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Abstract. In this paper we study existence and uniqueness for solutions of the nonlocal diffusion
equation with Neumann boundary conditions

ut(t, x) =

Z

Ω

J(x− y)g
�x + y

2

�
|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy in ]0, T [×Ω,

and for solutions of its local counterpart(
ut = div

�
g|∇u|p−2∇u

�
in ]0, T [×Ω,

g|∇u|p−2∇u · η = 0 on ]0, T [×∂Ω.

We consider 1 ≤ p < ∞ and g ≥ 0. We pay special attention to the case in which g vanishes
somewhere in Ω, even in a set of positive measure.

1. Introduction

In this paper we have two main goals. As a first goal, we study the following nonlocal nonlinear
diffusion problem with homogeneous Neumann boundary condition

P J,g
p (u0)





ut(t, x) =
∫

Ω
J(x− y)g

(
x + y

2

)
|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy,

u(x, 0) = u0(x),

where g ∈ L∞(RN ), g ≥ 0 a.e. in RN , 1 ≤ p < +∞, Ω ⊂ RN is a bounded smooth domain and
the kernel J satisfies

(HJ) J : RN → R is a nonnegative continuous radial function with compact support, J(0) > 0
and

∫
RN J(z)dz = 1.

As a second goal, we also study the local counterpart, that is, the following local diffusion
equation with homogeneous Neumann boundary condition

Ng
p (u0)





ut = div
(
g|∇u|p−2∇u

)
in ]0, T [×Ω,

g|∇u|p−2∇u · η = 0 on ]0, T [×∂Ω,

u(x, 0) = u0(x) in Ω,

where η is the unit outward normal on ∂Ω.
As we will show here, these two problems are related in the following way: solutions of the

nonlocal problem converge to solutions of the local one when the kernel J is rescaled in a suitable
way.
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In these two problems we deal with a non-homogeneous diffusion coefficient, given by the
function g, that we assume to be bounded and nonnegative, but we include here the case in
which g vanishes in a subset of Ω that can even have positive measure. In this case we face new
technical difficulties since we lost the coercivity of the associated functional in the usual Sobolev
or Lebesgue spaces. These difficulties are overcome using weighted Sobolev or Lebesgue spaces
with appropriate hypothesis on g that involve weights in Muckenhoupt’s Ap classes.

Observe that for homogeneous diffusion, g = 1, the operator in the local problem is given by
div

(
g|∇u|p−2∇u

)
= div(|∇u|p−2∇u) = ∆pu, that is, the well-known p-Laplacian of u. Also note

that when p = 2 both problems become linear. In the case g = 1 the study of such problems
has been done in [7] for the nonlocal problem while the local problem is a well known classical
problem (see for instance, [47], [48]). Moreover, in this case, it is proved in [7] that under an
appropriate rescaling of the kernel J , the solutions of the rescaled nonlocal problems, when the
scale parameter (that measure the size of the support of J) tends to zero, converge to the solutions
of the local problem.

One of the main results of this paper is to prove a similar convergence result for P J,g
p (u0),

where g can vanish in a subset of Ω of positive measure. This fact turns the whole issue more
involved since the nonlocal problem, in contrast with what happens in general for the local one,
takes into account the part of the domain where the diffusion coefficient g is null, that is, this
part of the domain plays a role in the nonlocal diffusion case.

The case p = 1 is somehow different from the case p > 1. In fact, for p = 1 we need to
work in weighted BV spaces (that is, weighted bounded variation spaces), an issue that forces
us to introduce some delicate results from measure theory. The local problem for g = 1 with
p = 1, that is, the Neumann problem for the total variation flow, was studied in [3] (see also
[4]), motivated by problems in image processing. This PDE appears when one uses the steepest
descent method to minimize the total variation, a method introduced by L. Rudin, S. Osher
and E. Fatemi [43] in the context of image denoising and reconstruction. The use of weighted
total variational functionals in image processing began with the seminal work of V. Caselles, R.
Kimmel and G. Sapiro ([25], [26]) on geodesic active contours. Also in the the unpublished paper
[46] the weighted total variational functionals in image processing was considered (see also [27]).
Until the recent paper of V. Caselles, G. Facciolo and E. Meinhardt [24], it was always supposed
that the weight g is positive. In [24] it is admitted that g can be null in a set of positive measure.
Here also this possibility is considered.

To finish this introduction, let us briefly introduce some references for the prototype of non-
local problem that will be considered along this work. Nonlocal evolution equations of the form
ut(t, x) = (J ∗u−u)(t, x) =

∫
RN J(x−y)u(t, y) dy−u(t, x), and variations of it, have been recently

widely used to model diffusion processes. More precisely, as stated in [39], if u(t, x) is thought of
as a density at the point x at time t and J(x− y) is thought of as the probability distribution of
jumping from location y to location x, then

∫
RN J(y−x)u(t, y) dy = (J∗u)(t, x) is the rate at which

individuals are arriving at position x from all other places and −u(t, x) = − ∫
RN J(y−x)u(t, x) dy

is the rate at which they are leaving location x to travel to all other sites. This consideration,
in the absence of external or internal sources, leads immediately to the fact that the density u
satisfies the equation ut = J ∗ u − u. Nonlocal diffusion equations have been recently widely
studied and have connections with probability theory (for example, Levy processes are related to
the fractional Laplacian), see, [6], [7], [8], [12], [13], [21], [22], [23], [28], [29], [32], [33], [34], [39],
[44], [45] and references therein.
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Especially related to the nonlocal problem P J,g
p (u0) are references [7], [8] and [9], in fact, this

work can be viewed as a natural continuation of those papers. In [7], from where we borrow some
ideas, the nonlocal problem with g = 1 is studied. In [8] we deal with the limit as p → ∞ of
solutions to nonlocal problems and in [9] Dirichlet boundary conditions are imposed. All these
previous works deal with g = 1. Concerning inhomogeneous nonlocal diffusion we quote [31] and
[35] where the authors study the nonlocal analogous to the linear equation ut = ∆(g2u) in the
whole RN .

Organization of the paper. The rest of the paper is organized as follows: in Section 2 we
prove existence and uniqueness for the nonlocal problem with p > 1. Section 3 deal with the local
problem for p > 1 and in Section 4 we show the convergence of the nonlocal problems to the local
problem for p > 1. In sections 5, 6 and 7 we deal with analogous questions for p = 1. We prefer
to present the results for p = 1 in separate sections since, as we have mentioned, in this case the
use of BV functions introduces technical differences that we want to highlight.

2. Existence and uniqueness of solutions for the nonlocal problem.
The case p > 1

Let us begin this section by collecting some preliminaries and notations that will be used in
the sequel. We denote by J0 and P0 the following sets of functions,

J0 = {j : R→ [0, +∞], convex and lower semi-continuos with j(0) = 0},

P0 =
{
q ∈ C∞(R) : 0 ≤ q′ ≤ 1, supp(q′) is compact, and 0 /∈ supp(q)

}
.

In [15] the following relation for u, v ∈ L1(Ω) is defined,

u ¿ v if and only if
∫

Ω
j(u) dx ≤

∫

Ω
j(v) dx for all j ∈ J0,

and the following facts are proved.

Proposition 2.1. Let Ω be a bounded domain in RN .
(i) For any u, v ∈ L1(Ω), if

∫
Ω uq(u) ≤ ∫

Ω vq(u) for all q ∈ P0, then u ¿ v.
(ii) If u, v ∈ L1(Ω) and u ¿ v, then ‖u‖r ≤ ‖v‖r for any r ∈ [1, +∞].
(iii) If v ∈ L1(Ω), then {u ∈ L1(Ω) : u ¿ v} is a weakly compact subset of L1(Ω).

In this section we deal with existence and uniqueness for solutions of the nonlocal problem
P J,g

p (u0) that will be understood according to the following definition.

Definition 2.2. Let p > 1. A solution of the problem P J,g
p (u0) in [0, T ] is a function u ∈

W 1,1(0, T ; L1(Ω)) which satisfies u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =
∫

Ω
J(x− y)g

(
x + y

2

)
|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x)) dy a.e. in ]0, T [×Ω.

To study the problem P J,g
p (u0) we use Nonlinear Semigroup Theory. To this end we introduce

in L1(Ω) the following operator associated with our problem.
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Definition 2.3. Let J satisfies (HJ), g ∈ L∞(RN ), g ≥ 0 a.e., and 1 < p < +∞. We define in
L1(Ω) the operator BJ,g

p by

BJ,g
p u(x) = −

∫

Ω
J(x− y)g

(
x + y

2

)
|u(y)− u(x)|p−2(u(y)− u(x)) dy, x ∈ Ω.

Remark 2.4. It is easy to see that,
1. BJ,g

p is positively homogeneous of degree p− 1,
2. Lp−1(Ω) ⊂ Dom(BJ,g

p ), if p > 2,
3. for 1 < p ≤ 2, Dom(BJ,g

p ) = L1(Ω) and BJ,g
p is closed in L1(Ω)× L1(Ω).

We have the following monotonicity lemma, whose proof is straightforward.

Lemma 2.5. Let T : R→ R a nondecreasing function. Then,
(i) for every u, v ∈ Lp(Ω) such that T (u− v) ∈ Lp(Ω), it holds

(2.1)

∫

Ω
(BJ,g

p u(x)−BJ,g
p v(x))T (u(x)− v(x))dx =

1
2

∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
(T (u(y)− v(y))− T (u(x)− v(x)))×

× (|u(y)− u(x)|p−2(u(y)− u(x))− |v(y)− v(x)|p−2(v(y)− v(x))
)

dy dx.

(ii) Moreover, if T is bounded, (2.1) holds for u, v ∈ Dom(BJ,g
p ).

Following ideas from [7] we have that BJ,g
p is completely accretive and verifies the range con-

dition Lp(Ω) ⊂ Ran(I + BJ,g
p ). In short, this means that for any φ ∈ Lp(Ω) there is a unique

solution of the problem u + BJ,g
p u = φ and the resolvent (I + BJ,g

p )−1 is a contraction in Lq(Ω)
for all 1 ≤ q ≤ +∞.

Theorem 2.6. The operator BJ,g
p is completely accretive and verifies the range condition

(2.2) Lp(Ω) ⊂ Ran(I + BJ,g
p ).

Proof. The proof mimics the one given for g = 1 in [7]. We include it here for completeness.
Given ui ∈ Dom(BJ,g

p ), i = 1, 2 and q ∈ P0, by the monotonicity Lemma 2.5, we have∫

Ω
(BJ,g

p u1(x)−BJ,g
p u2(x))q(u1(x)− u2(x)) dx ≥ 0,

from where it follows that BJ,g
p is a completely accretive operator (see [15]).

To show that BJ,g
p satisfies the range condition we have to prove that for any φ ∈ Lp(Ω)

there exists u ∈ Dom(BJ,g
p ) such that u = (I + BJ,g

p )−1φ. Let us first take φ ∈ L∞(Ω). Let
An,m : Lp(Ω) → Lp′(Ω) the continuous monotone operator defined by

An,m(u) := Tc(u) + BJ,g
p u +

1
n
|u|p−2u+ − 1

m
|u|p−2u−,

where Tc(s) = sup(−c, inf(s, c)). We have that An,m is coercive in Lp(Ω). In fact,

lim
‖u‖Lp(Ω)→+∞

∫
Ω An,m(u)u
‖u‖Lp(Ω)

= +∞.
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Then, by Corollary 30 in [18], there exists un,m ∈ Lp(Ω), such that

Tc(un,m) + BJ,g
p un,m +

1
n
|un,m|p−2u+

n,m − 1
m
|un,m|p−2u−n,m = φ.

