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Abstract. Consider a two-player zero-sum-game in a bounded open
domain Ω described as follows: at a point x ∈ Ω, Players I and II play
an ε-step tug-of-war game with probability α, and with probability β
(α + β = 1), a random point in the ball of radius ε centered at x is
chosen. Once the game position reaches the boundary, Player II pays
Player I the amount given by a fixed payoff function F .

We give a detailed proof of the fact that the value functions of this
game satisfy the dynamic programming principle

u(x) =
α

2

(
sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)

)
+ β

Z
Bε(x)

u(y) dy,

for x ∈ Ω with u(y) = F (y) when y 6∈ Ω. This principle implies the
existence of quasioptimal Markovian strategies.

1. Introduction

We study a two-player zero-sum-game described as follows: starting from
a point x0 ∈ Ω, Players I and II play the tug-of-war game with probability
α, and with probability β, a random point in Bε(x0) is chosen. The players
continue starting from the new point until the game position reaches a strip
near the boundary, and then Player II pays Player I the amount given by a
payoff function. This game was studied in a slightly different form by Peres
and Sheffield in [9], and the tug-of-war game by Peres, Schramm, Sheffield,
and Wilson in [8].

We aim to provide a self-contained proof of the Dynamic Programming
Principle (DPP) written in a language more familiar to analysts. For a
proof in the context of the general theory of stochastic games see the book
Maitra-Sudderth [4] in discrete state spaces, and the paper [3] for general
state spaces.
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To be more precise, we show that the value functions for the tug-of-war
game with noise satisfy the following equation

u(x) =
α

2

{
sup

y∈Bε(x)

u(y) + inf
By∈ε(x)

u(y)

}
+ β

∫
Bε(x)

u(y) dy(1.1)

for x ∈ Ω. This property provides a useful tool in many applications.
Intuitively, the expected payoff at the point can be calculated by summing

up all the three cases: Player I moves, Player II moves, or a random point
is chosen, with their corresponding probabilities. Player I, who tries to
maximize the payoff, will choose a point maximizing the expected payoff,
and Player II a point minimizing the expected payoff.

Functions satisfying the Dynamic Programming Principle with α = 1 and
β = 0, that is,

u(x) =
1
2

{
sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)

}
,

are called harmonious functions, see Le Gruyer [1] and Le Gruyer-Archer [2].
Furthermore, Oberman used a similar approach to obtain numerical approx-
imations in [7]. As ε goes to zero, harmonious functions approximate so-
lutions to the infinity Laplacian. To be more precise, Le Gruyer proved in
[1], see also [8], that a uniform limit of a sequence of harmonious functions
when ε → 0 is a solution to ∆∞u = 0, where

∆∞u = |∇u|−2
∑
ij

uxiuxixjuxj = |∇u|−2 〈D2u∇u,∇u〉

is the 1−homogeneous infinity Laplacian.
In the general case in [6], see also [5], the authors studied functions that

satisfy (1.1) and proved that they approximate solutions to the p-Laplacian

div(|∇u|p−2∇u) = 0

when

α =
p− 2
p + n

and β =
2 + n

p + n
.

A key tool for the analysis was the Dynamic Programming Principle (1.1)
applied to our game.

2. Tug-of-War games with noise

Let Ω ⊂ Rn be a bounded open set and ε > 0. We denote the compact
boundary strip of width ε by

Γε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}.

Further, we denote by Bε(x) the open Euclidean ball and with Bε(x) its
closure Bε(x) = {y ∈ Rn : |y − x| ≤ ε}.
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Players I and II play as follows. At an initial time, they place a token at
a point x0 ∈ Ω and toss a biased coin with probabilities α and β, α+β = 1.
If they get heads (probability α), they toss a fair coin and the winner of the
toss moves the game position to any x1 ∈ Bε(x0) of his choice. On the other
hand, if they get tails (probability β), the game state moves according to
the uniform probability density to a random point x1 ∈ Bε(x0). Then they
continue playing from x1.

This procedure yields a sequence of game states x0, x1, . . .. Once the game
position reaches the boundary strip Γε, the game ends and Player II pays
Player I the amount given by a payoff function F : Γε → R. Player I earns
F (xk) while Player II earns −F (xk).

