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Abstract

We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion
equation in the half-line with a nonlinear boundary condition,





ut = uxx − λ(u + 1) logp(u + 1) (x, t) ∈ R+ × (0, T ),
−ux(0, t) = (u + 1) logq(u + 1)(0, t) t ∈ (0, T ),
u(x, 0) = u0(x) x ∈ R+,

with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and
when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-
up set and we describe the asymptotic behaviour close to the blow-up time, showing that
a phenomenon of asymptotic simplification takes place. We finally study the appearance of
extinction in finite time.
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1 Introduction and main results

In this paper we study the asymptotic behaviour of the solutions to the semilinear problem





ut = uxx − λ(u + 1) logp(u + 1) (x, t) ∈ R+ × (0, T ),
−ux(0, t) = (u + 1) logq(u + 1)(0, t) t ∈ (0, T ),
u(x, 0) = u0(x) x ∈ R+,

(1.1)

with positive parameters p, q, λ. The initial condition, u0, is a nonnegative continuous
function, nonincreasing and compatible with the boundary condition.

The purpose of this work is twofold: first we characterize, for different values of the
parameters in the problem, if there exist solutions that blow up in a finite time, and next,
we describe the behaviour of these blow-up solutions when they exist.

The blow-up phenomenon has attracted an increasing interest in the last years, both
from the point of view of the mathematics developed to understand parabolic equations
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and also for the possible applications, see for instance the book [17]. Recent works have
shown a great number of situations in which blow-up of solutions in finite time occurs
due to the presence of non-linear source terms, either in the equation or in the boundary
conditions, see [10, 13, 5, 4, 8]. In this paper, by finite time blow-up we will understand
that a solution exists for 0 < t < T and becomes unbounded as t approaches T .

In problem (1.1) we have an absorption term in the equation together with a nonlinear
boundary condition acting as a reaction. Therefore the resulting evolution should depend
critically on the balance between both terms. At this respect we find that there exist
three critical lines in the (p, q)–plane, namely

2q = 1, 2q = p and 2q = p + 1,

which separates different behaviours of the solutions. In order to explain these critical
lines we perform as in [10] the change of variable v = log(1 + u), obtaining the problem




vt = vxx + |vx|2 − λvp (x, t) ∈ R+ × (0, T ),
−vx(0, t) = vq(0, t), t ∈ (0, T )
v(x, 0) = v0(x) ≡ log(1 + u0(x)), x ∈ R+.

(1.2)

Now let us look at the following formal argument: if the boundary condition in (1.2) holds
also for some interval 0 < x < ε, −vx(x, t) = vq(x, t) then “differentiating” at x = 0 this
condition we get vxx(0, t) = qv2q−1(0, t) and substituting into the equation, we obtain,

vt = qv2q−1 + v2q − λvp. (1.3)

We immediately see in this expression the critical values 2q − 1 = p and 2q = p. To get
blow-up also the condition 2q > 1 is needed. In the following sections we make rigorous
this observation. On the other hand, the parameter λ cannot be scaled out, and we show
that it is important for the evolution whenever p ≤ 2q ≤ p + 1. In the borderlines we
recognize the critical values of the coefficient from (1.3): λ = q if 2q − 1 = p and λ = 1 if
2q = p. As for blow-up solutions, it is only in the case 2q = p where the size of λ becomes
relevant.

The presence of the absorption and the reaction, together with the logarithmic form of
those terms, produces the appearance of the following interesting phenomena in (1.1): for
some exponents p, q there is regional or global blow-up (note that the diffusion is linear);
there is finite speed of propagation; concerning blow-up there is an asymptotic simplifi-
cation and moreover, the blow-up rate is discontinuous with respect to the parameters of
the problem. All of these features have already appeared in problems with some of the
terms like the ones in problem (1.1), but not all at the same time. In fact, thanks to the
competition between the reaction and the absorption terms, we find that for fixed p < 1,
and depending on the initial data, there exist solutions with finite time extinction and
also solutions with finite time blow-up.

At this point, let us comment briefly on related literature. Regional or global blow-up
with linear diffusion have been observed for the problem{

ut = ∆u + (1 + u) logq(1 + u), in RN ,
u(x, 0) = u0(x)

(1.4)
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when 1 < q ≤ 2, cf. [10, 13]. Also an asymptotic simplification holds for blow-up
solutions to problem (1.4), in the way described for our problem in Theorem 1.5: the
term ∆u simplifies to |∇u|2(1 + u)−1, or which is the same, the term ∆v, v = log(1 + u)
vanishes asymptotically, see [10]. On the other hand, finite speed of propagation and
finite-time extinction holds for some solutions to the problem

{
ut = ∆u− up, in RN ,
u(x, 0) = u0(x)

when p < 1, cf. [16, 14]. An example of a discontinuity in the blow-up rate with respect
to the parameters of the problem is presented in the work [7].

