution Ṽµ to (2.21). To have

that (tU∞, t−γṼµ) is a supersolution, we need

1 ≤ tp−1−γqṼ q
µ , 1 ≥ tr−γ(s−1),

which is true for large t if γ is chosen to satisfy (3.2). Hence, thanks to uniqueness, we have
for λ ≥ λ∗:

uλ∗ ≤ uλ ≤ tU∞, t−γṼµ ≤ vλ ≤ vλ∗ .

It is then standard to conclude that uλ → u∞, vλ → v∞ in C1,η0(Ω), where (u∞, v∞) verifies
(1.1) in the strong sense.

On the other hand, we deduce from (4.1) and Theorem 7 that u∞ = ∞ on ∂Ω. We now
need to analyze the boundary condition for v∞. Indeed, we have from (1.1):

∫

Ω

|∇vλ|2 = µ

∫

∂Ω

v2
λ −

∫

Ω

b(x)ur
λv

s+1
λ ≤ µ

∫

∂Ω

v2
λ,
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so that vλ → v∞ weakly in H1(Ω) and strongly in L2(∂Ω). Thanks to the weak formulation
of (1.1):

(4.4)

∫

Ω

∇vλ∇ψ − µ

∫

∂Ω

vλψ = −
∫

Ω

b(x)ur
λv

s
λψ,

for every ψ ∈ H1(Ω). Since ur
λ ≤ trU r

∞ ≤ Cd(x)−τ ∈ L1(Ω), we can pass to the limit in (4.4)
to deduce that v∞ satisfies the boundary condition

∂v∞
∂ν

= µv∞

in the weak sense.
To summarize, we have proved that (uλ, vλ) = (uλ,µ, vλ,µ) converges to (u∞, v∞), which is

a weak solution to

(4.5)





∆u = a(x)upvq in Ω, u = ∞ on ∂Ω,

∆v = b(x)urvs in Ω,
∂v

∂ν
= µv on ∂Ω.

We now claim to finish the proof that (4.5) has a unique positive solution. To this aim, we
adapt the argument of Lemma 10 in [16]. Let (u1, v1), (u2, v2) be positive solutions to (4.5).
Since vi > 0 in Ω, it follows that at every x0 ∈ ∂Ω

(4.6) ui(x) ∼ (a(x0)vi(x0)
q)−

1
p−1 d(x)−α

as x → x0 ∈ ∂Ω, where α = 2/(p− 1) (cf. for instance [14]). Now set

w =
u1

u2

, z =
v1

v2

.

It is not hard to see that z verifies:

(4.7)





∆z + 2
∇v2

v2

∇z + b(1− wrzs−1)ur
2v

s−1
2 z = 0 in Ω,

∂z

∂ν
= 0 on ∂Ω,

and, thanks to (4.6) we have w = z−
q

p−1 on ∂Ω.
Assume k = sup z > 1, and let x0 ∈ Ω be a point where the maximum of z is achieved.

We claim that we can always assume that x0 ∈ Ω. For if we assume x0 ∈ ∂Ω, since

1− wrzs−1 = 1− ks−1− qr
p−1 < 0 in x0, we deduce that the coefficient of z in (4.7) is negative

in a neighborhood of x0, and from Hopf’s principle, z is constant in a neighborhood of x0.
Thus we will assume x0 ∈ Ω. Then ∇z(x0) = 0, ∆z(x0) ≤ 0. From equation (4.7) we

obtain w(x0) ≤ k−
s−1

r .

We now claim that w ≥ k−
q

p−1 in Ω. To show this, we consider the set Ω′ = {w < k−
q

p−1},
and assume Ω′ 6= ∅. Since w = z−

q
p−1 ≥ k−

q
p−1 on ∂Ω, we conclude w = k−

q
p−1 on ∂Ω′. In

addition, w satisfies

∆w + 2
∇u2

u2

∇w = a(zqwp−1 − 1)up−1
2 vq

2w ≤ 0

in Ω′. From the maximum principle, w > k−
q

p−1 in Ω′, which is a clear contradiction. Hence

Ω′ = ∅, that is, w ≥ k−
q

p−1 in Ω. Particularizing at x0 we arrive at k−
q

p−1 ≤ k−
s−1

r , which is
not possible since k > 1 and δ = (p− 1)(s− 1)− qr > 0.
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In conclusion, k ≤ 1, that is v1 ≤ v2. The symmetric argument shows v1 = v2 and hence
u1 = u2. This proves uniqueness. ¤

