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Abstract. We deal with the clustering problem in a metric graph. We look

for two clusters, to this end we study the first non-zero eigenvalue of the
p−Laplacian on a quantum graph with Newmann or Kirchoff boundary con-

ditions on the nodes. Then, an associated eigenfunction up provides two sets

inside the graph, {up > 0} and {up < 0} that define the clusters. Moreover,
we describe in detail the limit cases p→∞ and p→ 1.

1. Introduction

One of the mayor problems for networks is that of clustering. Clustering in a net-
work means that we want to identify dense regions of it maximizing or minimizing
some criterium. Here we deal with metric graphs, Γ, that are graphs in which we
have a length for the edges and try to identify two clusters. Our approach to find
two clusters in Γ is based on the following idea: given u a sign-changing function
defined on the graph just take A = {u > 0} and B = {u < 0} as clusters (note that
the set {u = 0} may be nontrivial and therefore it may happen that A ∪ B 6= Γ).
In this work we take u as being an eigenfunction for some differential operator, we
take a p−Laplacian, −(|u′|p−2u′)′, defined on the graph and study properties of
this approach. We find two extreme cases: for p = ∞ (this is understood as the
limit as p → ∞), A and B are sets that have diameter as large as possible (each
one of them has diameter equal to diam(Γ)/2); while for p = 1 (understood as the
limit as p → 1) we find that A and B are sets with large total length and small
number of “cuts” in the graph (small perimeter).

A quantum graph is a graph in which we associate a differential law with each
edge, that models the interaction between the two nodes defining each edge. The
use of quantum graphs (in contrast to more elementary graph models, such as
simple unweighted or weighted graphs) opens up the possibility of modeling the
interactions between agents identified by the graph’s vertices in a more detailed
manner than with standard graphs. Quantum graphs are used to model thin tubular
structures, so-called graph-like spaces, they are their natural limits, when the radius
of a graph-like space tends to zero. On both, the graph-like spaces and the metric
graph, we can naturally define Laplace-like differential operators. See [2, 16, 26].

Among properties that are relevant in the study of quantum graphs is the study
of the spectrum of the associated differential operator. In particular, the so-called
spectral gap (this concerns bounds for the first non-zero eigenvalue for the Laplacian
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with Neumann boundary conditions) has physical relevance and was extensively
studied in recent years. We quote, for example, [16, 17, 19, 20].

In this paper we are interested in the eigenvalue problem that naturally arises
when we consider the p−Laplacian, (|u′|p−2u′)′, as the differential law on each side
of the graph together with Newmann or Kirchoff boundary conditions, see [15], at
the nodes. To be concrete, we deal with the following problem: in a finite metric
graph Γ we consider the minimization problem

(1.1) λ2,p(Γ) = inf


∫

Γ

|u′(x)|pdx∫
Γ

|u(x)|pdx
: u ∈W 1,p(Γ),

∫
Γ

|u|p−2u(x) dx = 0, u 6= 0

 .

There is a minimizer, see Theorem 1.1 below, that is a nontrivial sign-changing
weak solution to

(1.2)


−(|u′|p−2u′)′(x) = λ2,p(Γ)|u|p−2u(x) on the edges of Γ,∑
e∈Ev(Γ)

∣∣∣∣ ∂u∂xe

∣∣∣∣p−2
∂u

∂xe
(v) = 0 on the nodes.

Our main results for this eigenvalue problem can be summarized as follows:

• For 1 < p < ∞, we show that the infimum in (1.1) is attained at a sign-
changing function. We provide examples that show that the set {up = 0}
may have nontrivial measure.

• We study the limit cases p→∞ and p→ 1. For p =∞ we find a geometric
characterization of the first non-zero eigenvalue and for p = 1 we prove that
there exist the analogous of Cheeger sets in quantum graphs.

Now, let us present precise statements of our results. First, the following result
follows by a standard compactness argument.

Theorem 1.1. Let Γ be a connected compact metric graph. Then, the infimum
in (1.1), λ2,p(Γ), is attained and is the first non-zero Neumann eigenvalue for the
p−Laplacian in Γ, that is, λ2,p(Γ) is the smallest positive number such that there
exists up ∈W 1,p(Γ) such that

(1.3)

∫
Γ

|u′p(x)|p−2u′p(x)v′(x)dx = λ

∫
Γ

|up(x)|p−2up(x)v(x)dx

for all v ∈W 1,p(Γ).

Concerning the limit as p→∞ we have the following result:

Theorem 1.2. Let Γ be a connected compact metric graph, and up be a minimizer
for (1.1) normalized by ‖up‖Lp(Γ) = 1. Let

(1.4) Λ2,∞(Γ) = inf
{
‖v′‖L∞(Γ) : max

Γ
v = max

Γ
−v = 1

}
.

Then,

lim
p→∞

λ2,p(Γ)1/p = Λ2,∞(Γ)

and there exists a subsequence pj →∞ such that

upj → u∞
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uniformly in Γ and weakly in W 1,q(Γ) for every q < ∞. Moreover, any possible
limit u∞ is a minimizer for (1.4).