Using the monotonicity of BJ,g
p un,m + 1

n |un,m|p−2u+
n,m − 1

m |un,m|p−2u−n,m, from Proposition 2.1,
we obtain that Tc(un,m) ¿ φ and therefore, taking c > ‖φ‖L∞(Ω), un,m ¿ φ. Consequently,

un,m + BJ,g
p un,m +

1
n
|un,m|p−2u+

n,m − 1
m
|un,m|p−2u−n,m = φ.

Moreover, un,m is increasing in n and decreasing in m. As un,m ¿ φ, we can pass to the limit
as n →∞ (using the monotone convergence to handle the term BJ,g

p un,m) obtaining a limit, um,
that is a solution to

um + BJ,g
p um − 1

m
|um|p−2u−m = φ.

Using that um is decreasing in m we can pass again to the limit to obtain

u + BJ,g
p u = φ.

Now, let us consider the general case φ ∈ Lp(Ω). Take φn ∈ L∞(Ω), φn → φ in Lp(Ω). Then,
by our previous step, there exists un = (I + BJ,g

p )−1φn, un ¿ φn. Since BJ,g
p is completely

accretive, un → u in Lp(Ω), also BJ,g
p un → BJ,g

p u in Lp′(Ω) and we conclude that u + BJ,g
p u = φ,

u ¿ φ. ¤
As a consequence of this result we get the following existence and uniqueness theorem for the

evolution problem.

Theorem 2.7. Assume p > 1. Let T > 0 and u0 ∈ L1(Ω). Then, there exists a unique mild
solution u of

(2.3)

{
u′(t) + BJ,g

p u(t) = 0, t ∈]0, T [,
u(0) = u0.

Moreover,
(1) if u0 ∈ Lp(Ω), the unique mild solution u of (2.3) is a solution of P J,g

p (u0) in the sense
of Definition 2.2. If 1 < p ≤ 2, this is true for any u0 ∈ L1(Ω).

(2) Let ui0 ∈ L1(Ω), i = 1, 2, and ui a solution in [0, T ] of P J,g
p (ui0), i = 1, 2. Then∫

Ω
(u1(t)− u2(t))+ ≤

∫

Ω
(u10 − u20)+ for every t ∈]0, T [.

Moreover, for q ∈ [1, +∞], if ui0 ∈ Lq(Ω), i = 1, 2, then

‖u1(t)− u2(t)‖Lq(Ω) ≤ ‖u10 − u20‖Lq(Ω) for every t ∈]0, T [.

Proof. As a consequence of Theorem 2.6 we get the existence of mild solution of (2.3) (see [16]
and [15]). On the other hand, u(t) is a solution of P J,g

p (u0) if and only if u(t) is a strong solution
of the abstract Cauchy problem (2.3). Now, due to the complete accretivity of BJ,g

p and the
range condition (2.2), u(t) is a strong solution (see [15]). Moreover, in the case 1 < p ≤ 2, since
Dom(BJ,g

p ) = L1(Ω) and BJ,g
p is closed in L1(Ω) × L1(Ω), the result holds for L1-data. Finally,

the contraction principle is a consequence of the general Nonlinear Semigroup Theory. ¤
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3. The Local Problem for p > 1

We consider now the local evolution equation with homogeneous Neumann boundary conditions

Ng
p (u0)





ut = div
(
g|Du|p−2Du

)
in ]0, T [×Ω,

g|Du|p−2Du · η = 0 on ]0, T [×∂Ω,

u(·, 0) = u0 ∈ L1(Ω) in Ω,

where Ω is a bounded smooth domain, η is the unit outward normal on ∂Ω and g verifies

(3.1)

[
g ∈ L∞(Ω),

g > 0 a.e. in S, g = 0 a.e. in Ω \ S, being S a smooth domain contained in Ω,

and

(3.2) g
1

1−p ∈ L1(S).

We will work in the following weighted Sobolev space.

Definition 3.1. Set W 1,p
g,S(Ω) the space of functions u ∈ Lp(Ω) such that the distributional deriv-

atives ∂u
∂xi

satisfy

g1/p ∂u

∂xi
∈ Lp(S), i = 1, 2, . . . , N.

This space W 1,p
g,S(Ω) endowed with the norm

‖u‖
W 1,p

g,S(Ω)
:=

(∫

Ω
|u(x)|p dx +

∫

S
|Du(x)|pg(x) dx

) 1
p

is a Banach space.

Let us recall that w is a weight in the Muckenhoupt’s Ap–class, or an Ap–weight, if w is a
nonnegative, locally (Lebesgue) integrable function in RN such that

sup
(

1
|B|

∫

B
w(x) dx

) (
1
|B|

∫

B
w(x)

1
1−p dx

)p−1

= cw,p < ∞,

where the supremum is taken over all ball B in RN .
We also assume that

(3.3) there exists a weight function g0 in the Muckenhoupt’s Ap–class such that g0 = g in S.

This hypothesis implies (3.2) since S is bounded. Moreover, under this hypothesis, functions in
W 1,p

g,S(Ω) ∩ L∞(Ω) can be approximated in the ‖ · ‖
W 1,p

g,S(Ω)
-norm by smooth functions (see [30],

[37], [41], [42] and references therein for related topics). Indeed, we have the following result.

Lemma 3.2. For any u ∈ W 1,p
g,S(Ω) ∩ L∞(Ω) there exists ϕn ∈ C∞(Ω) such that ϕn → u in

W 1,p
g,S(Ω).
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Proof. Given u ∈ W 1,p
g,S(Ω)∩L∞(Ω), by the results in [30], u|S can be extended to a function ũ ∈

W 1,p
g0,RN (RN ) ∩ L∞(RN ) with ||ũ||

W 1,p

g0,RN (RN )
≤ K||u||

W 1,p
g,S(S)

and ||ũ||L∞(RN ) ≤ ||u||L∞(S), where

K is independent of u. Now, by the results of [42], ũ can be approximated in the W 1,p
g0,RN (RN )–

norm by C∞ functions ϕ̃n that are uniformly bounded in L∞. On the other hand, u|Ω\S
can be

approximated in the Lp-norm by smooth functions ϕ̂n uniformly bounded in L∞. Therefore, we
can find ϕn such that

ϕn =
{

ϕ̃n in S,
ϕ̂n in Ω \ (

S + B(0, 1
n)

)
,

and in such a way that ϕn is smooth and uniformly L∞–bounded. We conclude that ϕn → u in
W 1,p

g,S(Ω). ¤

We use the following concept of solution for problem Ng
p (u0).

Definition 3.3. A function u ∈ W 1,1(0, T ; L1(Ω)) is an entropy solution of problem Ng
p (u0) in

]0, T [ if u(0) = u0, Tk(u(t)) ∈ W 1,p
g,S(Ω) for every k > 0 and

∫

Ω
u′(t)Tk(u(t)− φ) dx +

∫

S
g(x)|Du(t)|p−2Du(t) ·D(Tk(u(t)− φ)) dx ≤ 0,

for every φ ∈ W 1,p
g,S(Ω) ∩ L∞(Ω) and all k > 0. Here Tk(r) is the classical truncature function

Tk(r) = sup{inf{r, k},−k}.
To get the existence of entropy solutions of problem Ng

p (u0) we use again the Nonlinear Semi-
groups Theory, so we start with the study of the elliptic problem

Eg
p(f)

{
u− div

(
g|Du|p−2Du

)
= f in Ω,

g|Du|p−2Du · η = 0 on ∂Ω.

Let us now introduce the following operator related to the local problem.

Definition 3.4. For p > 1 and g satisfying (3.1) and (3.3), we define the operator Bg
p in L1(Ω)

by the following rule: (u, û) ∈ Bg
p if and only if u ∈ W 1,p

g,S(Ω) ∩ L∞(Ω), û ∈ L1(Ω) and
∫

S
g(x)|Du|p−2Du ·Dv dx =

∫

Ω
û(x)v(x) dx ∀ v ∈ W 1,p

g,S(Ω) ∩ L∞(Ω).

Proposition 3.5. Assume g satisfies (3.1) and (3.3). Then the operator Bg
p is completely accre-

tive and satisfies the range condition L∞(Ω) ⊂ R(I + Bg
p).

Proof. Given (ui, vi) ∈ Bg
p , i = 1, 2, for any q ∈ C∞(R), 0 ≤ q′ ≤ 1, supp(q′) compact, 0 /∈

supp(q), we have that
∫

Ω
(v1(x)− v2(x))q(u1(x)− u2(x)) dx =

∫

S
g(x)q′(u1 − u2)

(|Du1|p−2Du1 − |Du2|p−2Du2

) ·D(u1 − u2) dx ≥ 0,

from where it follows that Bg
p is a completely accretive operator (see [15]).
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For every n ∈ N, let an(x, ξ) := (g(x)+ 1
n)‖ξ‖p−2ξ. We define the operator An in L1(Ω) by the

rule, (u, û) ∈ An if and only if u ∈ W 1,p(Ω) ∩ L∞(Ω), û ∈ L1(Ω) and
∫

Ω
〈an(x,Du), D(u− φ)〉 ≤

∫

Ω
û(u− φ) for every φ ∈ W 1,p(Ω) ∩ L∞(Ω).

Then, by the results in [5], we have An is a completely accretive operator satisfying the range
condition L∞(Ω) ⊂ R(I + An). Consequently, given f ∈ L∞(Ω) there exists a unique un ∈
W 1,p(Ω) ∩ L∞(Ω) such that

∫

Ω
〈an(x,Dn), D(un − φ)〉 ≤

∫

Ω
(f − un)(un − φ) for every φ ∈ W 1,p(Ω) ∩ L∞(Ω),

or equivalently,

(3.4)
∫

Ω
g(x)|Dun|p−2Dun ·Dv +

1
n

∫

Ω
|Dun|p−2Dun ·Dv =

∫

Ω
(f − un)v

for every v ∈ W 1,p(Ω) ∩ L∞(Ω). Moreover,

(3.5) un ¿ f for every n ∈ N.

By (3.5) it follows that

(3.6) ‖un‖q ≤ ‖f‖q for every n ∈ N, and all 1 ≤ q ≤ ∞.

Taking v = un as test function in (3.4), we get

(3.7)
∫

Ω
g(x)|Dun|p dx +

1
n

∫

Ω
|Dun|p dx ≤

∫

Ω
(f − un)un dx for every n ∈ N.

From (3.6), taking a subsequence if necessary, we have there exists u ∈ L∞(Ω) such that

(3.8) un ⇀ u weakly in Lp(Ω).

On the other hand, by (3.6) and (3.7), we get

(3.9)
∫

Ω
g(x)|Dun|p dx +

1
n

∫

Ω
|Dun|p dx ≤ M for every n ∈ N.

