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Abstract. In this paper we consider existence, asymptotic behavior
near the boundary and uniqueness for solutions to ∆u = eq(x)u in a
bounded smooth domain Ω with the boundary condition u(x) → +∞
as dist(x, ∂Ω) → 0. The exponent q(x) is assumed to be a Hölder
continuous function which is either positive on ∂Ω or is positive in a
neighborhood of ∂Ω maybe vanishing on ∂Ω. When dealing with non-
negative exponents q we are allowing nonempty interior regions Ω0 ⊂ Ω
where q vanishes. Changing sign exponents q will be also considered.

1. Introduction

We will be concerned in this paper with the study of solutions to

(1.1)
{

∆u(x) = eq(x)u(x) in Ω,
u = +∞ on ∂Ω,

where Ω is a smooth bounded domain in RN and the boundary condition is
to be interpreted in the sense that u(x) → +∞ as d(x) := dist(x, ∂Ω) → 0.
The exponent q(x) will be assumed to be a Hölder continuous function which
is either nonnegative or exhibits both signs.

Problems like (1.1) are usually known in the literature as boundary blow-
up problems, and their solutions are also named “large solutions”. A great
amount of work has been dedicated to study such problems, see [1], [2], [3],
[4], [6], [7], [8], [9], [10], [11], [12], [13], [18], [19], [20], [21], [22], [24], [25], [26],
[27] and [28]. We refer the reader to [12] and [27] for a more complete list
of references. In most of these references, the nonlinearities considered are
generalizations of the two model ones: f(u) = up with p > 1 and f(u) = eu.
Up to our knowledge, this is the first time where a variable exponent q(x) is
studied in an exponential (see also [23] and specially [14] for further results
concerning a power nonlinearity with variable exponent f(u) = uq(x)).

In the case where q(x) is a constant q = q0 > 0, problem (1.1) was first
considered by Bieberbach in [4], who proved existence of a solution and
later by Rademacher in [26], who showed uniqueness of solutions with the
additional requirement that |u + 2 log d| is bounded in Ω. It was finally
shown by Lazer and McKenna in [20] that the solution is unique with no
further restriction. On the other hand, if q(x) ≡ 0 then it is easily seen that
there is no solution to (1.1).

One of the main novelties of the present work is that q(x) is going to be a
general nonconstant exponent. In a first group of results q will restricted to
be nonnegative but allowing that q vanishes inside Ω. To precisely describe
our hypotheses concerning nonnegative exponents, we assume the existence
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of a smooth open subset Ω0 ⊂ Ω such that Ω0 = {x ∈ Ω : q(x) = 0}
(of course, Ω0 may be empty). Smooth is understood in the usual sense,
i. e., Ω0 is located at one side of its boundary ∂Ω0 which is a closed smooth
submanifold of RN . This means that Ω0 possesses finitely many connected
pieces which are in turn smooth subdomains of Ω. We will designate by
Ω0,1 the union of those connected components of Ω0 whose boundaries have
common points with the boundary of Ω. Similarly, we set Ω0,2 = Ω0 \ Ω0,1

and thus Ω0,2 ⊂ Ω. Finally we are naming Ω+ := Ω \Ω0 = {x ∈ Ω : q(x) >
0} and setting Γ1 = ∂Ω0 ∩ ∂Ω, Γ2 = ∂Ω0 ∩ Ω.

To avoid unnecessary technicalities we are supposing that Γ1 and Γ2 are
“far away” from each other, that is, Γ1 ∩Γ2 = ∅. This means that whenever
∂Ω0 and ∂Ω touch, the tangency is along a whole closed submanifold of
∂Ω0 (or, to be more precise, a submanifold of ∂Ω0,1). On the other hand,
observe that the set Ω+ ∪ Ω0,2 = Ω \ Ω0,1 and so is an smooth open part of
Ω. Moreover ∂(Ω+ ∪ Ω0,2) = ∂Ω+ \ ∂Ω0,2 = {∂Ω+ ∩ ∂Ω} ∪ {Γ2 \ ∂Ω0,2}.

The main idea to show both existence and nonexistence of solutions in
most of the previous works is to prove existence of solutions to (1.1) replacing
the boundary condition u = +∞ by u = M for finite M , and then take the
limit as M → ∞. Here we perform a similar approximation procedure and
consider (1.1) with u = M as boundary condition. Our first result describes
exactly what happens with these approximations.

For immediate use we fix the following notation:

Ωδ = {x ∈ Ω : d(x) < δ}.
Recall that we are designating by d(x) the distance dist(x, ∂Ω).

Theorem 1. Assume q ∈ Cη(Ω) is nonnegative and verifies the previous
hypotheses. Then for every M > 0 there exists a unique solution uM to{

∆u(x) = eq(x)u(x) in Ω,
u(x) = M on ∂Ω.

Moreover, the family {uM}M>0 is increasing in M , the limit u∞ of uM as
M →∞ exists and verifies

u∞(x) = +∞, x ∈ Ω0,1,
u∞(x) < +∞, x ∈ Ω+ ∪ Ω0,2.

In addition, u∞ is a finite solution to ∆u(x) = eq(x)u(x) in Ω+ ∪ Ω0,2. Fur-
thermore, if the exponent q(x) verifies

(1.2) sup
{dist(x, ∂Ω0,1) < δ}

q(x) = o(δ) as δ → 0

then
lim

M→∞
uM (x) = +∞, for x ∈ ∂Ω+ \ ∂Ω0,2,

and hence u∞ is a solution to (1.1) in Ω+ ∪ Ω0,2.

As a conclusion that can be drawn at once from Theorem 1 we have:
on the one hand, if u is a solution to (1.1) it follows by comparison that
u ≥ uM , and hence no solutions to (1.1) can exist when Ω0,1 6= ∅. On the
other hand, when Ω0,1 = ∅, u∞ < ∞ in Ω, and then it is a solution to (1.1)
(observe that condition (1.2) is not needed here). Thus we have:
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Corollary 2. Assume q ∈ Cη(Ω) is nonnegative. Then problem (1.1) has a
positive solution if and only if {x ∈ Ω : q(x) = 0} ∩ ∂Ω = ∅, i.e., Ω0,1 = ∅.

We remark that q = 0 on ∂Ω is compatible with Ω0,1 = ∅, as long as q > 0
in a region of the form U ∩ Ω with U an open in RN containing ∂Ω.

Next, we deal with the asymptotic behavior of the solutions near the
boundary. We consider two illustrative cases: the first one is when q > 0 on
the whole ∂Ω, where it is shown that the behavior of the solutions consist
of a sum of a blowing-up term and a term that vanishes when we approach
the boundary. Some extra regularity of q near ∂Ω is needed in this case.

Theorem 3. Assume q ∈ Cη(Ω)∩C2(Ωδ) for some δ > 0 and is nonnegative
in Ω with q > 0 on ∂Ω. Then if u is a solution to (1.1) we have

(1.3) lim
d(x)→0

u(x) +
2

q(x)
log d(x) +

1
q(x)

log q(x)− 1
q(x)

log 2 = 0.

With the natural hypothesis q > 0 on ∂Ω imposed in Theorem 3 we
obtain uniqueness of solutions. This uniqueness is a consequence of the
asymptotic behavior (1.3). Nevertheless, regarding uniqueness it suffices
with obtaining a not so sharp estimate as (1.3) (compare with (3.3) in the
proof of Theorem 3 and see Remark 1 after the proof of Theorem 4).

Theorem 4. Let q ∈ Cη(Ω) ∩ C2(Ωδ) for some δ > 0 be a nonnegative
function with q > 0 on ∂Ω. Then there exists a unique solution to (1.1).

Note that q(x) may vanish in some interior region of Ω and we still get
existence and uniqueness of solutions to (1.1) as long as q(x) > 0 on ∂Ω.

The second boundary behavior that we are considering is when q = 0 on
∂Ω, but it essentially behaves as a power of the distance d(x) near ∂Ω.

Theorem 5. Assume q ∈ Cη(Ω) is nonnegative and there exist Q, γ > 0
such that

(1.4) lim
d(x)→0

q(x)
d(x)γ

= Q.