As another precedent to our work, the balance between absorption and boundary
reaction in the case of powers in a bounded domain, even in several variables, has been
studied in the paper [3]. More precisely, in that paper the authors studied the problem





ut = ∆u− λup, in Ω,
∂u

∂ν
= uq on ∂Ω,

u(x, 0) = u0(x)

(1.5)

see also [1]. The results obtained in [3] are the following: if 2q > p + 1 then all solutions
are global; if 2q < p+1 then there exist blow-up solutions; if 2q = p+1 then all solutions
are global if λ > q while there exist blow-up solutions whenever λ < q. The case λ = q
is settled only in dimension one, and it belongs to the blow-up case. We remark the
importance in this case of dealing with a bounded domain and a reaction acting on the
whole boundary.

On the other hand, some particular cases of logarithmic nonlinearities are included in
the study performed in [15], again in a bounded domain:





ut = ∆u− f(u) in Ω,
∂u

∂ν
= g(u) on ∂Ω,

u(x, 0) = u0(x)

(1.6)

If f and g have the form of problem (1.1) with 2q = p ≤ 1, the authors prove global
existence provided λ is large and existence of blow-up if λ < 1.

Now we present our main results. We begin in Section 2 with a description of the
stationary solutions to problem (1.2) and we prove,

Theorem 1.1 There exist stationary solutions to problem (1.2) if and only if either 2q >
p + 1, or 2q < p, or p ≤ 2q ≤ p + 1 and λ is large.

Our next step is to characterize when there exist solutions with finite time blow-up,
depending on wether 2q 6= p or 2q = p :

3



1/2

1

q

p

I

II

III

2q = p + 1

2q = p

Figure 1: I- All solutions are global. II- There exist blow-up and also global solutions.
III- There exists blow-up; existence of global solutions depends on λ.

Theorem 1.2 Let v be a solution to problem (1.2).
i) If 2q ≤ 1 or 2q < p then v is global.
ii) If 2q > max(1, p), then v blows up provided the initial value is large.

Theorem 1.3 Assume 2q = p > 1 and let v be a solution to problem (1.2).
i) If λ > 1 then v is global.
ii) If λ < 1 then there exist blow-up solutions.
iii) If λ = 1 then v can blow up if and only if q > 1.

These theorems are proved in Section 3. We devote the next sections to study as-
ymptotics for solutions that blow up. This includes the blow-up rate, Theorem 1.4, the
blow-up profile, Theorem 1.5 and the blow-up set, Theorem 1.6. These three results are
proved, respectively, in Sections 4, 5 and 6. Assume then, from now on, that v is a solution
to problem (1.2) that blows up at a finite time T . As to the blow-up rate we have

Theorem 1.4 In the above hypotheses it holds
i) if 2q > p or 2q = p with λ < 1, then v(0, t) ∼ (T − t)−1/(2q−1);
ii) if 2q = p and λ = 1, then v(0, t) ∼ (T − t)−1/(2q−2).

Here by f ∼ g we mean that there are two constants c1, c2 such that 0 < c1 ≤ f/g ≤
c2 < ∞. Note that the blow-up rate is discontinuous in terms of the exponents p, q or the
coefficient λ. The blow-up rate with the same logarithmic boundary flux in a bounded
domain, but without absorption, has been obtained in [2], and the exponent turns to be
in that case −1/(2q − 1).

Now we rescale the solution according to the blow-up rate, with α the exponent given
in i) or ii) of the precedent theorem, and take β = (q − 1)α:

f(ξ, τ) = (T − t)αv(x, t), ξ = x(T − t)−β, τ = − log(T − t). (1.7)
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In case there is nonuniqueness of solution of the limit problem, see Section 5, we state the
result in terms of the ω-limit set. If f0 is the corresponding initial value of the rescaled
solution f , then it is defined as

ω(f0) = {h ∈ C(R+) : ∃τj such that f(·, τj) → h(·) as τj →∞
uniformly on compact subsets of R+} .

(1.8)

Theorem 1.5 i) If 2q > p then

lim
τ→∞

f(ξ, τ) = F (ξ) (1.9)

uniformly on compact sets, where F is the unique solution to the problem
{

αF + βξF ′ = (F ′)2 ξ > 0,
−F ′(0) = F q(0).

ii) If 2q = p with λ < 1 then
lim

τ→∞
f(ξ, τ) = G(ξ) (1.10)

uniformly on compact sets, where G is the unique solution to the problem
{

αG + βξG′ = (G′)2 − λG2q ξ > 0,
−G′(0) = Gq(0).

iii) If 2q = p with λ = 1 then the ω-limit set is a subset of

{H(ξ) = [A + (q − 1)ξ]−1/(q−1), A > 0}.

Since the solutions are nonincreasing in x, there exist only three possibilities for the
set where the solution blows up, a single point (the origin), a bounded interval or the
whole R+, and all three actually occur. We have,

Theorem 1.6 i) If q < 1 then blow-up is global, i.e., B(v) = R+.
ii) If q > 1 then the blow-up set reduces to the origin, B(v) = {0}.
iii) If q = 1 then blow-up is regional; more precisely, the blow-up set is B(v) = [0, L],

where L = 2 if p < 2 and for p = 2 we have 1√
λ

log(1+
√

λ
1−
√

λ
) ≤ L ≤ 2√

1−λ
.

A final section, Section 7, is dedicated to the case p < 1. We prove finite speed of
propagation, Theorem 1.7 and finite time extinction, Theorem 1.8.