By (3.9) and Hölder’s inequality we have

(3.10)
∣∣∣∣
1
n

∫

Ω
|Dun|p−2Dun ·Dv

∣∣∣∣ ≤
M

1
p′

n
1
p

‖Dv‖p ∀n ∈ N,

(3.11) ‖g 1
p |Dun|‖Lp(Ω) ≤ M

1
p ∀n ∈ N

and

(3.12) ‖g 1
p′ |Dun|p−2Dun‖Lp′ (Ω,RN ) ≤ M

1
p′ ∀n ∈ N.

From (3.11), taking a subsequence if necessary, we have that

(3.13) g
1
p
∂un

∂xi
⇀ wi weakly in Lp(Ω), i = 1, . . . , N.
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Given ϕ ∈ D(S), by (3.2), we have g
− 1

p ϕ ∈ Lp′(S). Then, having in mind (3.13), we obtain
〈

∂u

∂xi
, ϕ

〉
= −

∫

S
u

∂ϕ

∂xi
dx = − lim

n→∞

∫

S
un

∂ϕ

∂xi
dx = lim

n→∞

∫

S

∂un

∂xi
ϕdx

= lim
n→∞

∫

S
g

1
p
∂un

∂xi
g
− 1

p ϕdx =
∫

S
wig

− 1
p ϕdx.

Consequently, we get
∂u

∂xi
= wig

− 1
p in D′(S), i = 1, . . . , N.

Hence, since wi ∈ Lp(Ω) and g
− 1

p ∈ Lp′(S), we obtain that ∂u
∂xi

∈ L1(S), and u ∈ W 1,1(S).
Moreover, since g ∈ L∞(RN ),

(3.14) g
1
p

∂u

∂xi
= wi ∈ Lp(S), i = 1, . . . , N.

Therefore u ∈ W 1,p
g,S(Ω). Moreover, by (3.13) and (3.14), we have

(3.15) g
1
p Dun ⇀ g

1
p Du weakly in Lp(S,RN ).

By (3.12), taking a subsequence if necessary, there exists z ∈ Lp′(Ω,RN ) such that

(3.16) g
1
p′ |Dun|p−2Dun ⇀ z weakly in Lp′(Ω,RN ).

Given v ∈ W 1,p(Ω), taking limit in (3.4) and having in mind (3.8), (3.10) and (3.16), we obtain

(3.17)
∫

Ω
g(x)

1
p z ·Dv dx =

∫

Ω
(f − u)v dx.

Setting v = un in (3.17), using (3.8) and (3.15), and taking limit we get

(3.18)
∫

S
g(x)

1
p z ·Dudx =

∫

Ω
(f − u)u dx,

Let us see that

(3.19) g
1
p z = g|Du|p−2Du a.e. in S.

To do that we apply Minty-Browder’s method. Note first that from (3.5) and (3.8), taking limit
in (3.7) we get

(3.20) lim sup
n→+∞

∫

Ω
g(x)|Dun|p dx ≤

∫

Ω
(f(x)− u(x))u(x) dx.

On the other hand, by monotonicity, we have

(3.21)
∫

S
g(x)|ρ|p−2ρ · (Dun − ρ) dx ≤

∫

S
g(x)|Dun|p−2Dun · (Dun − ρ) dx

for all ρ such that g
1
p ρ ∈ Lp(S,RN ). Then, assuming that g

1
p ρ ∈ Lp(S,RN ) , from (3.16), (3.15)

and (3.20), taking limit in (3.21), we obtain that

(3.22)
∫

S
g(x)|ρ|p−2ρ · (Du− ρ) dx ≤

∫

Ω
(f(x)− u(x))u(x) dx−

∫

Ω
g(x)

1
p z · ρ dx.
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Hence, having in mind (3.18), we get

(3.23)
∫

S
g(x)|ρ|p−2ρ · (Du− ρ) dx ≤

∫

S
g(x)

1
p z ·Du dx−

∫

S
g(x)

1
p z · ρ dx.

Then, taking in (3.23) ρ = Du− λξ, for λ > 0 and ξ ∈ Lp(S,RN ), we obtain that∫

S
g(x)|Du− λξ|p−2(Du− λξ) · ξ dx ≤

∫

S
g(x)

1
p z · ξ dx.

From here, letting λ → 0,∫

S
g(x)|Du|p−2Du · ξ dx ≤

∫

S
g(x)

1
p z · ξ dx ∀ ξ ∈ Lp(S,RN ),

from where (3.19) follows. Then, by (3.17) and (3.19), we obtain that

(3.24)
∫

S
g(x) |Du|p−2Du ·Dv dx =

∫

Ω
(f − u)v dx ∀v ∈ W 1,p(Ω).

Now, using the fact that g in S is the restriction of a weight of Muckenhoupt’s Ap–class, by
Lemma 3.2, any v ∈ W 1,p

g,S(Ω)∩L∞(Ω) can be approximated by smooth functions and then, from
(3.24), we obtain

(3.25)
∫

S
g(x) |Du|p−2Du ·Dv dx =

∫

Ω
(f − u)v dx ∀v ∈ W 1,p

g,S(Ω) ∩ L∞(Ω).

Therefore, (u, f − u) ∈ Bg
p , and consequently, f ∈ R(I + Bg

p). ¤

Working as in [5] we can obtain the following characterization of the closure Bg
p of the operator

Bg
p in L1(Ω)× L1(Ω). Indeed, as we are considering a weight g that is strictly positive in S and

the corresponding integrals that involve g take place in S we can follows the arguments of [5]
with minor modifications.

Proposition 3.6. The closure of Bg
p in L1(Ω) × L1(Ω) is given by (u, v) ∈ Bg

p if u, v ∈ L1(Ω),
Tk(u) ∈ W 1,p

g,S(Ω) and
∫

S
g(x)|Du|p−2Du ·D(Tk(u− φ)) dx ≤

∫

Ω
vTk(u− φ) dx,

for every φ ∈ W 1,p
g,S(Ω) ∩ L∞(Ω) and all k > 0.

Theorem 3.7. For any u0 ∈ L1(Ω) and any T > 0, the problem Ng
p (u0) has a unique entropy

solution in ]0, T [. Moreover, an L1–contraction principle holds for such solutions.

Proof. As a consequence of Proposition 3.5 the operator Bg
p is m-completely accretive in L1(Ω).

On the other hand, it is easy to see that D (Bg
p)

L1(Ω)
= L1(Ω). Therefore, using the Nonlinear

Semigroup Theory (see [36] and [16]), for any u0 ∈ L1(Ω), the abstract Cauchy problem associated
to Ng

p (u0) has a unique mild solution given by the exponential formula v(t) = e−tBg
pu0. Moreover,

as the operator is homogeneous of degree p − 1, this solution is the unique strong solution of
such abstract problem (see [15]). Now, by Proposition 3.6, the concept of strong solution and
the concept of entropy solution of Ng

p (u0) coincide. The contraction principle follows by the
Nonlinear Semigroup Theory. ¤
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Observe that, in fact, a solution u of Eg
p(f) satisfies

u = f a.e. in Ω \ S

and u|S is a solution of {
u− div

(
g|Du|p−2Du

)
= f in S,

g|Du|p−2Du · η = 0 on ∂S.

We can think that g is a space-depending diffusion coefficient such that it has broken its diffusivity
to 0 in some parts, so u = f where there is no diffusivity. For the parabolic problem u must be
equal to the initial condition in places where g vanishes. However, if |Ω \ S| > 0, when dealing
with the nonlocal problem, it is not true that in general u = f in Ω \ S, even if supp(J) is very
“small”, there exists O ⊂ Ω\S with |O| > 0 where u may differ from f . So, the part where g = 0
plays a role in the nonlocal problem. Nevertheless, in the next section we will see that, under
rescaling, solutions to the nonlocal problems converge to solutions to the local one.

4. Convergence of the nonlocal problems to the local problem. The case p > 1

Our main goal in this section is to show that the problem Ng
p (u0) can be approximated by

suitable nonlocal Neumann problems of the form P J,g
p (u0).

Let us now give the reescaling procedure. For given p > 1 and J , we consider the rescaled
kernels

Jp,ε(x) :=
CJ,p

εp+N
J

(x

ε

)
,

where C−1
J,p := 1

2

∫
RN J(z)|zN |p dz is a normalizing constant.

Associated to these kernels we solve P J,g
p (u0) with Jp,ε instead of J with the same initial

condition u0 and we obtain a solution uε(t, x). Our main concern in this section is to show that
uε converge to u as ε → 0, being u a solution of Ng

p (u0).
First, let us perform a formal calculation in one space dimension just to convince the reader

that the convergence result is correct. Let g(x) and u(x) be smooth functions and consider

Aε(u) =
1

εp+1

∫

R
J

(
x− y

ε

)
g

(
x + y

2

)
|u(y)− u(x)|p−2(u(y)− u(x)) dy.

Changing variables, y = x− εz, we get

(4.1) Aε(u) =
1
εp

∫

R
J(z)g

(
x− εz

2

)
|u(x− εz)− u(x)|p−2(u(x− εz)− u(x)) dz.

Now, we expand in powers of ε to obtain

|u(x− εz)− u(x)|p−2 = εp−2

∣∣∣∣u′(x)z − u′′(x)
2

εz2 + O(ε2)
∣∣∣∣
p−2

= εp−2|u′(x)|p−2|z|p−2 − εp−1(p− 2)|u′(x)z|p−4u′(x)z
u′′(x)

2
z2 + O(εp),

and

u(x− εz)− u(x) = −εu′(x)z +
u′′(x)

2
ε2z2 + O(ε3),
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on the other hand, since g is smooth,

g
(
x− εz

2

)
= g(x)− g′(x)

εz

2
+ O(ε2).

Hence, (4.1) becomes

Aε(u) = −1
ε

∫

R
J(z)|z|p−2z dz

[
g(x)|u′(x)|p−2u′(x)

]

+
1
2

∫

R
J(z)|z|p dz

[
g(x)

(
(p− 2)|u′(x)|p−2u′′(x) + |u′(x)|p−2u′′(x)

)]

+
1
2

∫

R
J(z)|z|p dz

[
g′(x)

(|u′(x)|p−2u′(x)
)]

+ O(ε).

Using that J is radially symmetric, the first integral vanishes and therefore,

lim
ε→0

Aε(u) = C
(
g(x)|u′(x)|p−2u′(x)

)′
,

where the constant C is given by C = 1
2

∫
R J(z)|z|p dz.

To do this formal calculation rigorous we need to obtain the following result which is a variant
of [7, Proposition 3.2(1.i)]. From now on, we denote by f the extension by zero outside Ω of a
function f ∈ Lp(Ω).

Proposition 4.1. Let 1 < q < +∞. Let ρ : RN → R be a nonnegative continuous radial function
with compact support, non-identically zero, and ρn(x) := nNρ(nx). Let S an open set, S ⊂ Ω,
and let l ∈ L∞(RN ) such that

(4.2) l(x) =
{

l(x) > 0 a.e. in S,

0 a.e. in RN \ S.

Let us also assume that l satisfies

(4.3) l
1

1−q ∈ L1
loc(S).