Then for every solution u to (1.1) we have

(1.5) lim
d(x)→0

d(x)γu(x)
− log d(x)

=
γ + 2

Q
.

Notice that estimate (1.5) is weaker than (1.3). The limit (1.5), does
not give information about the presence of other explosive terms in the
asymptotic expansion of solutions u near ∂Ω. However, it is still sufficient
to guarantee uniqueness of solutions.

Theorem 6. Let q ∈ Cη(Ω) with q > 0 in Ω, and assume that condition
(1.4) holds. Then problem (1.1) admits a unique solution.

A second main feature of this work is the handling of changing sign expo-
nents q(x) in problem (1.1). In order to properly fix our assumptions on q
we first present a negative result. It is the natural extension of Corollary 2
for general exponents q.
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Theorem 7. Assume that q ∈ Cη(Ω) satisfies q ≤ 0 in a ball relative to Ω,
B(x0, δ) = {x ∈ Ω : |x − x0| < δ} for certain δ > 0 and x0 ∈ ∂Ω. Then
problem (1.1) does not admit any solution.

Thus as in the case of nonnegative exponents, problem (1.1) can only be
solved if q > 0 near the boundary, i. e., in a open region U ∩ Ω with U an
open neighborhood of ∂Ω in RN . Such requirement is thus implicit in our
next hypotheses on q. We are assuming that q ∈ Cη(Ω) behaves so that
Ω− := {x ∈ Ω : q(x) < 0} is a smooth subdomain of Ω strongly contained in
Ω, i. e. Ω− ⊂ Ω. Moreover, q will satisfy in addition q > 0 in Ω \ Ω−. This
means in particular that {x ∈ Ω : q = 0} = ∂Ω−. Actually, the forthcoming
statements allow more general configurations on the nodal regions for q, in
particular the presence of a larger null set {q = 0}. However, and for the
benefit of the presentation, we are pointing out those possible extensions in
Remark 4.

Our main existence result shows the solvability of (1.1) under conditions
that involve the amplitude of the positive part q+ of q or the corresponding
amplitude of its negative part q− or the size of Ω. If for A ⊂ RN we set χA

its characteristic function (i. e. χA(x) = 1 if x ∈ A, χA(x) = 0 otherwise)
then we are using the notation q−(x) = −q(x)χΩ−(x), q+(x) = q(x)χΩ+(x)
so that q = q+ − q−.

Theorem 8. Assume q ∈ Cη(Ω) achieves negative values in Ω according to
the structure conditions introduced above and let q−(x), q+(x) be its negative
and positive parts, respectively. Then,

i) Problem (1.1) possesses a solution provided that

(1.6) diam(Ω)2 sup q− ≤ 8N

e
,

where diam(Ω) = sup{|x− y| : x, y ∈ Ω}.
ii) If LΩ stands for the minimum distance between parallel hyperplanes in RN

enclosing Ω, then (1.1) admits a positive solution provided

(1.7) L2
Ω sup q+ < 2π2.

As a consequence of Theorem 8 a second existence result for problem (1.1)
holds in any domain Ω when scaling the problem in a suitable way.

Corollary 9. Let Ω ⊂ RN be a smooth domain and for λ > 0 set Ωλ =
{λx : x ∈ Ω}. Assume that q ∈ Cη(Ω) achieves negative values according
to the preceding conditions while qλ ∈ Cη(Ωλ) designates the scaled version
qλ(x) = q(x/λ) of q. Then there exists a (possibly small) positive value λ0

such that the problem
{

∆u = eqλ(x)u x ∈ Ωλ,

u = ∞ x ∈ ∂Ωλ,

admits a positive solution for all λ ≤ λ0.

It will be also shown in Section 5 by means of a class of one-dimensional
examples that the existence of solutions to (1.1) may be lost if either q− or
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q+, or alternatively the size of Ω, become large in amplitude. Thus, condi-
tions (1.6) or (1.7) for existence in Theorem 8 can not be unconditionally
suppressed.

Finally, we remark that our examples also show that a second solution to
(1.1) exists say, whenever the size of q−, q+, a or Ω becomes small. Moreover,
in all cases, a bifurcation from infinity occurs. See Section 5 for details.

The rest of the paper is organized as follows. Nonnegative coefficients q
are treated in Sections 2 and 3. In the former we consider the existence
of solutions and prove Theorem 1, while in the latter we are dealing with
the boundary behavior of solutions stated in Theorems 3 and 5 and with
the uniqueness of solutions to (1.1), Theorems 4 and 6. The proofs corre-
sponding to changing-sign coefficients q are contained in Section 4. Finally,
section 5 is devoted to present some one-dimensional examples.

2. Behavior of the approximations. Existence of
solutions to (1.1)

This section is devoted to the proof of Theorem 1.

Proof of Theorem 1. First, we prove that for any M ≥ 0 there exists a
unique solution uM to

{
∆u(x) = eq(x)u(x) in Ω,
u(x) = M on ∂Ω.

To this end we observe that a subsolution can be obtained considering u(x) =
(|x|2 −R2)/2N , where R is taken so that |x| < R in Ω. Indeed, notice that
u < 0 in Ω, and thus ∆u = 1 ≥ equ in Ω. Since u = M is a supersolution, a
standard monotonicity argument shows that there exists a solution uM that
verifies (|x|2 − R2)/2N < uM (x) < M in Ω. Uniqueness of the solution is
a consequence of the maximum principle. Moreover, if M1 > M2 then, by
comparison we get uM1 > uM2 in Ω. Therefore uM (x) is increasing in M
and hence the limit

u∞(x) = lim
M→∞

uM (x)

exists.
Now we make an important remark: notice that solutions to (1.1) need

not be positive. However, since u0 = uM |M=0 is bounded from below, we
may choose K > 0 such that v = u0 + K > 0 in Ω, and v will solve the
equation

∆v(x) = a(x)eq(x)v(x)

where a(x) = e−Kq(x) is bounded and strictly positive. Hence, with no loss
of generality we may assume in what follows that u0 > 0 in Ω, and this will
imply uM > 0 in Ω for every M > 0.

Our next aim is to prove that u∞ is finite in Ω+ ∪ Ω0,2. To this end, let
x0 be such that q(x0) > 0. Since q(x) is continuous there exists q0 > 0 and
δ > 0 such that B(x0, δ) ⊂ Ω and

q(x) ≥ q0, in B(x0, δ).
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Now, recall that there exists a unique solution to

(2.1)
{

∆v(x) = eq0v(x) in B(x0, δ),
v = +∞ on ∂B(x0, δ),

(cf. [20]). By comparison, uM ≤ v in B(x0, δ), and it follows that

u∞(x) ≤ v(x) < +∞, x ∈ B(x0, δ),

and hence the limit u∞ is finite in Ω+.
To see that it is also finite in Ω0,2, we take a small δ and consider the set

Vδ = {x ∈ Ω : dist(x,Ω0,2) < δ}. Since Ω0,2 does not touch the boundary
of Ω, it follows that ∂Vδ ⊂ Ω+. Notice that for every M > 0, uM is a
subharmonic function, and hence

uM ≤ sup
∂Vδ

uM ≤ sup
∂Vδ

u∞

in Vδ. This last supremum is finite since u∞ < +∞ in Ω+. This shows that
actually u∞ < +∞ in Ω+ ∪ Ω0,2.

Now, let us show that u∞ = +∞ in Ω0,1. Let vM be the solution to




∆vM (x) = 1 in Ω0,1,
vM (x) = M on Γ1,
vM (x) = 0 on Γ2 \ ∂Ω0,2,

which is easily seen to be vM = Mφ + ψ, where φ is the harmonic function
which equals 1 on Γ1 and 0 on Γ2 \∂Ω0,2 and ψ is the solution to ∆ψ = 1 in
Ω0,1 with ψ = 0 on ∂Ω0,1. By comparison we obtain uM ≥ vM in Ω0,1 (recall
that q = 0 in Ω0,1), and since φ > 0 this implies uM → ∞ in Ω0,1, as we
wanted to prove. Note that this divergence is uniform in compact subsets
of Ω0,1 ∪ (Γ2 \ ∂Ω0,2).