A strategy SI for Player I is a collection of measurable mappings SI =
{Sk

I }∞k=0 such that the next game position is

Sk
I (x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

if Player I wins the toss given a partial history (x0, x1, . . . , xk). Similarly
Player II plays according to a strategy SII. The next game position xk+1 ∈
Bε(xk), given a partial history (x0, x1, . . . , xk), is distributed according to
the probability

πSI,SII
(x0, x1, . . . , xk, A)

=
β |A ∩Bε(xk)|
|Bε(xk)|

+
α

2
δSk

I (x0,x1...,xk)(A) +
α

2
δSk

II(x0,x1,...,xk)(A),

where A is any measurable set. From now on, we shall omit k and simply
denote the strategies by SI and SII.

Let us fix strategies SI, SII. Let Ωε = Ω ∪ Γε ⊂ Rn be equipped with the
natural topology, and the σ-algebra B of the Lebesgue measurable sets. The
space of all game sequences

H∞ = {x0} × Ωε × Ωε × . . . ,

is a product space endowed with the product topology.
Let {Fk}∞k=0 denote the filtration of σ-algebras, F0 ⊂ F1 ⊂ . . . defined as

follows: Fk is the product σ-algebra generated by cylinder sets of the form
{x0} ×A1 × . . .×Ak × Ωε × Ωε . . . with Ai ∈ B. For

ω = (x0, ω1, . . .) ∈ H∞,

we define the coordinate processes

Xk(ω) = ωk, Xk : H∞ → Rn, k = 0, 1, . . .

so that Xk is an Fk-measurable random variable. Moreover, F∞ = σ(
⋃
Fk)

is the smallest σ-algebra so that all Xk are F∞-measurable. To denote the
time when the game state reaches the boundary, we define a random variable

τ(ω) = inf{k : Xk(ω) ∈ Γε, k = 0, 1, . . .},

which is a stopping time relative to the filtration {Fk}∞k=0.
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A starting point x0 and the strategies SI and SII determine a unique prob-
ability measure Px0

SI ,SII
in H∞ relative to the σ-algebra F∞. This measure is

built by Kolmogorov’s extension theorem, see (3.2) below and Theorem 3.5.
in Varadhan [10], to the family of transition probabilities

πSI,SII
(x0, X1(ω), . . . , Xk(ω), A)

=
β |A ∩Bε(ωk)|
|Bε(ωk)|

+
α

2
δSI(x0,ω1...,ωk)(A) +

α

2
δSII(x0,ω1,...,ωk)(A).

(2.1)

The expected payoff is then

Ex0
SI,SII

[F (Xτ )] =
∫

H∞
F (Xτ (ω)) Px0

SI,SII
( dω).

Note that, due to the fact that β > 0, the game ends almost surely

Px0
SI,SII

({ω ∈ H∞ : τ(ω) < ∞}) = 1

for any choice of strategies because the game sequences contain arbitrary
long sequences of random steps with probability 1.

The value of the game for Player I is given by

uI(x0) = sup
SI

inf
SII

Ex0
SI,SII

[F (Xτ )]

while the value of the game for Player II is given by

uII(x0) = inf
SII

sup
SI

Ex0
SI,SII

[F (Xτ )].

The values uI(x0) and uII(x0) are in a sense the best expected outcomes
each player can almost guarantee when the game starts at x0. For the
measurability of the value functions we refer to [3].

3. A proof of the DPP

In this section, we prove that the values uI and uII satisfy the Dynamic
Programming Principle. To this end, we define measures inductively on
finite products as

µ0,x0

SI,SII
(x0) = 1,

µk,x0

SI,SII
({x0} ×A1 × . . .×Ak−1 ×Ak)

=
∫

A1×...×Ak−1

πSI,SII
(x0, ω1, . . . , ωk−1, Ak)µ

k−1,x0

SI,SII
(x0, dω1, . . . , dωk−1).