Let {fn} be a sequence of functions in Lq(Ω) such that

(4.4)
∫

Ω

∫

Ω
ρn(y − x)l

(
x + y

2

)
|fn(y)− fn(x)|q dx dy ≤ M

1
nq

and {fn} is weakly convergent in Lq(S) to f .
Then, l1/q|∇f | ∈ Lq(S), |∇f | ∈ L1

loc(S), and moreover

lim
n

[
(ρ(z))1/q (l(w))1/q χΩ

(
w +

1
2n

)
χΩ

(
w − 1

2n
z

)
fn

(
w + 1

2nz
)− f

n

(
w − 1

2nz
)

1/n

]
=

(ρ(z))1/q h(w, z)

weakly in Lq(RN )× Lq(RN ), with

(ρ(z))1/q h(w, z) = (ρ(z))1/q (l(w))1/q z · ∇f(w) in S × RN ,

and
(ρ(z))1/q h(w, z) = 0 in (RN \ Ω)× RN .
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Proof. Making the change of variables y = x + 1
nz, x = w − 1

2nz, we rewrite (4.4) as

∫

RN

∫

RN

ρ(z)l(w)χ×Ω

(
w ± 1

2n
z

) ∣∣∣∣∣
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n

∣∣∣∣∣
q

dw dz ≤ M,

where we use the notation χ×
Ω

(
w ± 1

2nz
)

= χΩ

(
w + 1

2nz
)
χΩ

(
w − 1

2nz
)
. Therefore, up to a

subsequence,

(4.5) (ρ(z))1/q(l(w))1/qχ×
Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
⇀ (ρ(z))1/q h(w, z)

weakly in Lq(RN )× Lq(RN ), and (ρ(z))1/q h(w, z) = 0 in (RN \ Ω)× RN .
If ϕ ∈ C∞

c (Ω), supp(ϕ) ⊂ S, taking

ϕ̂ =

{ ϕ

l1/q
in S,

0 otherwise,

which is an Lq′-function since l
1

1−q ∈ L1
loc(S), and ψ ∈ C∞

c (RN ), by (4.5), we obtain
∫

RN

∫

Ω
(ρ(z))1/q(l(w))1/qχ×

Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
ϕ̂(w)dwψ(z)dz

→
∫

RN

∫

Ω
(ρ(z))1/q h(w, z)ϕ̂(w)dwψ(z)dz,

That is,

(4.6)

∫

RN

∫

S
(ρ(z))1/qχ×

Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
ϕ(w)dwψ(z)dz

→
∫

RN

∫

S
(ρ(z))1/q (l(w))−1/qh(w, z)ϕ(w)dwψ(z)dz.

Now, for n large enough, ρ(z)1/qχ×
Ω

(
w ± 1

2nz
)

= ρ(z)1/q for all z ∈ RN and all w ∈ supp(ϕ),
therefore

∫

RN

∫

S
(ρ(z))1/qχ×

Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
ϕ(w)dwψ(z)dz

=
∫

RN

(ρ(z))1/q
∫

S

fn

(
w + 1

2nz
)− fn(w − 1

2nz)
1/n

ϕ(w)dwψ(z)dz

= −
∫

RN

(ρ(z))1/q
∫

S
fn(w)

ϕ(w + 1
2nz)− ϕ

(
w − 1

2nz
)

1/n
dwψ(z)dz.

Then, passing to the limit, on account of (4.6), we get
∫

RN

(ρ(z))1/q
∫

S
(l(w))−1/qh(w, z)ϕ(w) dwψ(z) dz

= −
∫

RN

(ρ(z))1/q
∫

S
f(w) z · ∇ϕ(w)dwψ(z) dz.
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Consequently,∫

S
(l(w))−1/qh(w, z)ϕ(w) dw = −

∫

S
f(w) z · ∇ϕ(w) dw ∀z ∈ int(supp(J)).

From here, for s small,∫

S
(l(w))−1/qh(w, sei)ϕ(w) dw = −

∫

S
f(w) s

∂

∂wi
ϕ(w) dw,

which implies, since S is open, |∇f | ∈ L1
loc(S) (using that l

1
1−q ∈ L1

loc(S) together with Hölder’s
inequality), l1/q|∇f | ∈ Lq(S) and (ρ(z))1/qh(w, z) = (ρ(z))1/q(l(w))1/qz · ∇f(w) in S × RN . ¤
Proposition 4.2. Assume p > 1, J satisfies (HJ), and g satisfies (3.1) and (3.3). Then, for any
φ ∈ L∞(Ω), we have that

(4.7)
(
I + B

Jp,ε,g
p

)−1
φ ⇀

(
I + Bg

p

)−1
φ weakly in Lp(Ω) as ε → 0.

Proof. For ε > 0, let uε =
(
I + B

Jp,ε,g
p

)−1
φ. Then,

(4.8)

∫

Ω
uεv − CJ,p

εp+N

∫

Ω

∫

Ω
J

(
x− y

ε

)
g

(
x + y

2

)
|uε(y)− uε(x)|p−2×

×(uε(y)− uε(x)) dy v(x) dx =
∫

Ω
φv

for every v ∈ L∞(Ω). Moreover, uε ¿ φ. Changing variables, we get
(4.9)

− CJ,p

εp+N

∫

Ω

∫

Ω
J

(
x− y

ε

)
g

(
x + y

2

)
|uε(y)− uε(x)|p−2(uε(y)− uε(x)) dy v(x)dx

=
∫

RN

∫

RN

CJ,p

2
J(z)g(w)χ×Ω

(
w ± ε

2
z
) ∣∣∣∣

uε(w + ε
2z)− uε(w − ε

2z)
ε

∣∣∣∣
p−2

×

×uε(w + ε
2z)− uε(w − ε

2z)
ε

v(w + ε
2z)− v(w − ε

2z)
ε

dw dz,

where χ×
Ω

(
w ± ε

2z
)

= χΩ

(
w + ε

2z
)
χΩ

(
w − ε

2z
)
. So we can rewrite (4.8) as

(4.10)

∫

Ω
φ(x)v(x) dx−

∫

Ω
uε(x)v(x) dx

=
∫

RN

∫

RN

CJ,p

2
J(z)g(w)χ×Ω

(
w ± ε

2
z
) ∣∣∣∣

uε(w + ε
2z)− uε(w − ε

2z)
ε

∣∣∣∣
p−2

×

×uε(w + ε
2z)− uε(w − ε

2z)
ε

v(w + ε
2z)− v(w − ε

2z)
ε

dw dz.

We will see there exists a sequence εn → 0 such that uεn ⇀ u weakly in Lp(Ω), u ∈ W 1,p
g (Ω)∩

L∞(Ω), a solution of∫

Ω
uv +

∫

S
g |∇u|p−2∇u · ∇v =

∫

Ω
φv for every v ∈ W 1,p(Ω) ∩ L∞(Ω),

that is, u = (I + Bg
p)−1

φ.
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Since uε ¿ φ, there exists a sequence εn → 0 such that

(4.11) uεn ⇀ u, weakly in Lp(Ω), u ¿ φ.

Observe that also ‖uεn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω). Taking ε = εn and v = uεn in (4.10), we
get

(4.12)

∫

Ω

∫

Ω

1
2

CJ,p

εn
N

J

(
x− y

εn

)
g

(
x + y

2

) ∣∣∣∣
uεn(y)− uεn(x)

εn

∣∣∣∣
p

dx dy

=
∫

RN

∫

RN

CJ,p

2
J(z)g(w)χ×Ω

(
w ± εn

2
z
) ∣∣∣∣

uεn(w + εn
2 z)− uε(w − εn

2 z)
εn

∣∣∣∣
p

dw dz ≤ M.

Therefore, by Proposition 4.1, u ∈ W 1,p
g (Ω) and

(4.13)(
CJ,p

2
J(z)

)1/p

(g(w))1/pχ×
Ω

(
w ± ε

2
z
) uεn(w + εn

2 z)− uεn(w − εn
2 z)

εn
⇀

(
CJ,p

2
J(z)

)1/p

h(w, z)

weakly in Lp(RN )× Lp(RN ) with (J(z))1/ph(w, z) = (J(z))1/p(g(w))1/pz · ∇u(w) in S ×RN and
(J(z))1/ph(w, z) = 0 in (RN \ Ω)× RN . Moreover, we can also assume that

J(z)1/p′g(w)1/p′χ×
Ω

(
w ± εn

2
z
) ∣∣∣∣

uεn(w + εn
2 z)− uεn(w − εn

2 z)
εn

∣∣∣∣
p−2

×uεn(w + εn
2 z)− uεn(w − εn

2 z)
εn

⇀ J(z)1/p′χ(w, z)

weakly in Lp′(RN )× Lp′(RN ), with J(z)1/p′χ(w, z) = 0 in (RN \Ω)×RN . Therefore, passing to
the limit in (4.10) for ε = εn, we get

(4.14)
∫

Ω
uv +

∫

RN

∫

S

CJ,p

2
J(z)g(w)1/pχ(w, z) z · ∇v(w) dw dz =

∫

Ω
φv

for every v smooth and, by approximation, for every v ∈ W 1,p
g,S(Ω). Then, also

(4.15)
∫

Ω
u2 +

∫

RN

∫

S

CJ,p

2
J(z)g(w)1/pχ(w, z) z · ∇u(w) dw dz =

∫

Ω
φu.

Let us see now that, for every v ∈ W 1,p
g,S(Ω),

(4.16)
∫

RN

∫

S

CJ,p

2
J(z)g(w)1/pχ(w, z)z · ∇v(x) dw dz =

∫

S
g |∇u|p−2∇u · ∇v.

In fact, taking v = uεn in (4.8), taking limits and considering (4.15), we get

(4.17)
lim sup

n

∫

RN

∫

RN

CJ,p

2
J(z)g(w)χ×Ω(w ± εn

2
z)

∣∣∣∣
uεn(w + εn

2 z)− uεn(w − εn
2 z)

εn

∣∣∣∣
p

dx dz

≤
∫

Ω
φu−

∫

Ω
uu =

∫

RN

∫

S

CJ,p

2
J(z)g(w)1/pχ(x, z) z · ∇u(x) dx dz.
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Now, by the monotonicity Lemma 2.5, for every ρ smooth,

−
∫

Ω

∫

Ω
J

(
x− y

εn

)
g

(
x + y

2

)
|ρ(y)− ρ(x)|p−2(ρ(y)− ρ(x)) dy (uεn(x)− ρ(x)) dx

≤ −
∫

Ω

∫

Ω
J

(
x− y

εn

)
g

(
x + y

2

)
|uεn(y)− uεn(x)|p−2(uεn(y)− uεn(x)) dy (uεn(x)− ρ(x)) dx.

Using the change of variable (4.9) and taking limits, on account of (4.13) and (4.17), we obtain
for every ρ smooth,

(4.18)

∫

RN

∫

S

CJ,p

2
J(z)g(w)|z · ∇ρ(w)|p−2z · ∇ρ(w) z · (∇u(w)−∇ρ(w)) dw dz,

≤
∫

RN

∫

S

CJ,p

2
J(z)g(w)1/pχ(w, z) z · (∇u(w)−∇ρ(w)) dw dz.

Now, by approximation, we can take in (4.18), ρ = u±λv, λ > 0, v ∈ W 1,p
g,S(Ω). So, letting λ → 0,

we get ∫

RN

∫

S

CJ,p

2
J(z)g(w)1/p′χ(w, z)z · ∇v(w) dw dz

=
∫

RN

∫

S

CJ,p

2
J(z)g(w) |z · ∇u(w)|p−2 (z · ∇u(w)) (z · ∇v(w)) dw dz.

Consequently,∫

RN

∫

S

CJ,p

2
J(z)g(w)1/pχ(w, z)z · ∇v(w) dw dz

= CJ,p

∫

S
g(w)a(∇u(w)) · ∇v(w)dw, for every v ∈ W 1,p

g,S(Ω),

where

aj(ξ) = CJ,p

∫

RN

1
2
J(z) |z · ξ|p−2 z · ξ zj dz.