To conclude the proof of the theorem, we have to show that, under the
additional hypothesis (1.2), uM → ∞ on the boundary of Ω+ ∪ Ω0,2. We
have to show that uM → ∞ on Γ2 \ ∂Ω0,2. To this end, fix a small δ >
0, consider the set Uδ = {x ∈ Ω : dist(x,Ω0,1) < δ} (an open part of Ω
containing Γ2 \ ∂Ω0,2) and let

q(δ) = sup
{x ∈ Ω+ : dist(x,Ω0,1) < δ}

q(x).

Let vδ be the solution to



∆v(x) = eq(δ)v(x) in Uδ,
v(x) = M on Γ1,
v(x) = 0 on ∂Uδ ∩ Ω,

for some M = M(δ) to be chosen which will verify M →∞ as δ → 0. Now,
we scale out the factor M : it turns out that wδ = vδ/M verifies





∆w(x) =
eMq(δ)w(x)

M
in Uδ,

w(x) = 1 on Γ1,
w(x) = 0 on ∂Uδ ∩ Ω.

If we choose M = 1/q(δ), it will follow that eMq(δ)w/M ≤ C q(δ) → 0 as
δ → 0, and then it is standard to deduce that wδ → w0 as δ → 0, where w0
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is the harmonic function in Ω0,1 which equals 1 on Γ1 = ∂Ω0,1∩∂Ω and 0 on
∂Ω0,1 ∩ Ω. Notice in particular that w0 > 0 in Ω0 and ∂w0/∂ν < 0 on ∂Ω0.

Now let x0 ∈ ∂Ω0 ∩Ω, and denote by x̄0,δ the closest point to x0 lying on
∂Uδ ∩ Ω. Thanks to the mean value theorem,

wδ(x0) = −δ
∂wδ

∂ν
(ξδ) ≥ c δ

for some positive constant c not depending on δ, where ν is the outward
unit normal to ∂Ω0 at x0 and ξδ is a point in the segment [x0, x̄0,δ]

We now notice that uM ≥ vδ in Uδ by comparison. Therefore

uM (x0) ≥ vδ(x0) =
1

q(δ)
wδ(x0) ≥ c

δ

q(δ)
→ +∞,

thanks to condition (1.2). The proof concludes by recalling that uM is
increasing in M . ¤

3. Asymptotic behavior and uniqueness

In this section, we find the asymptotic behavior of solutions to (1.1) and,
as a consequence, we prove uniqueness of such solutions both when q > 0
on ∂Ω and when q verifies condition (1.4).

Proof of Theorem 3. Fix a small ε > 0, and let us see that, for β ∈ (0, 1)
and K > 0, the function

u(x) = − 2
q(x)

log(d(x)) +
1

q(x)
log

(
2 + ε

q(x)

)
+ Kd(x)β

is a supersolution to (1.1) in a neighborhood of ∂Ω of the form

Ωδ = {x ∈ Ω : 0 < d(x) < δ} .

We assume that δ is chosen small enough to have d ∈ C2(Ωδ) and |∇d| = 1
there (cf. [16]). We have

∆u =
2

qd2
− 2

qd
∆d− 4

d
∇q−1∇d− log d ∆q−1

+∆{q−1 log
(

2 + ε

q

)
}+ Kβ{(β − 1) + d∆d}dβ−2.

More briefly,

∆u =
1
d2

{
2
q

+ Kβ{(β − 1) + d∆d}dβ + O(d)
}

,

as d → 0, where the terms grouped in O(d) do not depend on K.
From this expression, it is easy to see that u is a supersolution in Ωδ

provided that

(3.1)
2
q

+ Kβ(β − 1 + d∆d)dβ + O(d) ≤ 2 + ε

q
eKqdβ

.

Since β ∈ (0, 1), we can diminish δ so that β − 1 + d∆d < 0, and thus (3.1)
will hold for K > 1 if

2
q

+ O(d) ≤ 2 + ε

q
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in Ωδ. For an arbitrarily chosen ε > 0 such inequality is certainly true in Ωδ

(regardless the size of K) if δ is small enough.
It can be similarly checked that a subsolution is provided by

u(x) = − 2
q(x)

log(d(x)) +
1

q(x)
log

(
2− ε

q(x)

)
−Kd(x)β.

Now let u be a solution to (1.1). If K is large enough, we can achieve
u ≤ u ≤ u in d = δ. We now claim that the problem

(3.2)





∆w = eq(x)w x ∈ Ωδ

w = u d = δ

w = ∞ x ∈ ∂Ω,

possesses a unique solution. Therefore by using the method of sub and
supersolutions (see [13]) we conclude that

u(x) ≤ u(x) ≤ u(x)

in Ωδ. This means
1

q(x)
log

(
1− ε

2

)
−Kdβ(x)

≤ u(x) +
2

q(x)
log d(x) +

1
q(x)

log q(x)− 1
q(x)

log 2

≤ 1
q(x)

log
(
1 +

ε

2

)
+ Kdβ(x)

for every x in Ωδ. We take the limits d(x) → 0 and ε → 0 to prove (1.3).
To achieve the uniqueness of solutions to (3.2) it suffices with showing that

every solution u ∈ C2(Ωδ) ∩ C(Ωδ ∪ {d = δ}) has the first-term asymptotic
behavior on the boundary predicted by (1.3). Namely, that the limit

(3.3) lim
d→0

u(x)
2

q(x) log d(x)−1
= 1

holds true. In fact, once it has been shown that every solution u to (3.2)
satisfies (3.3) then uniqueness follows from the general argument provided
in the proof of Theorem 6 to be given later (it will be omitted here for the
sake of brevity).

We begin showing that

(3.4) lim
d→0

u(x)
2

q(x) log d(x)−1
≤ 1.

Thus assume that δ > 0 is chosen so that q(x) ≥ q0 > 0 in Ω2δ. For x ∈ Ω2δ

let Bx = B(x, σd(x)) be the ball centered at x with radius σ and 0 < σ < 1
fixed. Now, for an arbitrary solution u to (1.1) set

v(y) = u(x + σd(x)y) +
1
qx

log(σd(x))2 y ∈ B(0, 1),

where qx := minBx q. Then a direct computation shows that

v(y) ≤ 1
qx

(
w(y) + log

1
qx

)
y ∈ B(0, 1),
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where w = w(y) is the unique solution to
{

∆w = ew y ∈ B(0, 1)
w = ∞ y ∈ ∂B(0, 1).

By setting y = 0 in the latter expression we obtain

u(x) ≤ 1
qx

log d(x)−2 +
1
qx

log(σqx)−1 +
1
qx

w(0).

Then, to arrive at (3.4) notice that limx→∂Ω q(x)/qx = 1.
To check the complementary limit estimate leading to (3.3) we are using a

sweeping approach from [8] (see also [13]). In fact, computations similar to
those at the beginning of the proof show the existence of positive numbers
δ, τ0 such that

uτ (x) := − 2
q(x)

log(d(x) + τ)−K,

defines a subsolution to ∆u = eq(x)u in Ωδ for every 0 < τ < τ0 and K > 0
an arbitrary constant. Moreover, a fixed K > 0 can be found so that uτ is
a subsolution to the problem

(3.5)

{
∆v = eq(x)v x ∈ {x ∈ Ωδ : d > ε},
v = u x ∈ {d = ε} ∪ {d = δ},

for all 0 < τ < τ0 and 0 < ε < ε0. Since (3.5) has arbitrarily large superso-
lutions and v = u is its unique solution we conclude that uτ (x) ≤ u(x) for
all x such that ε < d(x) < δ. Letting ε → 0 and then τ → 0 we obtain

u(x) ≥ − 2
q(x)

log d(x)−K,

x ∈ Ωδ. This readily implies that

lim
d→0

u(x)
q(x)−1 log d(x)−2

≥ 1

and the proof of (3.3) is concluded. ¤
Now we are ready to prove the uniqueness of solutions to (1.1) stated in

Theorem 4.