(3.1)

This is the family of measures used to construct the measure Px0
SI ,SII

by
applying Kolmogorov’s theorem. In particular,

µk,x0

SI,SII
({x0} ×A1 × . . .×Ak) = µk+1,x0

SI,SII
({x0} ×A1 × . . .×Ak × Ωε).
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DenoteA = {x0}×A1×. . .×AN×Ωε×Ωε×. . . andAk = {x0}×A1×. . .×Ak.
By Kolmogorov’s extension theorem

µk,x0

SI,SII
(Ak) = Px0

SI ,SII
(A) for k ≥ N,

and thus

Px0
SI ,SII

(A) = lim
k→∞

µk,x0

SI,SII
(Ak).(3.2)

Conditioning with respect to the possible first steps plays a key role in
the proof. Following the notation in [3], we denote by SI[x1] a conditional
strategy obtained by conditioning with respect to the first step. As the
name suggests, this conditional strategy is defined on the partial histories
of the form (x0, x1, . . .). Next we write the expectation as an integral of the
conditional expectations.

Lemma 3.1. There exists a family of measures{
Px0,ω1

SI[ω1],SII[ω1]

}
ω1∈Bε(x0)

such that

Ex0
SI,SII

[F (Xτ )] =
∫

H∞
F (Xτ (ω)) Px0

SI,SII
( dω)

=
∫

Ωε

∫
Ωε×...

F (Xτ (ω))Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .)πSI,SII
(x0, dω1).

(3.3)

The inner integral in the lemma above is a representative of a conditional
expectation given the first points x0, X1 = X1(ω) = ω1.

Proof of Lemma 3.1. First, observe that

µ1,x0

SI,SII
({x0} ×A1) = πSI,SII

(x0, A1).

Further,

µ2,x0

SI,SII
({x0} ×A1 ×A2) =

∫
A1

πSI,SII
(x0, ω1, A2) πSI,SII

(x0, dω1)

=
∫

A1

∫
A2

µ̃
1,(x0,ω1)
SI[ω1],SII[ω1]( dω2) πSI,SII

(x0, dω1),
(3.4)

where the equality

µ̃
1,(x0,ω1)
SI[ω1],SII[ω1](A2) = πSI,SII

(x0, ω1, A2)(3.5)

defines a new family of measures.
Now we assume, arguing by induction, that there exists µ̃

k−1,(x0,ω1)
SI[ω1],SII[ω1] for

k = 2, 3, . . . satisfying

µk,x0

SI,SII
({x0} × . . .×Ak)

=
∫

A1

∫
A2×...×Ak

µ̃
k−1,(x0,ω1)
SI[ω1],SII[ω1]( dω2 . . . , dωk) πSI,SII

(x0, dω1).
(3.6)
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Next we show that this implies that there exists µ̃
k,(x0,ω1)
SI[ω1],SII[ω1] satisfying a

similar equality. Due to (3.4) this holds with k = 1. To establish the
inductive step, we utilize (3.1) together with (3.6), and calculate

µk+1,x0

SI,SII
({x0} × . . .×Ak)

=
∫

A1×...×Ak+1

πSI,SII
(x0, ω1, . . . , ωk, Ak+1) µk,x0

SI,SII
(x0, dω1, . . . , dωk)

=
∫

πSI,SII
(x0, ω1, . . . , ωk, Ak+1)µ̃

k−1,(x0,ω1)
SI[ω1],SII[ω1]( dω2, . . . , dωk) πSI,SII

(x0, dω1)

=
∫

A1

∫
A2×...×Ak+1

µ̃
k,(x0,ω1)
SI[ω1],SII[ω1]( dω2 . . . , dωk+1) πSI,SII

(x0, dω1),

where the family of measures µ̃
k,(x0,ω1)
SI[ω1],SII[ω1] is defined by

µ̃
k,(x0,ω1)
SI[ω1],SII[ω1](A2 × . . .×Ak+1)

=
∫

A2×...×Ak

πSI,SII
(x0, ω1, . . . , ωk, Ak+1)µ̃

k−1,(x0,ω1)
SI[ω1],SII[ω1]( dω2, . . . , dωk).

(3.7)

Thus, we have inductively defined measures µ̃
k,(x0,ω1)
SI[ω1],SII[ω1], which depend on

the strategiesSI[ω1], SII[ω1], on the sets A2× . . .×Ak+1, . By Kolmogorov’s
extension theorem, there exists a family of probability measures Px0,ω1

SI[ω1],SII[ω1]

such that

Px0
SI,SII

({x0} ×A1 × . . .) =
∫

A1

∫
A2×...

Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .) πSI,SII
(x0, dω1).

The claim follows from this equation. �

Every strategy SI can be decomposed into the first step SI(x0) and the rest
Srest

I , where Srest
I contains exactly all the conditional strategies SI[x1], x1 ∈

Bε(x0). The next lemma plays a key role in the proof of the DPP.

Lemma 3.2. It holds

sup
SI(x0)

sup
Srest

I

inf
SII(x0)

inf
Srest

II

Ex0
SI,SII

[F (Xτ )]

= sup
SI(x0)

inf
SII(x0)

sup
Srest

I

inf
Srest

II

Ex0
SI,SII

[F (Xτ )].
(3.8)

Briefly, his is due to the fact that Player I can optimize her conditional
strategy SI[x] without affecting the conditional strategy SI[y] if y 6= x. Thus
we see that Player II gets no advantage by choosing his first step on the left
hand side of (3.8).

Proof of Lemma 3.2. Let us prove (3.8) in detail. The direction “≤” is clear
and we can concentrate on showing the reverse inequality. For any η > 0,
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ω1 ∈ Bε(x0), and SI, Player II can choose a strategy S∗II[ω1] such that∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],S∗II[ω1]( dω2, . . .)

≤ inf
SII[ω1]

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .) + η.

Since the conditional strategy SI[x] can be manipulated without affecting
SI[y] as long as x 6= y, this argument can be repeated for each ω1, and thus
the procedure defines a strategy so that the above inequality holds for each
ω1 ∈ Bε(x0) with this strategy. By using a trivial estimate and integrating
the above inequality, we deduce

inf
Srest

II

∫
Ωε

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .) πSI,SII
(x0, dω1)

≤
∫

Ωε

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],S∗II[ω1]( dω2, . . .) πSI,SII
(x0, dω1)

≤
∫

Ωε

[
inf

SII[ω1]

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .)
]

πSI,SII
(x0, dω1) + cη,

for any πSI,SII
. We repeat the same argument for Player I with η′ > 0, and

construct S∗I . Thus recalling the previous inequality and (3.3), we deduce

sup
Srest

I

inf
Srest

II

Ex0
SI,SII

[F (Xτ )]

≤
∫

Ωε

sup
SI[ω1]

inf
SII[ω1]

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .) πSI,SII
(x0, dω1)

+ cη

≤
∫

Ωε

inf
SII[ω1]

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

S∗I [ω1],SII[ω1]( dω2, . . .) πSI,SII
(x0, dω1)

+ c(η + η′)

≤ inf
Srest

II

Ex0

S0
I ,SII

[F (xτ )] + c(η + η′).

Next we take infSII(x0) on both sides, use a trivial estimate, and obtain

inf
SII(x0)

sup
Srest

I

inf
Srest

II

ESI,SII
[F (Xτ )]

≤ inf
SII(x0)

inf
Srest

II

Ex0
S∗I ,SII

[F (Xτ )] + c(η + η′)

≤ sup
Srest

I

inf
SII(x0)

inf
Srest

II

Ex0
S∗I ,SII

[F (Xτ )] + c(η + η′).

Since η, η′ > 0 are arbitrary, this proves (3.8). �

Next we show that taking sup and inf over conditional strategies with
respect to a fixed second point ω1 gives the value uI at that point.
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Lemma 3.3. Let ω1 ∈ Bε(x0) and denote by Sω1
I , Sω2

II strategies defined on
{ω1} × Ωε × Ωε × . . .. Then we have

uI(ω1) = sup
SI[ω1]

inf
SII[ω1]

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .).(3.9)

Proof. First, we choose any strategies Sω1
I , Sω1

II with a starting point ω1, and
define conditional strategies SI[ω1], SII[ω1] with the first points x0, ω1 by
setting

SI[ω1](x0, ω1, . . . , ωk) = Sω1
I (ω1, . . . , ωk),(3.10)

and analogously for Sω1
II . Definition (3.10) applied in the calculation

πSI[ω1],SII[ω1](x0, ω1, . . . , ωk, A)