Then, since a(ξ) = |ξ|p−2ξ (see [7] for the details), (4.16) is true. ¤
Theorem 4.3. Assume p > 1, J satisfies (HJ) and J(x) ≥ J(y) if |x| ≤ |y|, and g satisfies (3.1)
and (3.3). Assume also g is lower semicontinuous. Then, for any φ ∈ L∞(Ω), we have that

(4.19)
(
I + B

Jp,ε,g
p

)−1
φ → (

I + Bg
p

)−1
φ in Lp(Ω) as ε → 0.

Proof. For each m ∈ N, let the open sets Sm = {x ∈ Ω : dist(x, ∂S) > 1/m}.We have that
S = ∪mSm, there exists αm > 0 such that g(x) ≥ αm > 0 for every x ∈ Sm, and there exists a
finite number of balls Bi covering Sm, with Bi ⊂ Sm+1.

Let εn a subsequence converging to 0. We can suppose that such sequence, or a subsequence
if necessary, satisfies (4.12), then, in each ball Bi,∫

Bi

∫

Bi

1
2

CJ,p

εn
N

J

(
x− y

εn

)
g

(
x + y

2

) ∣∣∣∣
uεn(y)− uεn(x)

εn

∣∣∣∣
p

dx dy ≤ M,

and also ∫

Bi

∫

Bi

1
2

CJ,p

εn
N

J

(
x− y

εn

) ∣∣∣∣
uεn(y)− uεn(x)

εn

∣∣∣∣
p

dx dy ≤ M/αm+1.
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Therefore, by [7, Proposition 3.2(2.i)] (see also [17, Theorem 4]), taking into account (4.7),
(
I + B

Jp,εn ,g
p

)−1
φ → (

I + Bg
p

)−1
φ a.e. in Ω.

Now, since in fact
{(

I + B
Jp,εn ,g
p

)−1
φ

}
is bounded in L∞(Ω) the result follows. ¤

From the above theorem, by standard results of the Nonlinear Semigroup Theory (see [20] and
[16]), we obtain the following result.

Theorem 4.4. Let p > 1. Assume J satisfies (HJ) and J(x) ≥ J(y) if |x| ≤ |y|, and g satisfies
(3.1) and (3.3). Let T > 0 and u0 ∈ Lp(Ω). Let uε the unique solution of P

Jp,ε,g
p (u0) and u the

unique entropy solution of Ng
p (u0). Then

lim
ε→0

sup
t∈[0,T ]

‖uε(t, ·)− u(t, ·)‖Lp(Ω) = 0.

Proof. Since BJ,g
p and Bg

p∩(Lp(Ω)×Lp(Ω)) are m-completely accretive in Lp(Ω), to get the result

it is enough to see that
(
I + B

Jp,ε,g
p

)−1
φ → (I + Bg

p)−1
φ in Lp(Ω) as ε → 0 for any φ ∈ L∞(Ω),

which follows by Theorem 4.3. ¤

5. Existence and uniqueness of solutions for the nonlocal problem.
The case p = 1

This section deals with the existence and uniqueness of solutions for the nonlocal problem

P J,g
1 (u0)





ut(t, x) =
∫

Ω
J(x− y)g

(
x + y

2

)
u(t, y)− u(t, x)
|u(t, y)− u(t, x)| dy.

u(x, 0) = u0(x).

First, let us introduce what we will understand by a solution.

Definition 5.1. A solution of P J,g
1 (u0) in [0, T ] is a function u ∈ W 1,1(0, T ; L1(Ω)) which satisfies

u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =
∫

Ω
J(x− y)g

(
x + y

2

)
h(t, x, y) dy a.e. in ]0, T [×Ω,

for some h ∈ L∞(0, T ; L∞(Ω× Ω)) with ‖h‖∞ ≤ 1 such that h(t, x, y) = −h(t, y, x) and

J(x− y)g
(

x + y

2

)
h(t, x, y) ∈ J(x− y)g

(
x + y

2

)
sign(u(t, y)− u(t, x)).

Here sign(·) is the multivalued function given by

sign(r) =




−1 if r < 0,

[−1, 1] if r = 0,

1 if r > 0.

As in the case p > 1, to prove the existence and uniqueness of solutions of P J
1 (u0) we use the

Nonlinear Semigroup Theory, so we start introducing the following operator in L1(Ω).
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Definition 5.2. Let J satisfies (HJ), g ∈ L∞(RN ), g ≥ 0 a.e. We define the operator BJ,g
1

in L1(Ω) × L1(Ω) by û ∈ BJ,g
1 u if and only if u, û ∈ L1(Ω), there exists h ∈ L∞(Ω × Ω),

h(x, y) = −h(y, x) for almost all (x, y) ∈ Ω× Ω, ‖h‖∞ ≤ 1,

û(x) = −
∫

Ω
J(x− y)g

(
x + y

2

)
h(x, y) dy, a.e. x ∈ Ω

and

(5.1) J(x− y)g
(

x + y

2

)
h(x, y) ∈ J(x− y)g

(
x + y

2

)
sign(u(y)− u(x)),

a.e. (x, y) ∈ Ω× Ω.

Remark 5.3.
1. It is not difficult to see that (5.1) is equivalent to

−
∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
h(x, y)dyu(x)dx =

1
2

∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
|u(y)− u(x)|dydx,

2. L1(Ω) = Dom(BJ,g
1 ) and BJ,g

1 is closed in L1(Ω)× L1(Ω).
3. BJ,g

1 is positively homogeneous of degree zero, that is, if û ∈ BJ,g
1 u and λ > 0 then λû ∈

BJ,g
1 (λu).

Theorem 5.4. The operator BJ,g
1 is completely accretive and satisfies L∞(Ω) ⊂ Ran(I + BJ,g

1 ).

Proof. Let ûi ∈ BJ,g
1 ui, i = 1, 2. Then there exists hi ∈ L∞(Ω × Ω), ‖hi‖∞ ≤ 1, hi(x, y) =

−hi(y, x), J(x − y)g
(x+y

2

)
hi(x, y) ∈ J(x − y)g

(x+y
2

)
sign(ui(y) − ui(x)) for almost all (x, y) ∈

Ω× Ω, such that

ûi(x) = −
∫

Ω
J(x− y)g

(
x + y

2

)
hi(x, y) dy, a.e. x ∈ Ω,

for i = 1, 2. Given q ∈ P0, we have∫

Ω
(û1(x)− û2(x))q(u1(x)− u2(x)) dx

=
1
2

∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
(g1(x, y)− g2(x, y)) (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dxdy.

Now, by the mean value Theorem

J(x− y)g
(x+y

2

)
(h1(x, y)− h2(x, y)) [q(u1(y)− u2(y))− q(u1(x)− u2(x))]

= J(x− y)g
(x+y

2

)
(h1(x, y)− h2(x, y))q′(ξ) [(u1(y)− u2(y))− (u1(x)− u2(x))]

= J(x− y)g
(x+y

2

)
q′(ξ) [h1(x, y)(u1(y)− u1(x))− h1(x, y)(u2(y)− u2(x))]

−J(x− y)g
(x+y

2

)
q′(ξ) [h2(x, y)(u1(y)− u1(x))− h2(x, y)(u2(y)− u2(x))] ≥ 0,

since

J(x− y)g
(

x + y

2

)
hi(x, y)(ui(y)− ui(x)) = J(x− y)g

(
x + y

2

)
|ui(y)− ui(x)|, i = 1, 2,
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and

−J(x− y)g
(

x + y

2

)
hi(x, y)(uj(y)− uj(x)) ≥ −J(x− y)g

(
x + y

2

)
|uj(y)− uj(x)|, i 6= j,

we get ∫

Ω
(û1(x)− û2(x))q(u1(x)− u2(x)) dx ≥ 0,

from where it follows that BJ,g
1 is a completely accretive operator.

To show that BJ,g
1 satisfies the range condition, let us see that for any φ ∈ L∞(Ω),

lim
p→1+

(I + BJ,g
p )−1φ = (I + BJ,g

1 )−1φ weakly in L1(Ω).

Let φ ∈ L∞(Ω). For 1 < p < +∞, by Theorem 2.6, there is up such that up =
(
I + BJ,g

p

)−1
φ,

that is,

up(x)−
∫

Ω
J (x− y) g

(x+y
2

) |up(y)− up(x)|p−2(up(y)− up(x)) dy = φ(x) a.e. x ∈ Ω.

Thus, for every v ∈ L∞(Ω), we can write

(5.2)
∫

Ω
upv −

∫

Ω

∫

Ω
J (x− y) g

(x+y
2

) |up(y)− up(x)|p−2(up(y)− up(x)) dy v(x) dx =
∫

Ω
φv.

Since up ¿ φ, by Proposition 2.1, we have that there exists a sequence pn → 1 such that

(5.3) upn ⇀ u weakly in L2(Ω), u ¿ φ.

Observe that ‖upn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω). Now, since
∣∣|upn(y)− upn(x)|pn−2 (upn(y)− upn(x))

∣∣ ≤ (2‖φ‖∞)pn−1 ,

there exists h(x, y) such that

|upn(y)− upn(x)|pn−2 (upn(y)− upn(x)) ⇀ h(x, y),

weakly in L1(Ω× Ω), g(x, y) = −g(y, x) for almost all (x, y) ∈ Ω× Ω, and ‖h‖∞ ≤ 1.
Therefore, passing to the limit in (5.2) for p = pn, we get

(5.4)
∫

Ω
uv −

∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
h(x, y) dy v(x) dx =

∫

Ω
φv

for every v ∈ L∞(Ω), and consequently we get

u(x)−
∫

Ω
J(x− y)g

(
x + y

2

)
h(x, y) dy = φ(x) a.e. x ∈ Ω.

Then, to finish the proof we have to show that
(5.5)

−
∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
h(x, y) dyu(x) dx =

1
2

∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
|u(y)− u(x)| dydx.

In fact, by (5.2),
1
2

∫

Ω

∫

Ω
J(x− y) |upn(y)− upn(x)|pn dy dx =

∫

Ω
φupn −

∫

Ω
upnupn
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so, using (5.3) and (5.4) with v = u, we get

lim sup
n→+∞

1
2

∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
|upn(y)− upn(x)|pn dy dx

≤
∫

Ω
φu−

∫

Ω
uu = −

∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
h(x, y) dy u(x) dx.

Now, by the monotonicity Lemma 2.5, for all ρ ∈ L∞(Ω),

−
∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
|ρ(y)− ρ(x)|pn−2(ρ(y)− ρ(x)) dy (upn(x)− ρ(x)) dx

≤ −
∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
|upn(y)− upn(x)|pn−2(upn(y)− upn(x)) dy (upn(x)− ρ(x)) dx.