Proof of Theorem 4. Let u and v be solutions to (1.1). According to Theo-
rem 3 we have that

u(x)− v(x) → 0, as x → ∂Ω.

Assume that the set G := {u < v} is nonempty. Then since ∆u ≤ ∆v in
G and u(x) − v(x) → 0 as x → ∂G, the strong maximum principle implies
u > v in G, which is clearly impossible. Thus G is empty and this means
u ≥ v. The symmetric argument shows u = v, and uniqueness is proved. ¤
Remark 1. In base of the weaker asymptotic estimate (3.3) an alternative
proof to show uniqueness can be produced following the argument of the
forthcoming Theorem 6.

Next we determine the boundary behavior of solutions in the case where
q vanishes on ∂Ω, subject to condition (1.4).
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Proof of Theorem 5. We will construct sub and supersolutions with a precise
growth near ∂Ω and then we will proceed with a sweeping approach. Fixing
ε > 0 there exists δ > 0 such that q(x) ≥ (Q−ε) d(x)γ in Ωδ. Next we check
that the function

u(x) = − γ + 2 + ε

(Q− ε)d(x)γ
log d(x) + K,

is a supersolution in Ωδ for every K > 0 if δ is small enough. Indeed, it can
be easily seen that

∆u =
γ + 2 + ε

Q− ε
(d−γ−2(2γ + 1− γ(γ + 1) log d) + d−γ−1(γ log d− 1)),

and thus u will be a supersolution provided that

γ + 2 + ε

Q− ε
((2γ + 1− γ(γ + 1) log d) + d(γ log d− 1))

≤ dγ+2 e−(γ + 2 + ε) log d + (Q− ε)dγK .

Since K > 0, this will be achieved if

γ + 2 + ε

Q− ε
dε((2γ + 1− γ(γ + 1) log d) + d(γ log d− 1)) ≤ 1,

which is clearly true by diminishing δ if necessary. It follows that u is a
supersolution to (1.1) in 0 < d < δ for every K > 0. Note that the choice of
δ does not depend on K.

The previous computations ensure the existence of 0 < τ0 < δ, not de-
pending on K, such that

∆uτ ≤ e(Q−ε)(d−τ)γuτ

in {x ∈ Ωδ : τ < d < δ} for every 0 < τ < τ0 where,

uτ (x) = u(d(x)− τ) = − γ + 2 + ε

(Q− ε)(d(x)− τ)γ
log(d(x)− τ) + K.

Since (d − τ)γ < dγ a conveniently large K > 0 can be found so that uτ

defines a supersolution to
{

∆v = eq(x)v x ∈ {x ∈ Ωδ : τ + ε1 < d < δ}
v = u x ∈ {d = τ + ε1} ∪ {d = δ} ,

for all ε1 > 0 smaller than some critical size ε∗ > 0 and every 0 < τ < τ0.
However, v = u is the unique solution to such problem which in turn has
sufficiently small subsolutions. Thus we obtain:

u(x) ≤ uτ (x) τ + ε1 < d(x) < δ.

Now by letting first ε1 → 0 and then τ → 0 we achieve

(3.6) u(x) ≤ u(x) x ∈ Ωδ.

It can be proved by the symmetric reasoning that

u(x) = − γ + 2− ε

(Q + ε)d(x)γ
log d(x)−K,
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is a subsolution in 0 < d < δ for every K > 0. Proceeding now exactly in
the same way as in the proof of Theorem 3 we arrive at the complementary
estimate,

u(x) ≤ u(x) for all x ∈ Ωδ.

Summing up the conclusions, the inequalities

u(x) ≤ u(x) ≤ u(x)

hold true in Ωδ. Therefore, we have,
γ + 2− ε

Q + ε
≤ lim inf

d→0

d(x)γu(x)
− log d(x)

≤ lim sup
d→0

d(x)γu(x)
− log d(x)

≤ γ + 2 + ε

Q− ε

and (1.5) is obtained by letting ε → 0. ¤
Remark 2. Estimate (3.6) can be also obtained by means of the scaling
approach leading to (3.4).

Our last uniqueness proof differs from that of Theorem 4 in an important
issue: we are not using the monotonicity of equ. What is really needed here
is that equ/u is increasing when qu > 1.

Proof of Theorem 6. Let u and v be solutions to (1.1). Thanks to Theorem 5
we have

(3.7) lim
d(x)→0

u(x)
v(x)

= 1.

We also observe that the boundary behavior of solutions given by (1.5)
implies

lim
d(x)→0

q(x)u(x) = +∞,

and, as q > 0, we can choose K > 0 such that q(u+K) > 1 in Ω. We notice
that ũ = u + K verifies

(3.8) ∆ũ(x) = a(x)eq(x)ũ(x) in Ω,

where a(x) = e−Mq(x) is a strictly positive and bounded weight. By enlarging
K if necessary we can also assume that q(v + K) > 1 in Ω, and ṽ = v + K
is also a solution to (3.8). We also observe that ũ/ṽ → 1 as d → 0 thanks
to (3.7). This means that for every ε > 0 there exists δ > 0 such that

(1− ε)ṽ ≤ ũ ≤ (1 + ε)ṽ in Ωδ.

Next we consider the problem

(3.9)
{

∆w(x) = a(x)eq(x)w(x) in Ω \ Ωδ,
w = ũ on ∂(Ω \ Ωδ).

Thanks to the monotonicity of the right-hand side, this problem has a unique
solution, which is exactly ũ. Moreover, since qṽ > 1, it is easily seen that
(1− ε)ṽ and (1+ ε)ṽ are respectively a sub and a supersolution to (3.9) and
thus by uniqueness

(1− ε)ṽ ≤ ũ ≤ (1 + ε)ṽ, in Ω \ Ωδ.

It follows that the inequality is valid throughout Ω, and letting ε → 0 we
obtain ũ = ṽ, that is, u = v in Ω. This concludes the proof. ¤
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4. Changing-sign exponents

We begin this section with a proof of Theorem 7 with an argument entirely
similar to the one considered when we proved Theorem 1.

Proof of Theorem 7. Suppose that (1.1) admits a solution u ∈ C2(Ω) and
let q ≤ 0 in W := B(x0, δ)∩Ω for certain x0 ∈ ∂Ω and positive δ. A smooth
function ψ supported on B(x0, 2δ/3)∩∂Ω can be found such that 0 ≤ ψ ≤ 1
and ψ = 1 on B(x0, δ/3) ∩ ∂Ω. Then, for K > 0 the solution vK to the
auxiliary problem, {

∆u = 1 x ∈ W

u = Kψ x ∈ ∂W,

can be written as vK = −φ1 + Kφ2 with v = φ1 solving −∆v = 1 in W ,
v|∂W = 0 and φ2 is harmonic in W and achieves the value ψ on ∂W .

On the other hand, for small fixed ε > 0 set Wε = {x ∈ W : dist(x, ∂Ω) >
ε}. Due to the singular boundary value of u on ∂Ω one finds by simple
comparison that u ≥ vK in Wε. Letting ε → 0 leads to u ≥ vK in W which
is not possible since K can be chosen arbitrarily large. ¤

As a preliminary result for the remaining proofs in this section it is conve-
nient to introduce a lemma whose basic assertions are essentially well-known.
However an “ad hoc” proof is included for later use.

Lemma 10. Let Ω ⊂ RN be a smooth domain, q ∈ Cη(Ω) such that q(x) > 0
for x ∈ Ω (but possibly q = 0 on ∂Ω). Then there exists a value m∗ > −∞
such that the problem

(4.10)

{
∆u = e−q(x)u x ∈ Ω
u = m x ∈ ∂Ω,

exhibits a classical solution u ∈ C2,η(Ω) if m > m∗ while it does not ad-
mit solutions when m < m∗. Moreover, for every m > m∗ there exists a
maximum classical solution um which increases in m and satisfies

(4.11) um(x) = m + o(1) m →∞,

that is, um “bifurcates” from infinity as m →∞. In addition, um is smooth
in m and unique for large m.