Theorem 1.7 Assume v0 has compact support. If p < 1 then the solution to problem
(1.2) has compact support in x for all t ∈ [0, T ), T being finite or infinite. Moreover, for
q ≥ 1, if T is finite then the support is compact even for t = T (localization property).

Theorem 1.8 Let p < 1. There exist solutions to problem (1.2) which vanishes identically
in finite time if and only if 2q > p + 1 or 2q = p + 1 and λ > q.
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2 Stationary solutions

We study in this section the existence of stationary solutions to problem (1.2), in terms
of the parameters p, q and λ. We then look for solutions to the problem

{
V ′′ + (V ′)2 − λV p = 0 x > 0,
−V ′(0) = V q(0).

(2.1)

We prove Theorem 1.1, which we formulate here in a much more precise way. In particular,
the sentence “λ large” in that theorem, when p ≤ 2q ≤ p + 1 means λ > λ∗ (or λ ≥ λ∗).
We find the values λ∗ = 1 if 2q = p and λ∗ = q if 2q = p + 1.

Theorem 2.1 i) If 2q < p or 2q > p + 1 then problem (2.1) has a unique bounded
solution.
ii) If 2q = p then there are no solutions if λ ≤ 1 and exactly one bounded solution if
λ > 1;
iii) If p < 2q < p + 1 then there are no solutions if λ < λ∗, one bounded solution if
λ = λ∗ and two bounded solutions if λ > λ∗, where λ∗ depends on p and q;
iv) If 2q = p + 1 then there are no solutions if λ ≤ q and exactly one bounded solution if
λ > q.

In these cases the bounded solutions are nondecreasing and have compact support if
and only if p < 1. Also, whenever there exist bounded solutions, and only in this case,
there also exist (infinite) unbounded solutions.

Proof. Local existence of a solution to (2.1) is standard. This local solution can be
continued and, since there cannot exist points of maxima (from the equation if V ′ = 0 we
have V ′′ ≥ 0), we have three possibilities: the solution is always decreasing and strictly
positive, or the solution is decreasing until it meets the horizontal axis, or it has a positive
minimum and the solution is increasing from this point. If V (x0) = 0, then the solution
cannot be continued by zero beyond x0 unless V ′(x0) = 0. In this case we have that V
has compact support. On the other hand, if V is strictly positive and decreasing for every
x > 0, we must have lim

x→∞
V (x) = lim

x→∞
V ′(x) = 0.

By direct integration we get the following expression for V

(V ′)2e2V = B2qe2B − 2λ

∫ B

V

zpe2z dz. (2.2)

where we fix the value at the origin V (0) = B. We want to study the values of B
for which the corresponding solution satisfies V ′(x0) = 0, V (x0) ≥ 0, x0 being finite or
infinite. Putting then V = V ′ = 0 in (2.2) we are thus lead to characterize the positive
roots of the function

H(B) = B2qe2B − 2λ

∫ B

0

zpe2z dz. (2.3)
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These are the values that give bounded (nonincreasing) solutions. We observe that,
H(0) = 0 and

H ′(B) = 2B2q−1e2B(B + q − λBp+1−2q).

We study the function G(B) = B + q − λBγ for B > 0, where γ = p + 1− 2q. We have:
• If γ < 0 then G is monotone from −∞ to +∞, with a unique root. Thus H is first

decreasing and then increasing. Since

H(B) ≥ B2qe2B − 2λBp

∫ B

0

e2z dz = Bp[e2B(B1−γ − λ) + λ] ,

we get H(B) > 0 for B ≥ λ1/(1−γ). We remark that this property holds whenever γ < 1.
In summary, the function H(B) has a unique positive root, and thus problem (2.1) has a
unique solution.

• If γ = 0 the function G(B) is an increasing straight line, G(B) = B + q−λ, positive
if λ ≤ q, with a root if λ > q. Then as in the previous case we get a unique root if λ > q,
though if λ ≤ q we have that H(B) is monotone increasing, thus positive, and no solution
exists in this case.

• If 0 < γ < 1 we have that G(B) has a minimum at a point B0 = (λγ)1/(1−γ). The
value of G(B0) is nonnegative if λ ≤ λ0 = (q/(1 − γ))1−γγ−γ. Thus in this case H is
nondecreasing and no solution can exist. When λ > λ0 we have that G has two roots,
which means that H(B) has a maximum and a minimum. Recall that H(B) is positive
for small B as well as for large B. On the very other hand, we can estimate H from
above,

H(B) ≤ B2q(e2B − 2λ

p + 1
Bγ) .

Observing that the function

J(B) = e2B − 2λ

p + 1
Bγ

is negative for some interval provided λ > λ1 = p+1
2

eγ(γ
2
)−γ, we have that H(B) has

exactly two roots if λ > λ1. By continuity there exists some λ∗ ∈ (λ0, λ1) for which H(B)
has exactly one root. We represent in Fig. 2 the curve H(B) in this case 0 < γ < 1 for
different values of λ.

• If γ = 1 the function G(B) is again a straight line, G(B) = (1− λ)B + q. It is clear
then than there exist solutions (exactly one) if and only if λ > 1.