Remark 5. Recovering our original notation and putting u∞ = u∞,µ, v∞ = v∞,µ it follows
that

(4.8) v∞,µ ≥ CṼµ

in Ω, for a constant that does not depend on µ for large µ, where Ṽµ is the unique solution
to (2.21) with B(x) = d(x)−αr and α = 2/(p − 1). Indeed, notice that v∞,µ is increasing
in µ, and thus v∞,µ ≥ v∞,µ0 when µ ≥ µ0. We deduce then that ∆u∞,µ ≥ Cup

∞,µ for some
positive constant C, and hence u∞,µ ≤ CU∞, where U∞ is the unique solution to (2.3) with
a(x) = 1. Thus ∆v∞,µ ≤ CU r

∞vs
∞,µ ≤ Cd(x)−αrvs

∞,µ, and this implies (4.8).

Proof of Theorem 4 (iv). We have again λ1 = ∞ but in this occasion r ≥ (p − 1)/2. We
will show that vλ = vλ,µ → 0 uniformly in Ω, and then it will follow as in the proof of
Theorem 4 (i) that uλ = uλ,µ → +∞ uniformly in Ω. From the first equation in (1.1) we
have ∆uλ ≤ (supΩ vλ)

qa(x)up
λ in Ω, which implies

uλ ≥ (sup
Ω

vλ)
− q

p−1 Uλ ≥ C(sup
Ω

vλ)
− q

p−1

(
d(x) +

α

λ

)−α

,

in Ω, thanks to Theorem 7, where α = 2/(p − 1). It follows from the second equation in
(1.1) that

∆vλ ≥ C(sup
Ω

vλ)
− qr

p−1

(
d(x) +

α

λ

)−αr

b(x)vs
λ.

Thus vλ ≤ C(supΩ vλ)
qr

(p−1)(s−1) ṽλ, where v = ṽλ is the unique positive solution to

(4.9)





∆v = b(x)
(
d(x) + α

λ

)−αr
vs in Ω,

∂v

∂ν
= µv on ∂Ω,

given by Theorem 7. We conclude

(4.10) (sup
Ω

vλ)
1− qr

(p−1)(s−1) ≤ C sup
Ω

ṽλ,

and thanks to Theorem 9 we obtain ṽλ → 0 uniformly in Ω as λ → +∞. By (4.10), we have
vλ = vλ,µ → 0 uniformly in Ω, as we wanted to show. ¤

We finally prove Theorem 5, that is, the asymptotic behavior of (uλ,µ, vλ,µ) when both λ
and µ go to infinity.

Proof of Theorem 5 (i). Fix µ0 > 0. For µ ≥ µ0, we have vλ,µ ≥ vλ,µ0 , since vλ,µ is increasing
in µ. Thanks to Theorem 4 (iii), vλ,µ0 converges to a finite profile v∞,µ0 as λ → ∞ (recall
that r < (p− 1)/2). This shows that vλ,µ is bounded from below, and hence uλ,µ is bounded
from above in compacts of Ω. A similar reasoning using q < (s − 1)/2 shows that uλ,µ is
bounded from below and vλ,µ bounded from above in compacts of Ω. Thus it is standard to
conclude that for every pair of sequences λn, µn →∞, the corresponding solutions, denoted
(un, vn) for the sake of brevity, converge uniformly on compacts of Ω to a pair (u∞, v∞),
which will be a weak solution of (1.1). We claim that u∞ = v∞ = ∞ on ∂Ω.
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Let (u∞,µ0 , v∞,µ0) be the unique solution to (4.5) with µ = µ0. Since un ≤ uλn,µ0 , vn ≥
vλn,µ0 , we obtain, letting n →∞,

u∞ ≤ u∞,µ0 , v∞ ≥ v∞,µ0 .

We now use the inequality (4.8) in Remark 5 to deduce that v∞ ≥ CṼµ0 , where C does not

depend on µ0. Letting µ0 → ∞ and using Theorem 10, we conclude that v∞ ≥ Ṽ∞, where
Ṽ∞ is the unique solution to (2.23) with B(x) = d(x)−αr, d(x) = dist(x, ∂Ω). This shows
that v∞ = ∞ on ∂Ω, and u∞ = ∞ on ∂Ω is proved similarly. Thus (u∞, v∞) is the unique
solution to the system {

∆u = upvq in Ω, u = ∞ on ∂Ω,
∆v = urvs in Ω, v = ∞ on ∂Ω,

(1.9)

(cf. [16] for the proof of uniqueness). Since the limit is the same for every pair of sequences
λn, µn →∞, we have shown that (uλ,µ, vλ,µ) converges to the unique solution to (1.9). ¤
Proof of Theorem 5 (ii). We are next showing that in the range r < p − 1, q < s − 1 (of
course assuming r ≥ (p − 1)/2 or q ≥ (s − 1)/2, to be out of part (i)) the solutions also
converge to a finite profile provided that λ/µ, µ/λ are both bounded.