Proof. Since any possible solution u to (4.10) is subharmonic then u ≤ m
in Ω. Thus, setting v = m−u the solutions to (4.10) correspond to positive
solutions to:

(4.12)

{
−∆v = e−mq(x)eq(x)v x ∈ Ω
v = 0 x ∈ ∂Ω.

Observe now that v̄ = φ, the solution to −∆u = 1 in Ω, u|∂Ω = 0, defines a
supersolution to (4.12) if m ≥ mc := supΩ φ. Since v = 0 is a subsolution
then (4.12) has a solution 0 < v < φ for every m ≥ mc.

On the other hand, m∗ = inf{m ∈ R : (4.12) has a solution} satisfies
−∞ ≤ m∗ < ∞. Now observe that if v is a positive solution to (4.12)m=m1 ,
it becomes a supersolution for all problems (4.12)m with m ≥ m1. Since
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v = 0 is a fixed subsolution the existence for m > m∗ of a minimal solution
vm to (4.12) follows from the method of sub and supersolutions.

To show the finiteness of m∗ observe that for v solving (4.12) we find

−∆v > qe−mqv

in Ω. Setting λΩ
1 (−∆ + V (x)) the first Dirichlet eigenvalue of −∆ + V (x)

under Dirichlet conditions we conclude from standard properties,

0 < λΩ
1 (−∆− qe−mqv) < λΩ1

1 (−∆− qe−mqv) < λΩ1
1 (−∆)− q1e

−mq1 ,

where Ω1 ⊂ Ω1 ⊂ Ω, q1 = infΩ1 q. This inequality is not possible if m →
−∞.

Regarding uniqueness and smoothness for large m (see Remark 3 below)
(4.12) can be read off as a regular perturbation problem as m → ∞. In
fact, the function f(x, ε) = e

− 1
|ε| q(x) for ε 6= 0, f(x, 0) = 0 is smooth and

increasing in ε > 0 while (4.12) can be written as{
−∆v = f(x, ε)eq(x)v x ∈ Ω
v = 0 x ∈ ∂Ω.

with ε = 1/m. The linearization of such problem at v = 0, ε = 0 has
λΩ

1 (−∆) as a first eigenvalue and so the implicit function theorem implies
the existence of a unique positive solution vε close to zero for 0 < ε < ε∗.

Results for (4.10) follow by the simple transcription ε → m−1, v → u. In
particular, the maximal solution um = m− vm ∈ C2,η(Ω) to (4.10) satisfies
m− φ ≤ um ≤ m for each m ≥ mc ≥ m∗. This shows (4.11). ¤
Remark 3. Equation in (4.12) is qualitatively equivalent to Gelfand’s equa-
tion (see, for instance, [5], [15], [17]) −∆v = λev, λ > 0, with e−q(x)m

replacing λ. Following the ideas in [5] it can be shown that the maximal
solution um is smooth in the whole range m > m∗.

Proof of Theorem 8. First, we find a weak supersolution um ∈ H1
loc(Ω) ∩

C(Ω) which takes the value +∞ on ∂Ω. In fact, choose a large enough
m > 0 and let u = u−,m(x) ∈ C2,η(Ω−) be the solution to{

∆u = e−q−(x)u x ∈ Ω−
u = m x ∈ ∂Ω−,

which satisfies m − δ ≤ u ≤ m for δ > 0 small and whose existence is
obtained in Lemma 10.

On the other hand, set u = u+,m ∈ C2,η(Ω+ ∪ ∂Ω−) the minimal solution
to the problem: 




∆u = eq+(x)u x ∈ Ω+

u = m x ∈ ∂Ω−
u = ∞ x ∈ ∂Ω.

The existence of u+,m follows by constructing the family vK(x) ∈ C2,η(Ω+)
where for K > 0, u = vK is the solution to




∆u = eq+(x)u x ∈ Ω+

u = m x ∈ ∂Ω−
u = K x ∈ ∂Ω.
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Then, it can be shown as in the proof of Theorem 1 that vK → u+,m in
C2,η(Ω+ ∪ ∂Ω−) as K →∞. Furthermore, the same arguments yield

(4.13) lim
m→∞u+,m = u+ ,

in C2,η(Ω+ ∪ ∂Ω−) with u+ the minimal solution to{
∆u = eq+(x)u x ∈ Ω+

u = ∞ x ∈ ∂Ω+.

Finally, define

um(x) =

{
u−,m(x) x ∈ Ω−
u+,m(x) x ∈ Ω+.

To check that um defines a weak supersolution we first notice that ∂u−,m

∂ν− > 0
where ν− stands for the outer unit normal to Ω− at ∂Ω−. To conclude that
um is a supersolution it is only needed to ensure that

(4.14)
∂u+,m

∂ν+
> 0

on ∂Ω− where now ν+ = −ν− is the outer unit normal to Ω+ at the compo-
nent ∂Ω− of its boundary. Thus, to show (4.14) choose a small strip Uδ =
{x ∈ Ω+ : dist(x, ∂Ω−) < δ}, set Γδ = {x ∈ Ω+ : dist(x, ∂Ω−) = δ} ⊂ ∂Uδ

and notice that, in virtue of (4.13), u+,m keeps finite on Γδ as m → ∞.
Hence, for m conveniently large u+,m takes its maximum on ∂Ω− and so
(4.14) follows from Hopf’s maximum principle.

In order to construct a suitable subsolution u to be compared with um we
choose R slightly bigger than diam(Ω)/2 and x0 ∈ Ω so that Ω ⊂ B(x0, R)
and use again the function φ(x) = 1

2N (|x − x0|2 − R2). It can be checked
that u = Aφ defines a subsolution to ∆u = eq+(x)u in Ω+ for every A ≥ 1.
In virtue of the maximum principle we have in addition

u(x) < u+(x) x ∈ Ω+,

since an exact solution can be placed between u and u+. On the other hand,
u defines a subsolution to ∆u = e−q−(x)u in Ω− if, for A > 1 fixed,

sup
Ω−

q− ≤
(

1
− infΩ− φ

)
1
A

log A.

Observe that a positive R satisfying Ω ⊂ B(x0, R) and coefficient 1 < A < e
can be found if relation (1.6) holds. Finally, since φ < 0 in Ω then we also
get u ≤ um.

To conclude the proof of i) in Theorem 8 we obtain the minimal solution
to (1.1) from u and um. Thus, we construct an increasing sequence un ∈
C2,η(Ω) solving

(4.15)

{
∆u = eq(x)u x ∈ Ω,

u = n ∂Ω

and satisfying un < um for every n. Then, according to the arguments
in Section 2, u = limun = sup un defines the minimal solution to (1.1).
Proceeding inductively, to find un+1 from un, we regard un := un as a
subsolution. To construct the corresponding supersolution to (4.15)n+1 we
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choose ε0 > 0 such that um > n + 1 in Ωε0 = {x ∈ Ω : d(x) < ε0}. For
0 < ε < ε0 we obtain a solution u = ũn+1 to the problem{

∆u = eq(x)u x ∈ Ωε,

u = n + 1 ∂Ωε

in Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} by regarding the restrictions of un = un,
u = um to Ωε as sub and supersolutions, respectively. Thus, u = ũn+1 if
x ∈ Ωε and u = n+1 for x ∈ Ω\Ωε defines the searched supersolution. Since
u ≤ um we obtain a solution un+1 to (4.15)n+1 satisfying un ≤ un+1 ≤ um,
as desired.

Let us show now part ii) and observe that

LΩ = inf
k∈SN−1

sup
x,y∈Ω

|k(x− y)| .

We proceed to obtain a suitable positive subsolution u which can be com-
pared to um for large m. From the expression for LΩ it is possible to find
y ∈ Ω and k ∈ SN−1 = ∂B(0, 1) such that

Ω ⊂ {x ∈ RN : |k(x− y)| ≤ L },
while a number L > LΩ can be chosen so that

(4.16) q̄L2 < 2π2,

where q̄ = supΩ q = supΩ+
q+. Now we set

u(x) = w(t),

where t = k(x− y) ∈ (−L
2 , L

2 ) solves




w′′ = eq̄w, 0 < t < L/2,

w′(0) = 0,
w(L/2) = ∞.