• If γ > 1 the function G(B) is first increasing and then decreasing, with a unique
root. This implies that H(B) has also a unique root, no matter the value of λ.

When B∗ is a root of H(B) we obtain a noninincreasing solution to the stationary
problem (2.1). This solution has compact support if and only if p < 1. In fact

V ∗(x) ∼ C1x
−2/(p−1), for x →∞, if p > 1,

V ∗(x) ∼ C2e
−
√

λ x, for x →∞, if p = 1,

V ∗(x) ∼ C3(x
∗ − x)

2/(1−p)
+ , for x ∼ x∗, if p < 1,
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Figure 2: The intermediate case 0 < γ < 1: (i) λ < λ0; (ii) λ0 < λ < λ∗; (iii) λ > λ∗.

with C1 = C3 = ( 2(p+1)
λ(p−1)2

)1/(p−1) and some C2 > 0, x∗ = x∗(B∗). Moreover, since it holds

(V ′)2e2V =

∫ V

0

zpe2z dz,

the solution can be written implicitly as

∫ B∗

V ∗(x)

dz

R(z)
= x, with R(z) =

√
2 e−z

( ∫ z

0

spe2s ds
)1/2

.

From this we obtain, in the case p < 1, x∗ =
∫ B∗

0
dz

R(z)
< ∞.

As we have said, other values of B give unbounded solutions if H(B) < 0, with a
minimum of height C determined by the relation

H(B) = −2λ

∫ B

C

zpe2z dz,

or local solutions vanishing at some finite point x0 with V ′(x0) < 0, thus not being global
solutions when we extend them by zero, if H(B) > 0. ¤

3 Blow-up results

In this section we prove Theorems 1.2 and 1.3. The basic idea is to compare with subso-
lutions that blow up or with supersolutions that are global in time.

By a subsolution (supersolution) we mean a function which satisfies the problem with
≤ (≥) instead of = in the equation, the boundary condition and the initial data. We
formulate here the comparison principle, its proof is standard and we omit it.

Lemma 3.1 Let v be a supersolution, v be a solution, and v be a subsolution to problem
(1.2). If v(x, 0) ≥ v(x, 0) ≥ v(x, 0) then u(x, t) ≥ u(x, t) ≥ u(x, t) for (x, t) ∈ R+× (0, T ).
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First we deal with the case 2q 6= p.

Proof of Theorem 1.2. i) We are going to prove that all solutions are global finding
large global supersolutions. If 2q ≤ 1 solutions to the heat equation with flux −ux(0, t) =
(u + 1) logq(u + 1)(0, t) are supersolutions to our problem and they are globally defined
whenever 2q ≤ 1 (a supersolution of the form ϕ(a(x)+ b(t)) can be constructed, see [18]).

In the case 2q < p we use a supersolution in self-similar form for the problem in the v
variable, i.e., problem (1.2). Take

z(x, t) = et(1 + e−ξ), ξ = xect. (3.1)

In order to have a supersolution we must have
{

1 + e−ξ − cξe−ξ ≥ e−ξe(2c+1)t(1 + e−te−ξ)− λ(1 + e−ξ)e(p−1)t, ξ > 0,
e(c+1)t ≥ 2qeqt,

To get the boundary condition fulfilled we need c > q − 1 and t ≥ t0 large. Concerning
the equation, it is satisfied if we impose

λe(p−1)t ≥ e(2c+1)t(1 + e−t) + k

for some k > 0. Hence it suffices to have 2c < p− 2. Therefore the condition required is

2(q − 1) < c < p− 2,

that is,
2q < p.

If we now consider z̃(x, t) = z(x, t + t0), the comparison of the initial conditions means

et0 ≥ u0(x),

which holds if t0 is large.
ii) We construct a blow-up subsolution of the form

w(x, t) = (T − t)−γf(ξ), ξ = x(T0 − t)−δ,

with γ = 1/(2q − 1), δ = (q − 1)γ and f(ξ) = (A−Aqξ)+. The boundary conditon holds
with equality. As for the equation, the condition to be a subsolution is

γA + λT
(2q−p)γ
0 Ap ≤ A2q.

This holds if A is chosen large enough, since 2q > p and 2q > 1.
An alternative way to obtain a blow-up solution consists in imposing the condition

max
x≥0

|v′0(x)| = |v′0(0)| on the initial datum. This implies max
x≥0

|vx(x, t)| = |vx(0, t)|, and a

fortiori vxx(0, t) ≥ 0. Thus, 2q > p implies

vt(0, t) ≥ v2q(0, t)− λvp(0, t) ≥ cv2q(0, t), (3.2)

provided v0(0) > Λ = λ−1/(2q−p). This gives blow up if 2q > 1. ¤
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Remark 3.1 We observe that both methods presented to prove existence of blow-up also
work when 2q = p and λ < 1. On the other hand, we remark that none of the above
arguments gives that all the solutions blow up, since these subsolutions are not small. In
fact, if q > 2 we will see that it is not the case and there exist small global solutions.

Now we prove a Fujita type result. That is, there exists a region of parameters where
every nontrivial solution blows up.