The key is to introduce the numbers

α1 =
2(s− 1− q)

δ
, β1 =

2(p− 1− r)

δ

and set p1 = 1 + 2/α1, s1 = 1 + 2/β1. Observe that α1, β1 > 0 and hence p1, s1 > 1. Let
z = z̃λ, w = w̃µ be the unique solutions to the problems

(4.11)





∆z = zp1 in Ω,

∂z

∂ν
= λz on ∂Ω,

and

(4.12)





∆w = ws1 in Ω,

∂w

∂ν
= µw on ∂Ω,

respectively. We look for a supersolution of the form (tw, t−γz), with a large enough t and
γ verifying (3.2). Thus we need to have

tp−1−γqzp−p1wq ≥ 1, tr−γ(s−1)zrws−s1 ≤ 1,

which in turn will hold for large t if the functions (z̃λ)
p−p1(w̃µ)q, (z̃λ)

r(w̃µ)s−s1 are bounded
from below and from above, respectively, independently of λ and µ. If we now use the
estimates (2.4) and (2.5) in Theorem 7 for the solutions of problems (4.11) and (4.12), this
is equivalent to show

(4.13)

(
d(x) +

α1

λ

)(p−p1)α1
(

d(x) +
β1

µ

)qβ1

≥ C,

(
d(x) +

α1

λ

)rα1
(

d(x) +
β1

µ

)(s−s1)β1

≤ C.

We remark that the exponents in (4.13) verify (p − p1)α1 + qβ1 = 0, rα1 + (s − s1)β1 = 0,
and since λ and µ are of the same order then (4.13) holds. This provides a supersolution,
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and in a similar way a subsolution can be constructed. Hence we can argue as before and
obtain that (uλ,µ, vλ,µ) converges to a pair (u∞, v∞) which is a solution to (1.1) (of course
this convergence is in principle through a subsequence). Since the sub and supersolution we
have constructed imply in this case

uλ,µ ≥ C
(
d(x) +

α1

λ

)−α1

, vλ,µ ≥ C

(
d(x) +

β1

µ

)−β1

,

it follows immediately that u∞ = v∞ = ∞ on ∂Ω, and thus (u∞, v∞) is the unique solution
to (1.9). This concludes the proof. ¤

Proof of Theorem 5 (iii). As we have shown in the proof of Theorem 4 (iv) (cf. (4.10)):

(4.14) (sup
Ω

vλ,µ)1− qr
(p−1)(s−1) ≤ C sup

Ω
ṽλ,µ,

where ṽλ,µ (a subindex µ has now been added) stands for the unique solution to

(4.15)





∆v =
(
d(x) +

α

λ

)−αr

vs in Ω,

∂v

∂ν
= µv on ∂Ω,

cf. Theorem 7. We now need to obtain good estimates of the solution ṽλ,µ to (4.15) when
both λ and µ go to infinity. Fix δ > 0. Then, since (d+1/λ)−αr ≥ (δ+1/λ)−αr in 0 < d < δ,
we arrive at

ṽλ,µ ≤
(
δ +

α

λ

) αr
s−1

v

in 0 < d < δ, where v is the unique solution to

(4.16)





∆v = vs in 0 < d < δ,

∂v

∂ν
= µv on d = 0,

v = ∞ on d = δ.