A direct computation shows that

w(t) =
2
q̄

log
(

2ω∗√
q̄L

)
+

1
q̄
z

(
2ω∗

L
t

)
,

where ω∗ = π/
√

2 and z = z(t) is the solution to:{
z′′ = ez

z(0) = z′(0) = 0.

In particular, for each x ∈ Ω

u(x) ≥ w(0) =
2
q̄

log
(

2ω∗√
q̄L

)
> 0

provided condition (4.16) holds.
On the other hand, the positivity of u implies that it defines a subsolution

to ∆u = eq(x)u in Ω which is finite in Ω. This implies

u(x) < u+(x) x ∈ Ω+,

which in turn says that u(x) < um(x) for x ∈ Ω if m is large. As shown
in part i) one obtains a positive solution u to (1.1) lying in the interval
[u, um]. ¤
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Proof of Corollary 9. It is an immediate consequence of inequality (1.7) and
the fact that sup qλ = sup q while LΩλ

= λLΩ for all λ > 0. ¤

Remark 4. Theorem 8 and Corollary 9 also hold –without changes in their
proofs– under slightly more general conditions on q. For instance, the con-
nectedness of Ω− is not necessary provided it remains being a smooth open
subset of Ω (possessing finitely many components). On the other hand, q
may also exhibit a null domain Ω0 provided Ω0 ⊂ Ω and ∂Ω0 ∩ ∂Ω− = ∅.

5. A reference example

In this section, we analyze a class of prospective examples to estimate the
strength of the conclusions in Theorem 8, regarding the sizes of q± and Ω,
and suggesting some multiplicity results.

We will be concerned with the analysis of the one-dimensional problem:

(5.17)

{
u′′ = eq(x)u −L < x < L,

u(±L) = ∞,

where q designates the two-parametric family of symmetric coefficients

q(x) = −q0χI0(|x|) + q1χI1(|x|),
q0, q1 positive parameters, I0, I1 the intervals [0, a], (a, a + b], respectively,
a + b = L (χI standing for the characteristic function of I). Solutions to
(5.17) will be understood in a weak sense, i. e. u ∈ C1(−L, L)∩C2{(−L,L)\
{−a, a}} and pointwise solving (5.17) with the sole exception of x = ±a.

Notice that every solution u to (5.17) is strictly convex in (−L,L) and
thus possesses a unique critical point x0 where it achieves the minimum,
u0 = u(x0). It is easily checked that u is symmetric if and only if x0 = 0.
On the other hand, and as a general rule, symmetry of solutions if often
obtained as a consequence of a uniqueness result. However, it will be seen
below that our problem (5.17) may exhibit multiple solutions. Nevertheless,
all such solutions must be symmetric.

Lemma 11. Every solution u ∈ C1(−L,L)∩C2{(−L,L)\{−a, a}} to (5.17)
is symmetric and therefore defines a solution to the boundary value problem

(5.18)





u′′ = eq(x)u 0 ≤ x < L

u(0) = u0, u′(0) = 0
u(L) = ∞,

where u0 = minu.

We will show the symmetry assertion in the course of the next discussion
of the main features of (5.17).

To analyze the existence of solutions to (5.17) observe that any solution
u to (5.18) separately solves

(5.19)

{
v′′ = e−q0v 0 ≤ x < a,

v(0) = u0, v′(0) = 0,
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in [0, a] and

(5.20)





w′′ = eq1w a ≤ x < L = a + b,

w(a) = u1, w′(a) = u′1,
w(L) = ∞,

in [a, L), where u1 = v(a), u′1 = v′(a) in (5.20). Conversely, if u1, u
′
1 are

regarded as parameters in (5.20) and u0 is another parameter in (5.19), v
solves (5.19) in I0, w is a solution of (5.20) in I1, then u defined as v in I0

and as w in I1 constitutes a solution to (5.18) (i. e, to (5.17)) if and only if
the relations

(5.21) v(a) = w(a) v′(a) = w′(a),

hold.
In order to discuss equations (5.21) we first characterize separately the

solvability of problems (5.19) and (5.20) in the form,

(5.22) v(a) = f(v′(a)), w(a) = g(w′(a)),

respectively, with functions f , g which depend on the parameters a, q0 and
b, q1, respectively. Once f and g have been found, (5.21) simply reduces to

(5.23) f(u′1) = g(u′1).

After solving (5.23) a solution to (5.17) is obtained by inserting u′1 and the
common value u1 = f(u′1) = g(u′1) in (5.19), (5.20) (in the case of (5.19),
initial conditions u1, u

′
1 are taken on x = a).

Accordingly, we begin with the analysis of (5.18). In order to obtain the
function f in (5.22) we compute the solution v(x) to (5.19) keeping u0 as a
parameter. Direct integration shows that:

v(x) = u0 +
2
q0

log cosh
(√

q0

2
e−q0u0/2x

)
.

Setting u1 = v(a), u′1 = v′(a) we find

(5.24)
u1 =

2
q0

log
(

a

√
q0

2
cosh ξ

ξ

)

u′1 =
2

aq0
ξ tanh ξ,

where ξ = a

√
q0

2
e−q0u0/2. Since u′1 is increasing in ξ ≥ 0 then (5.24) defines

u1 = f(u′1, a, q0) :=
2
q0

log
(

a

√
q0

2
coshH(aq0u

′
1/2)

H(aq0u′1/2)

)
,

where H(t) is defined through H(t) tanhH(t) = t. The next features of f ,
relevant in our discussion, are listed without proof.

i) f is smooth in u′1 > 0 and

f(u′1) = − 1
q0

log
(

u′1
a

)
+ o(1) u′1 → 0,

while
f(u′1) = au′1 + o(u′1) u′1 →∞.
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u´u´

h f f1

h 2

Figure 1. Curves of minima of f : u = h1(u′) and u = h2(u′)

ii) f has an absolute minimum at u′1 = u′m with

(5.25) u′m =
2

aq0
, um := f(u′m) =

1
q0

log
a2q0 sinh2 θ

2
,

θ > 1 the positive root of x tanhx− 1 = 0 (θ ∼= 1.19968). Moreover,
f decreases when u′1 ∈ (0, u′m) and it increases for u′1 ∈ (u′m,∞).

iii) f is increasing in a. Moreover, f =
1
q

log(a/u′1)+o(1) as a → 0 and so

lima→0 f = −∞ uniformly in compacts of R+, while f = au′1 + O(1)
as a →∞ and lima→∞ f = ∞ uniformly in compacts of R+.

iv) f =
1
q0

log(
a

u′1
) + o(

1
q0

) as q0 → 0 and so f → ∞ uniformly in

compacts of (0, a), f → −∞ uniformly in compacts of (a,∞) as q0 →
0. In addition, limq0→∞ f(u′1, a, q0) = au′1 uniformly in compacts of
R+.

It is also convenient for our purposes to set um = h1(u′m), the curve
(5.25) of minima of f when parameterized by a (q0 fixed), um = h2(u′m)
the corresponding curve when parameterized by q0 and a is kept fixed (see
Figure 1). From (5.25),

h1(u′m) =
1
q0

log
(

2 sinh2 θ

q0u′m
2

)
, h2(u′m) =

au′m
2

log
(

a sinh2 θ

u′m

)
.

Let us consider now problem (5.20). Since solutions to (5.18) are convex
we restrict ourselves to study u′1 > 0. By setting the change:

u(t) = q1w(bt + a) + log q1b
2 0 ≤ t < 1,

(5.20) is reduced to

(5.26)





u′′ = eu 0 ≤ x < 1
u(0) = q1u1 + log q1b

2, u′(0) = bq1u
′
1

u(1) = ∞.

Introducing the function

(5.27) ω(z, y) =
1√
2

∫ ∞

0

ds√
(es − 1)ez + y2

2

,

it can be checked that solving (5.26) amounts to solving the equation

(5.28) ω(z, y) = 1,



LARGE SOLUTIONS TO ∆u = eq(x)u 19

with z = u(0), y = u′(0). The next statement summarizes the relevant
features concerning (5.28).