=
β |A ∩Bε(ωk)|
|Bε(ωk)|

+
α

2
δSI[ω1](x0,ω1,...,ωk)(A) +

α

2
δSII[ω1](x0,ω1,...,ωk)(A)

=
β |A ∩Bε(ωk)|
|Bε(ωk)|

+
α

2
δS

ω1
I (ω1,...,ωk)(A) +

α

2
δS

ω1
II (ω1,...,ωk)(A)

= πS
ω1
I ,S

ω1
II

(ω1, . . . , ωk, A).

implies that the transition probabilities are the same. This fact, (3.5), and
(3.7) imply

µ̃
2,(x0,ω1)
SI[ω1],SII[ω1](A2 ×A3) =

∫
A2

πSI[ω1],SII[ω1](x0, ω1, ω2, A3) µ̃
1,(x0,ω1)
SI[ω1],SII[ω1]( dω2)

=
∫

A2

πSI[ω1],SII[ω1](x0, ω1, ω2, A3) πSI[ω1],SII[ω1](x0, ω1, dω2)

=
∫

A2

πS
ω1
I ,S

ω1
II

(ω1, ω2, A3) µ1,ω1

S
ω1
I ,S

ω1
II

(ω1, dω2)

= µ2,ω1

S
ω1
I ,S

ω1
II

({ω1} ×A2 ×A3).

Assume then that

µ̃
k,(x0,ω1)
SI[ω1],SII[ω1](A2 × . . .×Ak+1) = µk,ω1

S
ω1
I ,S

ω1
II

({ω1} ×A2 × . . .×Ak+1).

This implies

µ̃
k+1,(x0,ω1)
SI[ω1],SII[ω1](A2 × . . .×Ak+2)

=
∫

A2×...×Ak+1

πSI[ω1],SII[ω1](x0, ω1, . . . , ωk+1, Ak+2)×

µ̃
k,(x0,ω1)
SI[ω1],SII[ω1]( dω2, . . . , dωk+1)

=
∫

A2×...×Ak+1

πS
ω1
I ,S

ω1
II

(ω1, . . . , ωk+1, Ak+2) µk,ω1

S
ω1
I ,S

ω1
II

(ω1, dω2, . . . , dωk+1)

= µk+1,ω1

S
ω1
I ,S

ω1
II

({ω1} ×A2 × . . .×Ak+2).
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Thus by induction

Px0,ω1

SI[ω1],SII[ω1](A2 × . . .) = Pω1

S
ω1
I ,S

ω1
II

({ω1} ×A2 × . . .).

Similarly, if we are given two conditional strategies SI[ω1], SII[ω1], we can
define strategies Sω1

I , Sω1
II , and repeat the above reasoning. By taking the

infimum and the supremum, we obtain

sup
SI[ω1]

inf
SII[ω1]

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .)

= sup
S

ω1
I

inf
S

ω1
II

∫
{ω1}×Ωε×Ωε×...

F (Xτ (ω1, . . .)) Pω1

S
ω1
I ,S

ω1
II

( dω1, . . .),

which proves the claim. �

Now, we are ready to prove our main result.

Theorem 3.4 (DPP). The value function for Player I satisfies

uI(x) =
α

2

{
sup

y∈Bε(x)

uI(y) + inf
y∈Bε(x)

uI(y)

}
+ β

∫
Bε(x)

uI(y) dy, x ∈ Ω,

uI(x) = F (x), x ∈ Γε.

Further, the value function for Player II satisfies the same equation.

Proof. The idea in the proof is to decompose the strategies with respect to
the first step and the rest. Following the notation of Lemma 3.2, we have

uI(x0) = sup
SI

inf
SII

Ex0
SI,SII

[F (Xτ )] = sup
SI(x0)

sup
Srest

I

inf
SII(x0)

inf
Srest

II

Ex0
SI,SII

[F (Xτ )].

According to Lemma 3.2

sup
SI(x0)

sup
Srest

I

inf
SII(x0)

inf
Srest

II

Ex0
SI,SII

[F (Xτ )] = sup
SI(x0)

inf
SII(x0)

sup
Srest

I

inf
Srest

II

Ex0
SI,SII

[F (Xτ )].