Moreover, if x ∈ Ω verifies d(x) = δ/2, we have the universal estimate

v(x) ≤ C

(
δ

2

)− 2
s−1

,

where C does not depend on δ. Next, we construct a supersolution to (4.16) in the set
0 < d < δ/2 of the form

z = A

(
d(x) +

β

µ

)−β

,

where β = 2/(s−1). It is easily seen that z will be indeed a supersolution to (4.16) provided
A ≥ A0 = A0(δ0, µ0), when δ ≤ δ0, µ ≥ µ0. It suffices to take A ≥ 2β(β + 1) for small δ and
large µ. We now choose A so that

A

(
δ

2
+

β

µ

)−β

= C

(
δ

2

)−β

,
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that is, A = C(1 + 2β/δµ)β, and it will follow that v ≤ z on d = δ/2. Hence v ≤ z in
0 ≤ d ≤ δ/2. In particular, for x ∈ ∂Ω, we have:

ṽλ,µ(x) ≤ C

(
1

2
+

β

δµ

) 2
s−1 (

δ +
α

λ

) αr
s−1

µ
2

s−1 ,

and since ṽλ,µ is subharmonic:

sup
Ω

ṽλ,µ ≤ C

(
1 +

1

δµ

) 2
s−1 (

δµ + α
µ

λ

) αr
s−1

µ
2−αr
s−1 .

Now choose δ = 1/µ:

sup
Ω

ṽλ,µ ≤ C
(
1 + α

µ

λ

) αr
s−1

µ
2−αr
s−1 .

If µ/λ is bounded, and since αr > 2 we arrive at sup ṽλ,µ → 0, hence vλ,µ → 0 and uλ,µ → +∞
uniformly in Ω. ¤

Proof of Theorem 6. As in the proof of Theorem 5 (iii), and thanks to (4.14), it suffices to
show that the unique positive solution ṽλ,µ to (4.15) (with Ω replaced by B) converges to
zero uniformly in B when λ, µ → ∞. If we multiply the equation in (4.15) by ṽλ,µ and
integrate in B –taken here as the unit ball for simplicity– dropping the term in the gradient,
we arrive at

(4.17)
1

µ

∫

Bδ

(
d +

1

λ

)−αr

ṽs+1
λ,µ ≤

∫

∂B

ṽ2
λ,µ,

where Bδ = {x ∈ B : 1− δ < |x| < 1}. Taking into account that the solution ṽλ,µ is radial
in this case (by uniqueness), and d(t) = 1− t, (4.17) gets transformed into

(4.18)
1

µ

∫ 1

1−δ

(
1− t +

1

λ

)−αr

ṽλ,µ(t)s+1dt ≤ Cṽλ,µ(1)2,

where C is a positive constant not depending on λ or µ. Now, thanks to the radial version of
(4.15), we obtain that the function rN−1ṽ′λ,µ is increasing (where r = |x| and ′ = d/dr). Thus,
using the mean value theorem and the boundary condition, we have, for every r ∈ (1− δ, 1):

ṽλ,µ(r) = ṽλ,µ(1)− ṽ′λ,µ(ξ)(1− r)

≥ ṽλ,µ(1)− (1− r)

ξN−1
ṽ′λ,µ(1) ≥ ṽλ,µ(1)

(
1− µδ

(1− δ)N−1

)
.

Hence from (4.18):

(4.19) ṽλ,µ(1)−(s−1) ≥ C

µ

(
1− µδ

(1− δ)N−1

)s+1 ∫ 1

1−δ

(
1− t +

1

λ

)−αr

dt.

We now choose δ = 1/(2µ), and obtain from (4.19):

ṽλ,µ(1)−(s−1) ≥ C

µ

((
1

λ

)1−αr

−
(

1

λ
+

1

2µ

)1−αr
)

,
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for some positive constant C which is independent of λ and µ when they are large enough.
If we now set µ = λθ with 0 < θ < 1, we have that

lim inf
λ→+∞

ṽλ,µ(1)−(s−1) ≥ C lim inf
λ→+∞

λαr−θ−1

(
1−

(
1 +

λ1−θ

2

)1−αr
)

≥ C lim inf
λ→+∞

λαr−θ−1 = +∞,

since θ < αr− 1 thanks to (1.10). Thus ṽλ,µ(1) → 0, and since ṽλ,µ is subharmonic, ṽλ,µ → 0
uniformly in B. This implies that vλ,µ → 0, uλ,µ → +∞ uniformly in B when λ, µ →∞.

The proof when Ω is an annulus is identical while if Ω ⊂ R2 is any smooth enough simply
connected domain then Ω can be mapped one to one onto the closed unit ball B by means
of a holomorphic mapping ζ = g(z), z = x1 + ix2, ζ = y1 + iy2. In the ζ variables (1.1)
becomes ∆ζu = |g′|−2upvq, ∆ζv = |g′|−2urvs and the boundary conditions are transformed
in ∂u/∂ν = λ|g′|−1u, ∂v/∂ν = µ|g′|−1v. Thus, the boundedness of |g′|, comparison and the
previous analysis lead to the conclusion. ¤
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