Lemma 12. Equation (5.28) is uniquely solvable in R× R+ in the form

z = g1(y),

where g1 is a smooth decreasing function in y ≥ 0 such that g1(0) = 2 log ω∗

(ω∗ =
π√
2
), g′1(y) < 0 for y > 0 and

(5.29) lim
y→∞

g1(y)
y

= −1, lim
y→∞ g′1(y) = −1.

Proof. The function ω(z, y) is separately decreasing in each variable and for
each fixed y ≥ 0 we find limz→∞ ω(z, y) = 0, limz→−∞ ω(z, y) = ∞. This
provides existence and uniqueness of a solution for every y ≥ 0. Notice
also that since ω(z, 0) = ω∗e−z/2 the value g1(0) is readily obtained. The
smoothness of g1 follows from the implicit function theorem.

In order to show the first limit in (5.29) observe that it can be directly
shown that g1 → −∞ as y →∞. Computing the integral in (5.27) we obtain

√
y2 − 2eg1 = 2 log

(
y +

√
y2 − 2eg1√

2

)
− g1,

for large y. Thus,

g1

y
=

2
y

log

(
y +

√
y2 − 2eg1√

2

)
−

√
y2 − 2eg1

y
.

As the first term in the right-hand side is o(1) as y → ∞ the desired limit
follows. The second limit can be easily obtained by differentiating the last
equality. ¤
Proof of Lemma 11. Let us show now the symmetry assertion and so let u
be any solution to (5.17) achieving the minimum at x0 ∈ (−L,L). If u is not
symmetric we can assume that x0 > 0 and consider first the case 0 < x0 < a.
By setting ζ = u(a), ζ ′ = u′(a) we get by integration

b =
√

q1ω(q1ζ,
√

q1ζ
′) =

√
q1

2

∫ ∞

0

dt√
(et − 1)eq1ζ + q1

ζ′2
2

.

Reasoning by symmetry we see that u(a′) = u(a), u′(a′) = u′(a) where
a′ = 2x0− a satisfies a′ > −a and thus ζ1 := u(−a) > ζ, ζ ′1 := −u′(−a) > ζ.
This implies that

ω1 :=
√

q1ω(q1ζ1,
√

q1ζ
′
1) <

√
q1ω(q1ζ,

√
q1ζ

′) = b.

However, it follows from this equality that u(−a−ω1) = ∞ with −a−ω1 >
−L which is not possible. The impossibility of x0 ∈ [a, a + b) is shown with
a similar argument. Therefore x0 must be zero, that is, u is symmetric. ¤

In view of the previous analysis we finally conclude that problem (5.20)
admits a solution –in the regime u′1 ≥ 0– if and only if

u1 = g(u′1, b, q1) :=
1
q1

g1(bq1u
′
1)−

1
q1

log q1b
2.
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u´(b)

a

a

ac

c

g(0)

u(b)

a

Figure 2. Bifurcation diagram for (5.17) with respect a
representing solutions by u′(b) (left) and u(b) (right). Con-
tinuous drawing in curves means exact number of solutions.

Some relevant properties of g are next listed.

i) The function g is decreasing with respect to u′1, and it verifies g(0) =
1
q1

log(ω∗2/q1b
2) and g(u′1) ∼ −bu′1 as u′1 →∞.

ii) g is decreasing with respect to b, limb→0 g = ∞ uniformly in com-
pacts of [0,∞) while limb→∞ g = −∞ uniformly in R+.

iii) limq1→0 g = ∞ uniformly in compacts of [0,∞), and g(u′1, b, q1) →
−bu′1 uniformly in R+ when q1 →∞.

We proceed now to discuss the main features on existence, multiplicity
and asymptotic profiles of solutions to (5.18) when the parameters a, q0, b
and q1 are varied. The responses of our problem (5.17) to such variations
will be separately analyzed in turn. To this objective we are using the
notation f(u′), g(u′) instead of the more cumbersome f(u′, a, q0), g(u′, b, q1)
but will keep in mind the hidden dependence on parameters. In most cases,
a detailed analysis is omitted for the sake of simplicity.

Behavior with respect to a. For fixed q0, b, q1 and small a, equation (5.23)
has exactly two solutions u′i,a, i = 1, 2, such that u′1,a → 0 and u′2,a →∞ as
a → 0. On the contrary, no solutions exist if a À 1. This follows from the
fact that the minimum function h1 satisfies h1(u′) > g(u′) and (respectively,
h1(u′) < g(u′) when u′ is small (large). In addition, since f increases with a
there exists ac > 0 such that (5.23) has at least two solutions if a < ac and
no solutions if a > ac. See Figure 2 for a bifurcation diagram.

Corresponding to the values u′1 = u′i,a, u1 = g(u′1) in problems (5.19),
(5.20), solutions ui(x, a), i = 1, 2, to (5.18) exist with the following proper-
ties:

i) u1(x, a) → u(x) in C2[0, L) as a → 0 where u(·) is the solution to
u′′ = eq1u with u(0) = g(0) and u(L) = ∞.

ii) u2(x, a) → −∞ uniformly on compacts of [0, L) as a → 0.

To show the last assertion notice that for every 0 < x < b the relation
√

q1

2

∫ u2(x)−ζ

0

ds√
(eq1s − 1)eq1ζ + q1

ζ′2
2

= x
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u´(a) u´(a)

zz ´´

qqq 000,m

Figure 3. Bifurcation diagram for (5.17) plotting u′(a) ver-
sus q0. The figure on the left contains a generic configuration
for the case 0 < µ ≤ maxh2 and the one on the right corre-
sponds to the case µ ≥ µ∗. As before, continuous drawing in
curves means exact number of solutions.

holds true, where u2(x) = u2(x, a), ζ ′ = u′2,a, ζ = g(ζ) and ζ ′ →∞, ζ → −∞
as a → 0. Now, for every K ∈ R it can be proved that

lim
ζ′→∞

∫ ∞

K−ζ

ds√
(eq1s − 1)eq1ζ + q1

ζ′2
2

= 0.

This says that xK → b as a → 0 where x = xK in defined through the
equation K = u2(x, a). Thus u2(x, a) → −∞ when a → 0, as desired.

Behavior with respect to q0. Suppose now a, b, q1 are fixed. The minimum
function h2 becomes smaller than g for large u′. Hence, there exist two
solutions u′i,q0,0, i = 1, 2, to (5.23) for q0 lesser than certain amount. In
addition u′1,q0,0 → 0, u′2,q0,0 →∞ as q0 → 0.

However, for q0 = O(1) or large q0 new features arise with respect to
the preceding discussion. Fix µ = g(0) = g(0, b, q1). Observe that g(0) =
log(w∗2/bq2

1) and so µ can achieve any real value. Two regimes are now
possible.

a) µ ≤ 0. In this case minR f becomes larger than µ for q0 ≥ q0,µ and
thus (5.23) does not admit solutions for q0 ≥ q0,µ. Figure 3 shows a
possible bifurcation diagram.

b) µ > 0. Now, equation (5.23) possesses exactly two solutions u′i,q0,∞,
i = 1, 2, for q0 À 1. Moreover u′1,q0,∞ → 0 and u′2,q0,∞ → ζ ′ as
q0 →∞ where u′ = ζ ′ is defined by the equation g(u′) = au′.

On the other hand, the case µ > 0 allows two complementary regimes.
A first one in which equation (5.23) supports at least two positive solutions
for all q0 > 0. This occurs, for instance, when µ ≥ µ∗ where µ∗ = inf{µ >
0 : g(u′) > h2(u′) for all u′ ≥ 0}. A second regime in which solutions to
(5.23) are only possible for q0 ¿ 1 or q0 À 1 but they cease to exist in an
intermediate interval q0,1 ≤ q0 ≤ q0,2. This is precisely the situation if, say,
0 < µ ≤ maxh2, maxh2 = a2 sinh θ/2e (see Figures 3 and 4).