Theorem 3.1 Assume 2q > max{p, 1}. Then every nontrivial solution blows up in finite
time if 2q < p + 1, q ≤ 1 and λ < λ∗.

Proof. The proof is an immediate consequence of Theorem 1.2 ii) and Theorems 2.1
and 3.2 below. Assume that v(0, t) ≤ Λ for every t > 0, otherwise the solution must blow
up. Then through a subsequence if necessary we have that v(·, tn) tends to a stationary
solution as tn → ∞. This is a contradiction since no stationary solution exist in this
range of parameters and the solution cannot go to zero due to the following result. ¤

Theorem 3.2 Let q < 1. If 2q < p + 1 or 2q = p + 1 and λ ≤ q then problem (2.1)
admits small subsolutions.

Proof. The subsolution mentioned takes the form

w(x) =
(
a− (1− q)x

)1/(1−q)

+
(3.3)

The boundary condition holds with equality. As for the equation, the condition to be a
subsolution is

λw(p+1−2q)/(1−q) ≤ q + w1/(1−q),

and it is clear that this holds taking a > 0 small. ¤
In Fig. 3 we represent the existence or not of global solutions in the strip p < 2q ≤ p+1,

i.e., region III from Fig.1. Thus we put 2q = p + ε, 0 < ε ≤ 1 and study the existence in
terms of q and λ.

Remark 3.2 i) The fact that there exists small global solutions when q > 2 follows by
comparison with a solution z to the heat equation with boundary flux −zx(0, t) = Czq(0, t)
that stays less than one and goes to zero as t goes to infinity (the existence of such a
solution is proved in [9]). Since Czq(0, t) ≥ (1 + z) logq(1 + z)(0, t), we have that z is a
supersolution to our problem.
ii) It is left as an open problem if there exist global solutions when p < 2q ≤ p+1, λ < λ∗,
1 < q ≤ 2.
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Figure 3: Case p < 2q ≤ p + 1. A- All solutions are global. B- There exists blow-up and
also global solutions. C- All solutions blow up. D- There exists blow-up.

Next we deal with the case 2q = p. Here the result depends critically on whether the
absorption coefficient λ is greater or less than one.

Proof of Theorem 1.3. i) A modification of the function defined in (3.1) is a super-
solution in this case. Take

w(x, t) = et(A + e−bξ), ξ = xe(q−1)t. (3.4)

We choose b = (A + 1)q to fix the boundary condition. Now, the restriction imposed by
the equation becomes

λAp ≥ b2(1 + e−t0) = (A + 1)p(1 + e−t0).

Since λ > 1, this condition holds if A and t0 are large.
ii) See Remark 3.1.
iii) The same function as in case i) works here as a supersolution when q ≤ 1.

Conversely, if q > 1 we can construct a blow-up subsolution of the form

V (x, t) = (T − t)−γϕ(ξ), ξ = x(T − t)−1/2,

with ϕ(ξ) = (A−Bξ)2
+, γ = 1/(2(q − 1)), B = A2q−1/2, A > 0 small. ¤

4 Blow-up rates

We study in this section the speed at which a blow-up solution approaches infinity near
the blow-up time. This is the blow-up rate. Let v be a solution to problem (1.2) that
blows up at time T . We prove Theorem 1.4, which can be stated as

v(0, t) ∼ (T − t)−α (4.1)
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for t ↗ T , where

α =





1

2q − 1
if 2q 6= p or 2q = p with λ < 1

1

2(q − 1)
if 2q = p with λ = 1

(4.2)

The main point is that the blow-up rate is discontinuous with respect to the parameters
of the problem.

To prove estimate (4.1) we need a preliminary result that asserts that eventually any
blow-up solution is convex near the origin.

Lemma 4.1 If v is a blow-up solution, then for any time close enough to the blow-up
time the maximum of |vx| is achieved at the origin.

Proof. It suffices to look at the equation satisfied by z = −vx,

{
zt = zxx − 2zzx − λpvp−1z (x, t) ∈ R+ × (0, T ),
z(0, t) = vq(0, t).

By hypotheses we know that z(x, t) ≥ 0 and z(0, t) > 0. Let x0(t) be the point of
maximum of z at each time t, and put M(t) = z(x0(t), t). Whenever x0(t) > 0 we have

zx(x0(t), t) = 0, zxx(x0(t), t) ≤ 0,

and therefore M ′(t) < −C. This results in a contradiction if v blows up in finite time.
Therefore there exists a time t0 < T for which z attains its maximum at x = 0. It is easy
to see that this property holds also for every t0 < t < T . ¤

Proof of Theorem 1.4. i) The previous lemma implies vxx(0, t) ≥ 0 for t close to T .
Then we get the estimate

vt(0, t) ≥ Cv2q(0, t)

whenever 2q > p or 2q = p and λ < 1, see (3.2). Then we can integrate to get the upper
bound

v(0, t) ≤ C(T − t)−1/(2q−1).

In order to obtain the lower bound, we use a rescaling technique inspired in the work
[11]. The difference lies in the final step: we do not pass to the limit, but instead we
estimate the blow-up time of the rescaled function. This is translated into a blow-up rate
for the original solution, see [6].