This together with (3.3) implies

uI(x0) = sup
SI(x0)

inf
SII(x0)

sup
Srest

I

inf
Srest

II

Ex0
SI,SII

[F (Xτ )]

= sup
SI(x0)

inf
SII(x0)

∫
Ωε

V (F (xτ ) |x0, ω1) πSI,SII
(x0, dω1),

(3.11)

where we denoted

V (F (xτ ) |x0, ω1) = sup
SI[ω1]

inf
SII[ω1]

∫
Ωε×...

F (Xτ (ω)) Px0,ω1

SI[ω1],SII[ω1]( dω2, . . .).

The justification for interchanging sup inf with the first integral is similar
to that in (3.8), that is, the conditional strategy SI[x] can be manipulated
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without affecting SI[y] as long as x 6= y. By (3.11), Lemma 3.3, and (2.1),
we obtain

uI(x0) = sup
SI(x0)

inf
SII(x0)

∫
Ωε

uI(ω1) πSI,SII
(x0, dω1)

= sup
SI(x0)

inf
SII(x0)

[
α

2

{
uI(SI(x0)) + uI(SII(x0))

}
+ β

∫
Bε(x0)

uI dy

]

=
α

2

{
sup

SI(x0)
uI(SI(x0)) + inf

SII(x0)
uI(SII(x0))

}
+ β

∫
Bε(x0)

uI dy.

In the last equality we used the fact that the infimum only affects the second
term, the supremum only the first term, and the third term is independent
of the strategies. This completes the proof. �

Let the payoff function F be bounded. Given the value functions

uI(x0) = sup
SI

inf
SII

Ex0
SI,SII

[F (Xτ )]

and
uII(x0) = inf

SII

sup
SI

Ex0
SI,SII

[F (Xτ )],

there are natural strategies for each player. These strategies turn out to be
Markovian and quasioptimal. Fix η > 0 and define strategies

ŠI = {Šk
I }∞k=0 and ŠII = {Šk

II}∞k=0

as follows:

Šk
I (x0, x1, . . . , xk) = xk+1 ∈ Bε(xk), where u(xk+1) ≥ sup

y∈Bε(xk)

u(y)− 2−kη

Šk
II(x0, x1, . . . , xk) = xk+1 ∈ Bε(xk), where u(xk+1) ≤ inf

y∈Bε(xk)
u(y) + 2−kη.

These strategies depend on η and they define a measure Px0,η

ŠI,ŠII
on F∞.

With respect to this measure the value corresponding to a game with fixed
strategies ŠI and ŠII is given by

vη(x0) = Ex0,η

ŠI,ŠII
[F (Xτ )].

Theorem 3.5. It holds that

|uI(x0)− vη(x0)| ≤ η.

Proof. The proof is based on the following observation

Ex0

SI,ŠII
[uI(xk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
inf

Bε(xk−1)
uI + η2−k + sup

Bε(xk−1)

uI

}
+ β

∫
Bε(xk−1)

uI dy + η2−k

≤ uI(xk−1) + η2−(k−1),
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where we have estimated the strategy of Player I by the supremum and used
the definition of ŠII. Therefore we conclude that

uI(xk) + η2−k

is a supermartingale. Since uI = vη = F at the boundary strip Γε, we deduce

vη(x0) = Ex0

ŠI,ŠII
[F (xτ )] = Ex0

ŠI,ŠII
[vη(xτ )]

= Ex0

ŠI,ŠII
[uI(xτ )] = Ex0

ŠI,ŠII
[uI(xτ ) + η2−τ ]− Ex0

ŠI,ŠII
[η2−τ ]

≤ EŠI,ŠII
[uI(xτ ) + η2−τ ]

≤ lim inf
k→∞

EŠI,ŠII
[uI(xτ∧k) + η2−τ∧k]

≤ uI(x0) + η,

where τ ∧ k = min(τ, k), and we used Fatou’s lemma as well as the optional
stopping theorem for uI(xk) + η2−k.

This shows that uI(x0)−vη(x0) ≥ −η. The inequality uI(x0)−vη(x0) ≤ η

follows by a symmetric argument using ŠI. �
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