Therefore, taking limits, we obtain

−
∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
sign0(ρ(y)− ρ(x)) dy (u(x)− ρ(x)) dx

≤ −
∫

Ω

∫

Ω
J(x− y)g

(
x + y

2

)
h(x, y) dy (u(x)− ρ(x)) dx.

Taking now, ρ = u± λu, λ > 0, and letting λ → 0, we get (5.5), and the proof is finished. ¤

Theorem 5.5. For every initial datum u0 ∈ L1(Ω) and ant T > 0 the problem P J,g
1 (u0) has a

unique solution in (0, T ) and, moreover, an L1–contraction principle holds for such solutions.

Proof. As a consequence of the above results, we have that the abstract Cauchy problem

(5.6)

{
u′(t) + BJ,g

1 u(t) 3 0, t ∈]0, T [,

u(0) = u0

has a unique mild solution u for every initial datum u0 ∈ L1(Ω) and T > 0 (see [16]). Moreover,
due to the complete accretivity and the homogeneity of the operator BJ,g

1 , the mild solution of
(5.6) is a strong solution ([15]) and, so, a solution of P J,g

1 (u0). ¤

6. The Local Problem for p = 1

Let Ω ⊂ RN a bounded domain and 0 ≤ g ∈ L∞(Ω). In this section we are interested in the
following local diffusion equation with homogeneous Neumann boundary condition,

Ng
1 (u0)





ut = div
(

g
Du

|Du|
)

in ]0, T [×Ω,

g
Du

|Du| · η = 0 on ]0, T [×∂Ω,

u(x, 0) = u0(x) in Ω,

where η is the unit outward normal on ∂Ω.
Due to the linear growth condition on the Lagrangian, the natural energy space to study prob-

lem Ng
1 (u0) is the space of functions of bounded variation. Let us recall several facts concerning

functions of bounded variation (for further information concerning functions of bounded variation
we refer to [38], [51] or [2]).
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A function u ∈ L1(Ω) whose partial derivatives in the sense of distributions are measures with
finite total variation in Ω is called a function of bounded variation. The class of such functions
will be denoted by BV (Ω). Thus u ∈ BV (Ω) if and only if there are Radon measures µ1, . . . , µN

defined in Ω with finite total mass in Ω and∫

Ω
uDiϕdx = −

∫

Ω
ϕdµi

for all ϕ ∈ C∞
0 (Ω), i = 1, . . . , N . Thus the gradient of u is a vector valued measure with finite

total variation

(6.1) |Du| = sup
{∫

Ω
udiv ϕdx : ϕ ∈ C∞

0 (Ω,RN ), |ϕ(x)| ≤ 1 for x ∈ Ω
}

.

The space BV (Ω) is endowed with the norm ‖u‖BV = ‖u‖L1(Ω) + |Du|. For u ∈ BV (Ω), the
gradient Du is a Radon measure that decomposes into its absolutely continuous and singular
parts Du = Dau + Dsu. Then Dau = ∇u LN where ∇u is the Radon-Nikodym derivative of the
measure Du with respect to the Lebesgue measure LN .

We shall need several results from [10] (see also [4]). Following [10], let

Xp(Ω) =
{
z ∈ L∞(Ω,RN ) : div(z) ∈ Lp(Ω)

}
, 1 ≤ p ≤ N.

If z ∈ Xp(Ω) and w ∈ BV (Ω) ∩ Lp′(Ω) we define the functional (z, Dw) : C∞
0 (Ω) → R by the

formula

〈(z, Dw), ϕ〉 = −
∫

Ω
w ϕ div(z) dx−

∫

Ω
w z · ∇ϕdx.

Then (z, Dw) is a Radon measure in Ω,
∫

Ω
(z, Dw) =

∫

Ω
z · ∇w dx ∀ w ∈ W 1,1(Ω) ∩ L∞(Ω)

and ∣∣∣∣
∫

B
(z, Dw)

∣∣∣∣ ≤
∫

B
|(z, Dw)| ≤ ‖z‖∞

∫

B
|Dw|

for any Borel set B ⊆ Ω.
In [10], a weak trace on ∂Ω of the normal component of z ∈ Xp(Ω) is defined. Concretely, it

is proved that there exists a linear operator γ : Xp(Ω) → L∞(∂Ω) such that ‖γ(z)‖∞ ≤ ‖z‖∞
and γ(z)(x) = z(x) · ν(x) for all x ∈ ∂Ω if z ∈ C1(Ω,RN ). We shall denote γ(z)(x) by [z, ν](x).
Moreover, the following Green’s formula, relating the function [z, ν] and the measure (z, Dw), for
z ∈ Xp(Ω) and w ∈ BV (Ω) ∩ Lp′(Ω), is established:

(6.2)
∫

Ω
w div(z) dx +

∫

Ω
(z, Dw) =

∫

∂Ω
[z, ν]w dHN−1.

To define the differential operator div
(
g Du
|Du|

)
we need to recall the concept of total variation

with respect to an anisotropy (see [1], [14] and [24]). We say that a function φ : Ω×RN → [0,∞)
is a metric integrand if φ is a Borel function satisfying the conditions

for a.e. x ∈ Ω, the map ξ ∈ RN → φ(x, ξ) is convex,(6.3)

φ(x, tξ) = |t|φ(x, ξ) ∀x ∈ Ω, ∀ ξ ∈ RN , ∀ t ∈ R,(6.4)
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and there exists a constant Γ > 0 such that

0 ≤ φ(x, ξ) ≤ Γ‖ξ‖ ∀x ∈ Ω, ∀ ξ ∈ RN .

Recall that the polar function φ0 : Ω× RN → R of φ defined by

φ0(x, ξ∗) = sup{〈ξ∗, ξ〉 : ξ ∈ RN , φ(x, ξ) ≤ 1}.
Let

Kφ(Ω) :=
{
z ∈ X∞(Ω) : φ0(x, z(x)) ≤ 1 for a.e x ∈ Ω, [z, ν] = 0

}
.

Definition 6.1 ([24]). Let u ∈ L1(Ω). We define the φ-total variation of u in Ω as
∫

Ω
|Du|φ := sup

{∫

Ω
udiv z dx : z ∈ Kφ(Ω)

}
.

We set

BVφ(Ω) :=
{

u ∈ L1(Ω) :
∫

Ω
|Du|φ < ∞

}
.

From the definition it follows that u ∈ L1(Ω) → ∫
Ω |Du|φ is a lower-semicontinuous functional

with respect to the L1-convergence.
It is easy to see that if u ∈ BV (Ω), then∫

Ω
|Du|φ ≤ Γ

∫

Ω
|Du|.

Moreover, if φ is coercive in Ω, that is, there exist λ > 0 such that λ‖ξ‖ ≤ φ(x, ξ) for all x ∈ Ω and
for every ξ ∈ RN , and continuous in second variable, in [1] it is proved that BVφ(Ω) = BV (Ω)
and

λ

∫

Ω
|Du| ≤

∫

Ω
|Du|φ ≤ Γ

∫

Ω
|Du|.

In [14] (see also [24]) the following result is proved.

Proposition 6.2. Given a metric integrand φ, let

Jφ(u) :=





∫

Ω
φ(x,∇u(x)) dx if u ∈ W 1,1(Ω),

+∞ if u ∈ L1(Ω) \W 1,1(Ω).

Let Jφ be the relaxed functional, that is,

Jφ(u) := inf
{

lim inf
n→∞ Jφ(un) : un → u in L1(Ω), un ∈ W 1,1(Ω)

}
.

Then, for every u ∈ BVφ(Ω), we have

Jφ(u) =
∫

Ω
|Du|φ.

Hence, for every u ∈ BVφ(Ω), there exists a sequence un ∈ W 1,1(Ω) such that un → u in L1(Ω)
and ∫

Ω
φ(x,∇un(x)) dx →

∫

Ω
|Du|φ.

In particular, BVφ(Ω) is the finiteness domain of Jφ.
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Moreover, if u ∈ BVφ(Ω) ∩ Lq(Ω) (1 ≤ q < ∞), then we can find a sequence un ∈ W 1,1(Ω) ∩
Lq(Ω) such that un → u in Lq(Ω).

In [24], the generalized Green’s formula of Anzellotti (6.2) (see [10]) is extended to the case in
which the function belongs to BVφ(Ω). Given u ∈ BVφ(Ω)∩Lp′(Ω) and z ∈ Xp(Ω), we define the
functional (z, Du) : D(Ω) → R as

〈(z, Du), ϕ〉 := −
∫

Ω
uϕdiv(z) dx−

∫

Ω
uz · ∇ϕ dx.

For 1 ≤ p ≤ ∞, we denote,

Ap,φ(Ω) :=
{
z ∈ Xp(Ω) : ‖φ0(x, z(x))‖L∞(Ω) < ∞}

.

The following result can be proved as in [10] (see also [4]).

Proposition 6.3. Assume φ is a metric integrand. If u ∈ BVφ(Ω) ∩ Lp′(Ω) and z ∈ Ap,φ(Ω),
then (z, Du) is a Radon measure in Ω and

∣∣∣∣
∫

Ω
(z, Du)

∣∣∣∣ ≤ ‖φ0
g(·, z(·))‖L∞(Ω)

∫

Ω
|Du|φ.

Moreover, if [z, ν] = 0 on ∂Ω, the following Green’s formula holds,

(6.5)
∫

Ω
udiv(z) dx +

∫

Ω
(z, Du) = 0.

As a consequence of Green’s formula (6.5), we have
∫

Ω
|Du|φ := sup

{∫

Ω
(z, Du) : z ∈ Kφ(Ω)

}
.

A particular case, interesting for our purposes, is when g : Ω → [0,∞) is a bounded Borel function
and we consider the metric integrand φg : Ω × RN → [0, +∞] defined by φg(x, ξ) := g(x)‖ξ‖.
Then (see [1])

φ0
g(x, ξ∗) =





0 if g(x) = 0, ξ∗ = 0,

+∞ if g(x) = 0, ξ∗ 6= 0,

‖ξ∗‖
g(x)

if g(x) > 0, ξ∗ ∈ RN .

Consequently,

Kg(Ω) := Kφg(Ω) = {z ∈ X∞(Ω) : ‖z(x)‖ ≤ g(x) for a.e x ∈ Ω, [z, ν] = 0} .

In this particular case we will use the notation

BVg(Ω) :=
{

u ∈ L1(Ω) :
∫

Ω
|Du|g < ∞

}
,

where ∫

Ω
|Du|g := sup

{∫

Ω
udiv z dx : z ∈ Kg(Ω)

}
= sup

{∫

Ω
(z, Du) : z ∈ Kg(Ω)

}
.
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We define the energy functional Φg : L2(Ω) → [0, +∞], associated with the problem Ng
1 (u0), by

Φg(u) :=





∫

Ω
|Du|g if u ∈ BVg(Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) \BVg(Ω).

We have that Φg is convex and lower semi-continuous. Therefore, the subdifferential ∂Φg of Φg,
i.e. the operator in L2(Ω) defined by

(6.6) v ∈ ∂Φg(u) ⇐⇒ Φg(w)− Φg(u) ≥
∫

Ω
v(w − u) dx, ∀ w ∈ L2(Ω)

is a maximal monotone operator in L2(Ω). Consequently, the existence and uniqueness of a
solution of the abstract Cauchy problem

(6.7)

{
u′(t) + ∂Φg(u(t)) 3 0 t ∈]0,∞[

u(0) = u0 u0 ∈ L2(Ω)

follows immediately from the Nonlinear Semigroup Theory (see [19]). Now, to get the full strength
of the abstract result derived from Semigroup Theory we need to characterize ∂Φg.