Fix t ∈ (0, T ), define M = u(0, t), and consider the function

φM(y, s) =
1

M
u(M1−qy, M1−2qs + t) .

12



This function is defined for y ≥ 0 and s ∈ (0, S), where S = M2q−1(T − t). In particular
it blows up at s = S. On the other hand, it solves the problem





(φM)s =
1

M
(φM)yy + ((φM)y)

2 − λMp−2q(φM)p , in R+ × (0, S),

−(φM)y(0, s) = (φM)q(0, s),

φM(y, 0) =
1

M
u(M1−qy, t).

Notice that φM(0, 0) = 1 and (φM)y(0, 0) = −1. Therefore, φM(y, 0) ≤ 1 for y > 0. We
now construct a supersolution for this problem. Let

w(y, s) = (S1 − s)−α(A +
α

4
(L− ξ)2

+), ξ = y(S1 − s)−β,

where α = 1/(2q−1) and β = (q−1)α. In order to obtain a supersolution of the equation,
the parameters must satisfy

2A− βξ(L− ξ)+ ≥ Sα
1

M0

, (4.3)

for all M > M0. Recall that the condition on M means t0 < t < T for some t0. The
boundary condition imposes the restriction

α

2
L ≥ (A +

α

4
L2)q . (4.4)

Finally, comparison between w and our rescaled solution φM at time s = 0 requires

S−α
1 A ≥ 1. (4.5)

In the case β ≤ 0, i.e., q ≤ 1, it is enough to consider A small, then we obtain L which
verifies the boundary inequality, S1 small to fix the condition at s = 0 and finally M0

large to verify the equation.
For the case β > 0, i.e., q > 1, we take A = βL2/2, and L and S1 small to satisfy the

boundary and initial conditions. As to restriction (4.3), we note that from the choice of
A we have

(2− 1

M0

)A ≥ βξ(L− ξ).

Thus taking M0 large we are done.
Summing up, we have a supersolution independent of M , for all M large enough.

Therefore the blow-up time of φM is greater than S1, that is M2q−1(T − t) ≥ S1. This
implies

u(0, t) ≥ C(T − t)−1/(2q−1) ,

and the lower bound is obtained.

13



ii) Assume now 2q = p and λ = 1. The lower estimate just obtained, is also valid
here but is not sharp. Instead we perform the change of variables

φM(y, s) =
1

M
u(M1−qy, M2−2qs + t) .

Then φM satisfies





(φM)s = (φM)yy + M [((φM)y)
2 − (φM)2q] , in R+ × (0, S̃),

−(φM)y(0, s) = (φM)q(0, s),

φM(y, 0) =
1

M
u(M1−qy, t).

In this case S̃ = M2q−2(T − t). The supersolution takes the self-similar form

w(y, s) = (S2 − s)−α(A + B(L− ξ)2
+), ξ = y(S2 − s)−1/2 ,

where α = 1/(2q − 2), M > M0 large, B and S2 are small, L = C(q)Bq−1 and A =
(2BL)1/q−BL2. Therefore, for M large we obtain that the blow-up time of φM is greater
than S2, which implies

u(0, t) ≥ C(T − t)−1/(2q−2) .

To get the upper bound we construct a subsolution in the form

z(y, s) = (α2 − s)−α α2α+2

4

(
2

α
− ξ

)2

+

, ξ = y(α2 − s)−1/2.

Now, in order to compare the initial values, we consider the function

P (y, s) = (1− 1

2
ys−1/2)2

+ .

Which is a subsolution of the equation for 0 ≤ s ≤ 1. Moreover, P (0, s) = 1 and
P (y, 0) = 0 for all y > 0. On the other hand, φM(0, 0) = 1 and (φM)s(0, s) ≥ 0.
Therefore, by comparison we obtain that for all M > 0

φM(y, s) ≥ P (y, s) for 0 ≤ s ≤ 1.

But, since P (y, 1) = z(y, 0) we have that

φM(y, s + 1) ≥ z(y, s) .

Therefore, the blow-up time of φM satisfies S̃ ≤ 1 + α2. This implies

u(0, t) ≤ C(T − t)−1/(2q−2) ,

and the theorem is proved. ¤
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5 Asymptotic behaviour

In this section we consider the rescaled function f given by (1.7) and study its behaviour
for τ →∞. This proves Theorem 1.5.

The problem satisfied by f is the following




e−δτ
(
fτ + αf + βξfξ

)
= e−ατfξξ + (fξ)

2 − λe−ετfp, ξ > 0, τ > 0,

−fξ(0, τ) = f q(0, τ), τ > 0.
(5.1)

where α is given by (4.2), we put β = (q− 1)α, and the exponents ε and δ vary. We have
three possible situations:

Case 1. if 2q > p then δ = 0, ε = (2q − p)α > 0;
Case 2. if 2q = p and λ < 1 then δ = ε = 0;
Case 3. if 2q = p and λ = 1 then δ = α > 0, ε = 0.