Regarding the limit profiles as q0 → 0 of the solutions u = ui(x, q0) to
(5.18) associated to the values u′i,q0,0, the next properties hold:

i) u1(x, q0) → u0 + x2/2 in C2[0, a] with u0 = g(a)− a2/2; u1(x, q0) →
u(x) in C2[a, L) where u is the solution to u′′ = eq1u in [a, L) sub-
jected to the conditions u(a) = g(a), u(L) = ∞.
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u(a) u(a)

qqq 000,m

g(0) g(0)

g(a) g(a)

g( ´)z g( ´)z

Figure 4. Bifurcation diagram for (5.17) now plotting u(a)
versus q0 and again the cases 0 < µ ≤ maxh2 (left) and
µ ≥ µ∗ (right).

u´(a) u(a)

b bb bc c

Figure 5. Bifurcation diagram for (5.17) plotting sepa-
rately u′(a) and u(a) versus b (left and right, respectively).

ii) u2(x, a) → −∞ uniformly on compacts of [0, L) (see the discussion
of ii) in the analysis of the parameter a).

As for the asymptotic behavior of the solutions u = ui(x, q0) associated
to the roots u′ = u′i,q0,∞ to (5.23), we obtain the following features:

i) u1(x, q0) → g(0) in C2[0, a], u1(x, q0) → u(x) in C2[a, L) as q0 →∞,
u = u(x) solving u′′ = eq1u in a ≤ x < L and satisfying u(a) = g(0),
u(L) = ∞.

ii) u2(x, q0) → ζ ′x in C[0, a], u2(x, q0) → u(x) in C2[a, L) as q0 → ∞
where now u(x) solves u′′ = eq1u in a ≤ x < L and satisfies the
boundary conditions u(a) = g(ζ ′), u(L) = ∞ (recall that ζ ′ is defined
by the equality g(ζ ′) = aζ ′).

This completes the study of the parameter q0.

Behavior with respect to b. As in the preceding cases, all parameters other
than b will be now kept fixed. In particular f preserves its form while g varies
in a decreasing way with respect to b. Thus, a positive bc exists such that
(5.23) possesses exactly two solutions u′i,b for b ¿ 1, at least two solutions
for b < bc and no solutions for b > bc. In addition u′1,b → 0, u′2,b → ∞ as
b → 0 (Figure 5).

The limit profiles of the solutions u = ui(x, b) to (5.18) associated to the
values u′i,b, i = 1, 2, are the following.

i) u1(x, b) →∞ uniformly in [0, L) as b → 0.
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ii) u2(x, b) → ∞ uniformly on compacts of (0, L) while minu2(·, b) →
−∞ as b → 0. More precisely:

u2(x, b) = u0 +
√

2
q0

e−q0u0/2x− 2
q0

log 2 + o(1),

as b → 0, 0 ≤ x ≤ a, where u0 = − 2
q0

log
(√

2
q0

u′2,b

)
+ o(1). In

particular u0 → −∞ as b → 0.

Behavior with respect to q1. The behavior of problem (5.18) with respect to
q1 is quite similar the one observed with respect to the parameter q0. For
q1 ¿ 1 equation (5.23) has exactly two solutions u′i,q1,0 with u′1,q1,0 → 0 and
u′i,q1,0 →∞ as q1 → 0. The associated solutions ui(x, q1), i = 1, 2 to (5.18)
satisfy:

i) u1(x, q1) →∞ uniformly in [0, L) as q1 → 0.
ii) minu2(·, q1) → −∞ while u2(x, q1) → ∞uniformly on compacts of

(0, L) as q1 →∞. More precisely,

u2(x, q1) = u0 +
√

2
q0

e−
q0u0

2 x− 2
q0

log 2 + o(1) q1 → 0,

where 0 ≤ x ≤ a while u0 =
2
q0

log q1 + o(log q1) as q1 → 0.

On the other hand, to describe the response of our problem when q1 →∞
recall that g(u′, b, q1) → −bu′ uniformly in u′ ≥ 0 (even in C1[0,∞)) as
q1 →∞. Thus, two options are possible. A first one when

f(u′) > −bu′

for all u′ ≥ 0. Under such circumstance a q1,c exists such that (5.23) fails to
have solutions for q1 > q1,c.

A second behavior occurs when f(u′) < −bu′ at some u′ > 0. In such
case (5.23) admits at least two solutions for q1 greater certain positive q∗1.
Moreover, assume for simplicity that the equation

(5.30) f(u′) = −bu′

possesses only two solutions 0 < ζ ′1 < ζ ′2 (as is just the case provided either
a ¿ 1 or q0 ¿ 1). Then (5.23) admits exactly two solutions u′i,q1,∞, i = 1, 2,
with u′i,q1,∞ → ζ ′i as q1 → ∞. The associated solutions ui(x, q1) to (5.18)
satisfy the following properties:

a) For i = 1, 2, ui(x, q1) → ui(x) in C2[0, a] as q1 →∞ where the ui(x)
solve u′′ = e−q0u in [0, a] together with the conditions u(0) = u0,i,
u′(0) = 0 where

u0,i = − 2
q0

log
(

1
a

√
2
q0

H
(aq0

2
ζ ′i

))
i = 1, 2.

b) ui(x, q1) → −bζ ′i + ζ ′i(x− a), i = 1, 2, in C2[a, L) as q1 →∞.
Finally, let us describe the general configuration of the set of solutions to

(5.18) for the full range of values of q1. To this proposal set

ginf(u′) = inf
q1>0

g(u′, q1).
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Figure 6. Bifurcation diagrams u(a) versus q1 for problem (5.17).

Notice that ginf is well defined while ginf(0) = −1/qinf with qinf = eω∗2/b2.
In particular,

ginf(u′) ≤ g(u′, q1)q1=qinf
u′ ≥ 0.

Two regimes are possible provided either of the next conditions is satisfied.
Firstly, if f(u′) < ginf(u′) holds for some u′ > 0 then equation (5.23) admits
at least two solutions for all q1 > 0 (Figure 6 right). Alternatively if, for
instance,

f(u′) > g(u′, q1)q1=qinf
,

for all u′ ≥ 0 but f(u′) < −bu′ at some u′ > 0 (see the previous analysis of
the case q1 À 1 then two solutions to (5.23) exist for both q1 ¿ 1 and q1 À 1
but solutions cease to exist in, at least, a finite interval q1,1 ≤ q1 ≤ q1,2,
q1,1 < q1,2 (Figure 6 left).

To summarize the conclusions driven from the analysis of problem (5.17)
we see on one hand that existence of a solution if confirmed –according to
Theorem 8– whenever either of the quantities q0, q1 and L (corresponding
to q−, q+ and diam(Ω) or LΩ in problem (1.1)) are small enough. We have
also shown that existence might be lost if either of the quantities q0, q1, L
becomes large enough.

Observe also that a second solution to (5.17) exists when one of the pa-
rameters q0, q1, a or b becomes small. In addition, a bifurcation from infinity
appears in all cases.
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[15] I. M. Gel’fand, Some problems in the theory of quasilinear equations, Amer. Math.
Soc. Transl. 29 (2) (1963), 295–381

[16] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order,
Springer–Verlag, 1983.

[17] D. D. Joseph, T. S. Lundgren, Quasilinear Dirichlet problems driven by positive
sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269.

[18] J. B. Keller, On solutions of ∆u = f(u), Comm. Pure Appl. Math. 10 (1957),
503–510.

[19] V. A. Kondrat’ev, V. A. Nikishkin, Asymptotics, near the boundary, of a solution
of a singular boundary value problem for a semilinear elliptic equation, Differential
Equations 26 (1990), 345–348.

[20] A. C. Lazer, P. J. McKenna, On a problem of Bieberbach and Rademacher,
Nonlinear Anal. 21 (1993), 327–335.

[21] A. C. Lazer, P. J. Mckenna, Asymptotic behaviour of solutions of boundary blow-
up problems, Differential Integral Equations 7 (1994), 1001–1019.

[22] C. Loewner, L. Nirenberg, Partial differential equations invariant under confor-
mal of projective transformations, Contributions to Analysis (a collection of papers
dedicated to Lipman Bers), Academic Press, New York, 1974, p. 245–272.
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