Lemma 6.4. The following assertions are equivalent:
(a) (u, v) ∈ ∂Φg;
(b)

(6.8) u ∈ L2(Ω) ∩BVg(Ω), v ∈ L2(Ω),

(6.9) ∃z ∈ X(Ω)2, ‖z(x)‖ ≤ g(x), a.e. x ∈ Ω such that v = −div(z) in D′(Ω),

and

(6.10)
∫

Ω
(z, Du) =

∫

Ω
|Du|g,

(6.11) [z, ν] = 0 HN−1 − a.e. on ∂Ω.;

(c) (6.8) and (6.9) hold, and

(6.12)
∫

Ω
(w − u)v dx ≤

∫

Ω
z · ∇w dx−

∫

Ω
|Du|g, ∀w ∈ W 1,1(Ω) ∩ L2(Ω);

(d) (6.8) and (6.9) hold, and

(6.13)
∫

Ω
(w − u)v dx ≤

∫

Ω
(z, Dw)−

∫

Ω
|Du|g ∀w ∈ L2(Ω) ∩BVg(Ω);

Proof. First let us see the equivalence of (a) and (b). This follows working as in the proof of
Proposition 1.10 in [4]. If we denote by

Φ̃g(v) := sup
{∫

Ω wv dx

Φg(w)
: w ∈ L2(Ω)

}
,

since Φg is positive homogeneous of degree 1, by Theorem 1.8 in [4], we have

(6.14) (u, v) ∈ ∂Φg ⇐⇒ Φ̃g(v) ≤ 1,

∫

Ω
vu dx = Φg(u).
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Let us define for v ∈ L2(Ω)

Ψg(v) :=

{
inf

{‖φ0
g(·, z(·))‖L∞(Ω) : z ∈ C(v)

}
if C(v) 6= ∅

+∞ if C(v) = ∅,
where

C(v) :=
{
z ∈ A2,φg(Ω) : v = −div (z) in D′(Ω), [z, ν] = 0 HN−1 − a.e. on ∂Ω

}
.

We claim that

(6.15) Ψg = Φ̃g.

Let v ∈ L2(Ω). If Ψg(v) = +∞, then Φ̃g(v) ≤ Ψg(v). Then, we may assume Ψg(v) < ∞. Let
z ∈ C(v) such that ‖φ0

g(·, z(·))‖L∞(Ω) < ∞. By Proposition 6.3, for any u ∈ BVg(Ω) ∩ L2(Ω) we
have ∫

Ω
uv dx =

∫

Ω
(z, Du) ≤ ‖φ0

g(·, z(·))‖L∞(Ω)

∫

Ω
|Du|φ.

Taking supremums in u we obtain Φ̃g(v) ≤ ‖φ0
g(·, z(·))‖L∞(Ω). Now, taking infimums in z we ob-

tain Φ̃g(v) ≤ Ψg(v). To prove the opposite inequality, letD :=
{−div (z) : z ∈ C(v), v ∈ L2(Ω)

}
.

Then, for u ∈ BVg(Ω) ∩ L2(Ω), we have

Ψ̃g(u) := sup
{∫

Ω uw dx

Ψg(w)
: w ∈ L2(Ω)

}
≥ sup

{∫
Ω uw dx

Ψg(w)
: w ∈ D

}

≥ sup
{ − ∫

Ω udiv (z) dx

‖φ0
g(·, z(·))‖L∞(Ω)

: z ∈ C(w), w ∈ L2(Ω)
}

= Φg(u).

Hence, Ψg(u) ≤ Φ̃g(u), and (6.15) holds.
By (6.14) and (6.15), it follows the equivalence between (a) and (b). To obtain (d) from (b) is

sufficient to multiply both terms of the equation v = −div(z) by w − u, for w ∈ L2(Ω) ∩BVg(Ω)
and to use Green’s formula (6.5). It is clear that (d) implies (c). To prove that (b) follows from
(d), we chose w = u in (6.13) and having in mind Proposition 6.3 and (6.9), we obtain that

∫

Ω
|Du|g ≤

∫

Ω
(z, Du) ≤ ‖φ0

g(·, z(·))‖L∞(Ω)

∫

Ω
|Du|φ ≤

∫

Ω
|Du|g,

from where (6.10) follows. To obtain (6.11), we choose w = u ± ϕ in (6.13) with ϕ ∈ BV (Ω) ∩
C∞(Ω) ∩W 1,1(Ω) and we get

±
∫

Ω
ϕv dx ≤ ±

∫

Ω
z · ∇ϕdx,

from where it follows that ∫

Ω
ϕdiv(z) dx +

∫

Ω
z · ∇ϕ dx = 0.

Then, having in mind the definition of the weak trace on ∂Ω of the normal component of z given
in [10], we get

[z, ν] = 0 HN−1 − a.e. on ∂Ω.
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In order to prove that (c) implies (d), let w ∈ L2(Ω)∩BVg(Ω). By Proposition 6.2, there exists
a sequence wn ∈ W 1,1(Ω) ∩ L2(Ω) such that

wn → w in L2(Ω) and
∫

Ω
g(x)|∇wn(x)| dx →

∫

Ω
|Dw|g.

Using wn as test function in ( 6.12), we have

(6.16)
∫

Ω
(wn − u)v dx ≤

∫

Ω
z · ∇wn dx−

∫

Ω
|Du|g.

Now, by Lemma 13.2 in [24], we have∫

Ω
z · ∇wn dx →

∫

Ω
(z, Dw).

Therefore, taking limit as n → +∞ in (6.16), we get (6.13). ¤
Definition 6.5. We say that u ∈ C([0, T ]; L2(Ω)) is a solution of problem Ng

1 (u0) in [0, T ] × Ω
if u ∈ W 1,2

loc (0, T ; L2(Ω)) u(t) ∈ BVg(Ω) for almost all t ∈]0, T [, u(0) = u0, and there exists
z ∈ L∞(]0, T [×Ω;RN ), ‖z(t, x)‖ ≤ g(x), a.e. (t, x) ∈]0, T [×Ω such that [z(t), ν] = 0 in ∂Ω a.e.
t ∈]0, T [, satisfying

ut = div(z) in D′(]0, T [×Ω)
and ∫

Ω
(u(t)− w)ut dx ≤

∫

Ω
(z, Dw)−

∫

Ω
|Du(t)|g

for all w ∈ L2(Ω) ∩BVg(Ω) an a.e. t ∈ [0, T ].

By Lemma 6.4, the concept of solution for problem Ng
1 (u0) coincides with the concept of

strong solution for the abstract Cauchy problem (6.7). Then, since we know that problem (6.7)
has a unique strong solution for any initial data in L2(Ω), we have the following existence and
uniqueness result.

Theorem 6.6. Let g : Ω → [0,∞) is a bounded Borel function. For any initial data u0 ∈ L2(Ω)
there exists a unique solution u of the problem Ng

1 (u0) in [0, T ]×Ω for every T > 0. Moreover if
u and v are solutions of Ng

1 (u0) corresponding to the initial conditions u0, v0 ∈ L2(Ω), then

‖u(t)− v(t)‖L2(Ω) ≤ ‖u0 − v0‖L2(Ω) for any t > 0.

7. Convergence of the nonlocal problems to the local problem. The case p = 1

Similarly to the case p > 1, in order to do the rescaling, we need a variant of [7, Proposition
3.2(1.ii)].

Proposition 7.1. Let ρ : RN → R be a nonnegative continuous radial function with compact
support, non-identically zero, and ρn(x) := nNρ(nx). Let S an open set, S ⊂ Ω, and let l ∈
L∞(RN ) such that

l(x) =
{

l(x) > 0 in S,

0 in RN \ S.

Let us also assume that l satisfies

(7.1) l ∈ C(S).
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Let {fn} be a sequence of functions in L1(Ω) such that

(7.2)
∫

Ω

∫

Ω
ρn(y − x)l

(
x + y

2

)
|fn(y)− fn(x)| dx dy ≤ M

1
n

and {fn} is weakly convergent in L1(S) to f .
Then, l ∂f

∂wj
is a bounded Radon measure in S, j = 1, . . . , N , and moreover

lim
n

[
ρ(z)l(w)χΩ

(
w +

1
2n

)
χΩ

(
w − 1

2n
z

)
fn

(
w + 1

2nz
)− f

n

(
w − 1

2nz
)

1/n

]
= µ(w, z)

weakly as measures with

µ(w, z) = ρ(z)l(w)z · ∇f(w) in S × RN ,

and
µ(w, z) = 0 in (RN \ Ω)× RN .

Proof. Making the change of variables y = x + 1
nz, x = w − 1

2nz, we rewrite (7.2) as
∫

RN

∫

RN

ρ(z)l(w)χ×Ω

(
w ± 1

2n
z

) ∣∣∣∣∣
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n

∣∣∣∣∣ dw dz ≤ M,

where χ×
Ω

(
w ± 1

2nz
)

= χΩ

(
w + 1

2nz
)
χΩ

(
w − 1

2nz
)
. Therefore, up to a subsequence,

(7.3) ρ(z)l(w)χ×Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
⇀ µ(w, z)

as measures and
µ(w, z) = 0 in (RN \ Ω)× RN .

If ϕ ∈ C∞
c (Ω), supp(ϕ) ⊂ S, taking

ϕ̂ =

{ ϕ

l
in S,

0 otherwise,

and ψ ∈ C∞
c (RN ), by (7.3) and [2, Proposition 1.62], we have
∫

RN

∫

Ω
ρ(z)l(w)χ×Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
ϕ̂(w)dwψ(z)dz

→
∫

RN

∫

Ω
ϕ̂(w)ψ(z) dµ(w, z),

That is,

(7.4)

∫

RN

∫

S
ρ(z)χ×Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
ϕ(w)dwψ(z)dz

→
∫

RN

∫

S

1
l(w)

ϕ(w)ψ(z) dµ(w, z).
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Now, for n large enough,
∫

RN

∫

S
ρ(z)χ×Ω

(
w ± 1

2n
z

)
fn

(
w + 1

2nz
)− fn

(
w − 1

2nz
)

1/n
ϕ(w)dwψ(z)dz

=
∫

RN

ρ(z)
∫

S

fn

(
w + 1

2nz
)− fn(w − 1

2nz)
1/n

ϕ(w)dwψ(z)dz

= −
∫

RN

ρ(z)
∫

S
fn(w)

ϕ(w + 1
2nz)− ϕ

(
w − 1

2nz
)

1/n
dwψ(z)dz.

Then, passing to the limit, on account of (7.4), we get

(7.5)
∫

RN

∫

S

1
l(w)

ϕ(w)ψ(z) dµ(w, z) = −
∫

RN

∫

S
ρ(z)f(w) z · ∇ϕ(w)ψ(z) dwdz.