Therefore, in each case it is easy to get intuition of the limit problem to be considered.
Thanks to Theorem 1.4 we have that there exist two positive constants such that

C1 ≤ f(0, τ), |fτ (0, τ)| ≤ C2 , (5.2)

for every τ > 0. Also, since the maximum of f and |fξ| are located at the origin,
see Lemma 4.1, we conclude that both functions are bounded. This implies that if we
define the orbits hj(·, τ) = f(·, τ + sj) we have, by the usual compactness arguments, the
convergence

lim
sj→∞

hj(·, τ) = h(·, τ).

Now let us consider Case 1. Passing to the limit in problem (5.1), in its weak formu-
lation, we get that h satisfies the simplified problem

{
hτ = (hξ)

2 − βξhξ − αh, ξ > 0, τ > 0,

−hξ(0, τ) = hq(0, τ), τ > 0.
(5.3)

Also, the bounds (5.2) are true for h. On the other hand, notice that at ξ = 0 the
above equation reads

hτ (0, τ) = h2q(0, τ)− αh(0, τ).

Therefore, if for some τ > 0 we have h(0, τ) > µ = αα, we deduce that h blows up
at some finite τ = τ0. This is a contradiction. Analogous contradiction is obtained if
h(0, τ) < µ for some τ > 0. We conclude that h(0, τ) = µ for every τ > 0. This also
implies hξ(0, τ) = −µq. We end the proof by observing that the unique solution to the
overdetermined problem





hτ = (hξ)
2 − βξhξ − αh, ξ > 0, τ > 0,

h(0, τ) = µ, τ > 0,
hξ(0, τ) = −µq, τ > 0,

(5.4)
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is the stationary solution constructed in Theorem 5.1 below.
In Case 2, the same argument gives convergence to a solution of the reduced problem





hτ = (hξ)
2 − βξhξ − αh− λh2q, ξ > 0, τ > 0,

h(0, τ) = µ′, τ > 0,
hξ(0, τ) = −(µ′)q, τ > 0,

(5.5)

with µ′ = (α/(1 − λ))α. The unique solution to this problem is given by the stationary
solution obtained in Theorem 5.2.

Finally, in Case 3 we obtain the convergence of the orbits to the reduced (stationary)
equation

(hξ)
2 − h2q = 0, ξ ≥ 0, (5.6)

where the boundary condition implies the minus sign in hξ. The solutions to this last
problem are H(ξ) = [A + (q − 1)ξ]−1/(q−1), A > 0. Thus the limit is not unique in this
case and we have to consider the ω-limit set, see (1.8).

In order to set up the convergence result in all cases, we now study the stationary
reduced problems previously mentioned.

Theorem 5.1 The problem

{
αF + βξF ′ = (F ′)2 ξ > 0,
−F ′(0) = F q(0)

(5.7)

with α = 1/(2q−1), 2q > 1, β = (q−1)α, has a unique solution. The solution has compact
support if and only if q ≤ 1. Moreover, if q = 1 this solution is explicit F (ξ) = (1−ξ/2)2

+,
and if q > 1 it behaves like ξ−1/(q−1) as ξ →∞.

Proof. A solution F1 to the equation in problem (5.7) is obtained in [17, p.171] with the
boundary condition F1(0) = 1. The unique solution to our problem can now be obtained
just by rescaling, F (ξ) = µF1(ξ/

√
µ) with µ = αα. ¤

Theorem 5.2 The problem

{
αG + βξG′ = (G′)2 − λG2q ξ > 0,
−G′(0) = Gq(0)

(5.8)

with α = 1/(2q − 1), 2q > 1, β = (q − 1)α, and λ < 1, has a unique solution. It has
compact support if and only if q > 1.

Proof. Local existence is standard. The value at the origin is determined by the
equation, and it is G(0) = µ′. Moreover, it is also immediate to see that the solution
can be continued and is decreasing until it reaches the horizontal axis, if it does. If this
happens we extend the solution by zero.
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Assume first q ≤ 1. We have

(G′)2 − αG− λG2q = βξG′ ≥ 0.

Thus
G′ ≤ −

√
αG + λG2q ≤ −

√
αG,

which means that there exists ξ0 > 0 such that G(ξ0) = 0. This proves that the support
is compact.

Now consider q = 1. Since β = 0 in this case, integrating the equation we get

∫ µ′

G(ξ)

ds√
s + λs2

= ξ,

where µ′ = 1/(1− λ) in this case. From here we obtain the support of G,

L(λ) =

∫ 1/(1−λ)

0

ds√
s + λs2

=
1√
λ

log

(
1 +

√
λ

1−
√

λ

)
.

Observe that L(λ) > 2 for every 0 < λ < 1. In fact, L(λ) is an increasing function in this
interval with lim

λ→0
L(λ) = 2, lim

λ→1
L(λ) = ∞.

If now q > 1, we fix some ε > 0 small and take ξ1 > 0 such that G(ξ1) = (ε/λ)α.
Then, for ξ ≥ ξ1 we have

βξG′ + (α + ε)G = (G′)2 + εG− λG2q ≥ 0,

which implies that G is positive with G(ξ) ≥ cξ−(α+ε)/β for ξ ≥ ξ1. ¤

6 Blow-up sets

Here we study at which spatial points the solution goes to infinity. This is called the
blow-up set and can be defined as

B(v) = {x ≥ 0 : ∃ xn → x, tn ↗ T with v(xn, tn) →∞}.
Since v is nonincreasing in x, then B(v) is a connected interval containing the origin.