Now, applying the disintegration theorem (Theorem 2.28 in [2]) to the measure µ, we get that
if π : S×RN → RN is the projection on the first factor and ν = π#|µ|, then there exists a Radon
measures µw in RN such that w 7→ µw is ν-measurable,

|µw|(RN ) ≤ 1 ν − a.e. in S

and, for any h ∈ L1(S × RN , |µ|),

h(w, ·) ∈ L1(RN , |µw|) ν − a.e. in w ∈ S, w 7→
∫

RN

h(w, z)dµw(z) ∈ L1(S, ν)

and

(7.6)
∫

S×RN

h(w, z)dµ(w, z) =
∫

S

(∫

RN

h(w, z)dµw(z)
)

dν(w).

From (7.5) and (7.6), we get, for ϕ ∈ C∞
c (S) and ψ ∈ C∞

c (RN ),
∫

S

(∫

RN

ψ(z)dµw(z)
)

1
l(w)

ϕ(w)dν(w) =
〈 N∑

i=1

∫

RN

ρ(z)ziψ(z)dz
∂f

∂wi
, ϕ

〉
.

Hence, as measures,
N∑

i=1

∫

RN

ρ(z)ziψ(z)dz
∂f

∂wi
=

∫

RN

ψ(z)dµw(z)
1
l
ν in S,

and therefore
N∑

i=1

∫

RN

ρ(z)ziψ(z)dz l
∂f

∂wi
=

∫

RN

ψ(z)dµw(z) ν in S.

Let now ψ̃ ∈ C∞
c (RN ) be a radial function such that ψ̃ = 1 in supp(ρ). Taking ψ(z) = ψ̃(z)zj

in the above expression and having in mind that∫

RN

ρ(z)zizjψ̃(z)dz = 0 if i 6= j,

we get ∫

RN

ρ(z)zj
2dz l

∂f

∂wj
=

∫

RN

ψ̃(z)zjdµw(z) ν in S.
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Since ν ∈ Mb(S) and w 7→ ∫
RN ψ̃(z)zjdµw(z) ∈ L1(S, ν), we obtain that l ∂f

∂wj
is a bounded Radon

measure in S. Going back to (7.6), we get

µ(w, z) = l(w)
N∑

i=1

∂f

∂wi
(x) · ρ(z)ziLN (z).

¤
For the proof our next results we need the following assumptions: we assume that g ∈ L∞(RN )

is such that

(7.7) g(x) =

{
g(x) > 0 a.e. in S ⊂ Ω, S an open set,

0 a.e. in RN \ S,

(7.8) g ∈ C(S).

Let us now proceed with the rescaling. Set

J1,ε(x) :=
CJ,1

ε1+N
J

(x

ε

)
, with

1
CJ,1

:=
1
2

∫

RN

J(z)|zN | dz.

Theorem 7.2. Assume J satisfies (HJ) and J(x) ≥ J(y) if |x| ≤ |y| and that g satisfies (7.7)
and (7.8). For any φ ∈ L∞(Ω), we have

(
I + B

J1,ε,g
1

)−1
φ → (I + ∂Φg)

−1 φ in L1(Ω) as ε → 0.

Proof. Given ε > 0, we set uε =
(
I + B

J1,ε,g
1

)−1
φ. Then, there exists hε ∈ L∞(Ω×Ω), hε(x, y) =

−hε(y, x) for almost all x, y ∈ Ω, ‖hε‖∞ ≤ 1,

J

(
x− y

ε

)
g

(
x + y

2

)
hε(x, y) ∈ J

(
x− y

ε

)
g

(
x + y

2

)
sign(uε(y)− uε(x)) a.e. x, y ∈ Ω

and

(7.9) − CJ,1

ε1+N

∫

Ω
J

(
x− y

ε

)
g

(
x + y

2

)
hε(x, y)dy = φ(x)− uε(x) a.e. x ∈ Ω.

Observe that

(7.10)
− CJ,1

ε1+N

∫

Ω

∫

Ω
J

(
x− y

ε

)
g

(
x + y

2

)
hε(x, y)dy uε(x) dx

=
CJ,1

ε1+N

1
2

∫

Ω

∫

Ω
J

(
x− y

ε

)
g

(
x + y

2

)
|uε(y)− uε(x)| dy dx.

By (7.9), we can write

(7.11)

CJ,1

2ε1+N

∫

Ω

∫

Ω
J

(
x− y

ε

)
g

(
x + y

2

)
hε(x, y)(v(y)− v(x)) dxdy

= − CJ,1

ε1+N

∫

Ω

∫

Ω
J

(
x− y

ε

)
g

(
x + y

2

)
hε(x, y)dyv(x) dx

=
∫

Ω
(φ(x)− uε(x))v(x) dx, ∀v ∈ L∞(Ω).
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Since uε ¿ φ, there exists a sequence εn → 0 such that

uεn ⇀ u weakly in L1(Ω), u ¿ φ.

Observe that ‖uεn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω). Hence taking ε = εn and v = uεn in (7.11),
changing variables and having in mind (7.10), we get

∫

RN

∫

RN

CJ,1

2
J(z)g(w)χ×Ω(x± εn

2
z)

∣∣∣∣
uεn(w + εn

2 z)− uεn(w − εn
2 z)

εn

∣∣∣∣ dw dz

=
∫

Ω

∫

Ω

1
2

CJ,1

εn
N

J

(
x− y

εn

)
g

(
x + y

2

) ∣∣∣∣
uεn(y)− uεn(x)

εn

∣∣∣∣ dx dy

=
∫

Ω
(φ(x)− uεn(x))uεn(x) dx ≤ M ∀n ∈ N.

Therefore, by Proposition 7.1, g ∂u
∂wj

is a bounded Radon measure in S, j = 1, . . . , N ,

(7.12)
CJ,1

2
J(z)g(w)χ×Ω(w ± εn

2
z)

uεn(w + εn
2 z)− uεn(w − εn

2 z)
εn

⇀ µ(w, z)

weakly as measures with

µ(w, z) =
CJ,1

2
J(z)g(w)z ·Du(w) in S × RN ,

and
µ(w, z) = 0 in (RN \ Ω)× RN .

And by [7, Proposition 3.2(2.ii)] (see also [17, Theorem 4])

uεn → u strongly in L1(Ω).

Moreover, we can also assume that

(7.13) J(z)χ×Ω(w ± εn

2
z)g(w)hεn(w − εn

2
z, w +

εn

2
z) ⇀ Λ(w, z)

weakly∗ in L∞(RN )×L∞(RN ), and |Λ(w, z)| ≤ g(w)J(z) almost everywhere in RN×RN . Chang-
ing variables and having in mind (7.11), we can write
(7.14)

CJ,1

2

∫

RN

∫

RN

J(z)χ×Ω(w ± εn

2
z)g(w)hεn(w − ε

2
z, w +

εn

2
z)

v(w + εn
2 z)− v(w − εn

2 z)
εn

dz dw

=
∫

Ω
(φ(x)− uεn(x))v(x) dx ∀v ∈ L∞(Ω).

By (7.13), passing to the limit in (7.14), we get

(7.15)
CJ,1

2

∫

RN

∫

S
Λ(w, z)z · ∇v(w) dw dz =

∫

Ω
(φ− u)v ∀v smooth,

and, by approximation, ∀v ∈ L∞(Ω) ∩W 1,1(Ω). We set ζ = (ζ1, . . . , ζN ), the vector field defined
by

ζj(w) :=
CJ,1

2

∫

RN

Λ(w, z)zj dz, j = 1, . . . , N.
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Then, ζ ∈ L∞(Ω,RN ), and from (7.15),

−div(ζ) = φ− u in D′(Ω).

Given ξ ∈ RN \ {0}, let Rξ be the rotation such that Rt
ξ(ξ) = e1|ξ|. If we make the change of

variables z = Rξ(y), we obtain

ζ(x) · ξ =
CJ,1

2

∫

RN

Λ(x, z)z · ξ dz =
CJ,1

2

∫

RN

Λ(x,Rξ(y))Rξ(y) · ξ dy

=
CJ,1

2

∫

RN

Λ(x,Rξ(y))y1|ξ| dy.

On the other hand, since J is a radial function and Λ(w, z) ≤ g(w)J(z) almost everywhere, we
obtain, CJ,1

−1 = 1
2

∫
RN J(z)|z1| dz and

|ζ(w) · ξ| ≤ CJ,1

2

∫

RN

g(w)J(y)|y1| dy|ξ| = g(w)|ξ| a.e. w ∈ RN .

Therefore, ‖ζ(w)‖l2(N) ≤ g(w) a.e. w ∈ RN .
Since u ∈ L∞(Ω), u ∈ BVg(Ω) and

∫
Ω |Du|g ≤ |gDu|(S), by Lemma 6.4, to finish the proof we

only need to show that

(7.16)
∫

Ω
(ρ− u)(φ− u) ≤

∫

S
ζ · ∇ρ− |gDu|(S) ∀ρ ∈ W 1,1(Ω).

Given ρ ∈ W 1,1(Ω), taking v = ρ− uεn in (7.14), we get

(7.17)

∫

Ω
(φ(x)− uεn(x))(ρ(x)− uεn(x)) dx

=
CJ,1

2

∫

RN

∫

RN

J(z)g(w)χ×Ω(w ± εn

2
z)hεn(w − εn

2
z, w +

εn

2
z)×

×
(

ρ(w + εn
2 z)− ρ(w − εn

2 z)
εn

− uεn(w + εn
2 z)− uεn(w − εn

2 z)
εn

)
dz dw.

Having in mind (7.12) and (7.13) and taking limit in (7.17) as n →∞, we obtain that∫

Ω
(ρ− u)(φ− u) dx ≤ CJ,1

2

∫

S

∫

RN

Λ(w, z)z · ∇ρ(w) dz dw − CJ,1

2

∫

S

∫

RN

|g(w)J(z)z ·Du| dz dw

=
∫

S
ζ · ∇ρ− CJ,1

2

∫

S

∫

RN

|g(w)J(z)z ·Du| dz dw.

Now, for every w ∈ S such that the Radon-Nikodym derivative gDu
|gDu|(w) 6= 0, let Rw be

the rotation such that Rt
w

(
gDu
|gDu|(w)

)
= e1

∣∣∣ gDu
|gDu|(w)

∣∣∣. Then, since J is a radial function and∣∣∣ gDu
|gDu|(w)

∣∣∣ = 1 |gDu|-a.e. in S, if we make the change of variables y = Rw(z), we have

CJ,1

2

∫

S

∫

RN

|g(w)J(z)z ·Du| dz dw =
CJ,1

2

∫

S

∫

RN

J(z)
∣∣∣∣z ·

gDu

|gDu|(w)
∣∣∣∣ dz d|gDu|(w)

=
CJ,1

2

∫

S

∫

RN

J(y) |y1| dy d|gDu|(w) =
∫

S
|gDu|.

Therefore (7.16) holds. ¤
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As a consequence of Theorem 7.2 and the Nonlinear Semigroup Theory (see [20]), we have the
following convergence result.

Theorem 7.3. Assume J satisfies (HJ) and J(x) ≥ J(y) if |x| ≤ |y|, and g satisfies (7.7) and
(7.8). Let T > 0 and u0 ∈ L2(Ω). Let uε the unique solution of P

J1,ε,g
1 (u0) and u the unique

solution of Ng
1 (u0). Then

(7.18) lim
ε→0

sup
t∈[0,T ]

‖uε(t, ·)− u(t, ·)‖L1(Ω) = 0.
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