We say that we have single point blow-up if B(v) reduces to the origin, that blow-up is
regional if B(v) is a nontrivial bounded interval, and that it is global if B(v) is the whole
half-line. We are going to show that the three possibilities occur in our problem, in spite
of the diffusion being linear. We prove Theorem 1.6.

Proof of Theorem 1.6. i ) By the Mean Value Theorem, and the fact that |vx| attains
its maximum at x = 0, see Lemma 4.1, we obtain

v(x, t)− v(0, t) = xvx(η, t) ≥ −xvq(0, t).
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Therefore,
v(x, t) ≥ v(0, t)(1− xvq−1(0, t)).

Since q < 1, we have that all points are in the blow-up set.
ii) We use comparison in u variables (see (1.1)), with the problem





zt = zxx x > 0, 0 < t < T,

z(0, t) = eC(T−t)−α
0 < t < T,

z(x, 0) = u0(x).
(6.1)

Note that z blows up at the same time as u does. Thanks to the blow-up rates (Theorem
1.4) we have that u is a subsolution to this problem, and thus u ≤ z for every 0 < t <
T . We end by observing, using the explicit representation of z in terms of the Green’s
function, that z is bounded for every x > 0. Actually

z(x, t) =

∫ ∞

0

G(x, y, t, 0)u0(y) dy +

∫ t

0

G(x, 0, t, τ)eC(T−t)−α

dτ , (6.2)

where
G(x, y, t, τ) = G∞(x− y, t− τ) + G∞(x + y, t− τ),

G∞(x, t) =
1√
4πt

e−x2/4t.

We have

z(x, t) ≤ M + C

∫ t

0

(t− τ)−1/2e−
x2

4(t−τ) e
C

(T−t)α dτ ,

which is finite for every x > 0 due to the fact that α < 1.
iii) For q = 1 we have α = 1, and the above representation gives z bounded for every

x > 2
√

C. We have thus the estimate B(u) ⊂ [0, 2
√

C].
Moreover, by the convergence to the limit profile we can take the value of the self-

similar profile at the origin as the constant in the blow-up rates. This means C = 1 if
p < 2, and C = 1/(1− λ) if p = 2. Therefore,

B(u) ⊆
{

[0, 2] , p < 2 ,
[0, 2√

1−λ
] , p = 2 .

On the other hand, the blow-up set must contain the support of the limit profile. From
where it follows that,

B(u) ⊇
{

[0, 2] , p < 2 ,

[0, 1√
λ

log
(

1+
√

λ
1−
√

λ

)
] , p = 2 .

This ends the proof. ¤
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7 The case p < 1

In this section we study some properties of the solutions to our problem (1.2) in the case
p < 1. In particular, we prove finite speed of propagation, localization of the support and
existence of a “small” solution with finite time extinction.

Proof of Theorem 1.7. Consider the following problem





V ′′ + (V ′)2 − λV p = 0 , x > 0
V (0) = M,
V ′(0) = −N.

It is clear, (see the analogous study performed in Section 2), that for each M > 0 there
exists N > 0 such that the corresponding solution is nonincreasing with compact support
[0, `(M)]. Now let [0, L] be the support of v0. For every 0 < t0 < T fixed, take M =
max

0≤t≤t0
v(L, t). We then have

v(x, t) ≤ V (x− L), x ≥ L, 0 ≤ t ≤ t0.

This gives supp(v(·, t0)) ⊂ [0, L + `(M)].
Finally, observe that for q ≥ 1 the blow-up set of v is bounded. We can therefore take

t0 = T in the above argument. The localization property holds. ¤

Remark 7.1 Notice that for p ≥ 1 we have infinite speed of propagation. Indeed, we use
as a subsolution of our problem a solution of wt = wxx − λwp which is positive for all
positive times.

We end with a characterization of the property of extinction in finite time.

Proof of Theorem 1.8. The requirements needed to have extinction follow from The-
orem 3.2. Conversely, in order to construct a supersolution with the property of finite
time extinction in the range 2q > p + 1 we consider the self-similar function

V (x, t) = (T − t)γF (x(T − t)σ) ,

with γ = 1/(1 − p) and σ = (q − 1)γ. To choose the profile F we impose the condition
−F ′ = F q to hold not only on the boundary. Therefore, the condition to be a supersolution
becomes

λF p − γF + σξF q ≥ q(T − t)(2q−p−1)γF 2q−1 + (T − t)2(q−p)γF 2q .

We observe that, if p < min{1, 2q − 1}, the smallest power of F in the expression above
is p and the powers of (T − t) are both positive. Then we can take T and F (0) = A small
enough such that the required inequality holds. In the case p = 2q − 1 < 1 we arrive at
the same conclusion provided λ > q. ¤
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Arturo de Pablo: Departamento de Matemáticas, U. Carlos III de Madrid, 28911
Leganés, Spain. arturop@math.uc3m.es
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