This value Λ2,∞(Γ) can be characterized as

Λ2,∞(Γ) =
2

diam(Γ)
.

While for the limit as p→ 1 we have:

Theorem 1.3. Let Γ be a connected compact metric graph, and up be a minimizer
for (1.1) normalized by ‖up‖L1(Γ) = 1. Then, there exists a subsequence pj → 1+

and u1 ∈ BV (Γ) such that
upj → u1

in L1(Γ).
Moreover, any possible limit u1 is a minimizer for

(1.5) Λ2,1(Γ) = inf

{‖v′‖BV (Γ)

‖v‖L1(Γ)
: v ∈ BV (Γ),

∫
Γ

sgn(v)(x) dx = 0, v 6= 0

}
.

This value Λ2,1(Γ) is the limit of λ2,p(Γ), it holds that

lim
p→1

λ2,p(Γ) = Λ2,1(Γ).

We also have an analogous to Cheeger sets for metric graphs.

Theorem 1.4. Let Γ be a connected compact metric graph and A be a subset of Γ
such that |A| = `(Γ)/2 and Per(A) <∞. Then

(1.6)
2 Per(A)

`(Γ)
= inf

{
Per(E)

min {|E|, |Γ \ E|}
: E ( Γ, E 6= ∅

}
if only if

u = χA − χΓ\A

is a minimizer for Λ2,1(Γ).

As we have mentioned at the beginning of this introduction, for a metric graph
one important problem is clustering. We want to identify two disjoint subsets of
the graph Γ, A and B that are similar in size (here we have to define in which
sense we measure the size of a subset of a metric graph) and such that the resulting
partition of Γ minimizes or maximizes some criterium (also to be specified). We
remark again that, in general, we are not prescribing that Γ = A ∪B, we can have
Γ \ (A ∪B) 6= ∅.

For the case p = +∞ we let A∞ = {u∞ > 0} and B∞ = {u∞ < 0} and we have
that A∞ and B∞ are two subsets of Γ with the same diameter that maximizes this
common diameter, that is,

diam(A∞) = diam(B∞) =
diam(Γ)

2
.

For p = 1 we let A1 = {u1 > 0} and B1 = {u1 < 0} and we obtain two subsets
with total length |A1| and |B1| less or equal to |Γ|/2 with maximizes the sum
|A1|+ |B1| and such that the perimeter of them inside Γ is minimized.

In general, for intermediate p, 1 < p <∞, if we let A = {up > 0} and B = {up <
0} we obtain something that interpolates between the two previous situations.

Let us end this introductions with a brief description of the ideas and techniques
used in the proofs and of the previous bibliography.
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Existence of eigenfunctions can be easily obtained from a compactness argument
as for the usual p−Laplacian in a bounded domain of RN , see [12]. However, here
we show examples that show that the set {up = 0} may have nontrivial measure
(it may contain some edges).

Eigenvalues on quantum graphs are by now a classical subject with an increasing
number of recent references, we quote [5, 11, 17, 20]. The literature on eigenfunc-
tions of the p−Laplacian in a one dimensional interval, also called p−trigonometric
functions, is now quite extensive: we refer in particular to [22, 23, 24] and references
therein.

Concerning the limit as p→∞ for the eigenvalue problem for the p−Laplacian
in the usual PDE case we refer to [3, 4, 13, 14, 27]. To study this limit the main
point is to use adequate test functions to obtain bounds that are uniform in p in
order to gain compactness on a sequence of eigenfunctions.

Finally, for p = 1 we refer to [7, 10, 25] that deal with Cheeger sets in the
Euclidean space. In this limit problem the natural space that appear is that of
bounded variation functions (that are not necessarily continuous, see [1]).

The paper is organized as follows: in Section 2 we collect some preliminaries; in
Section 3 we deal with the first eigenvalue on a quantum graph and prove its upper
and lower bounds; in Section 4 we study the limit as p→∞ of the first eigenvalue
while in the final section, Section 5 we look for the limit as p→ 1.

2. Preliminaries.

We start with a brief review of the basic results that will be needed in sub-
sequent sections. The known results are generally stated without proofs, but we
provide references where the proofs can be found. Also, we introduce our notational
conventions.

2.1. Neumann Eigenvalues for the p−Laplacian in one dimension. First,
we introduce a review about the one-dimensional Neumann eigenvalue problem for
the p−Laplacian. For more details, see [21]. Let p ∈ (1,+∞) and L > 0. We
consider the following eigenvalue problem for the p−Laplacian in an interval,{

−(|u′(x)|p−2u′(x))′ = λ|u|p−2u(x) in (0, L),

u′(0) = u′(L) = 0.

The eigenvalues λ are of the form

λn+1,p =
(nπp
L

)p p
p′

∀n ∈ N0,

where πp = 2π
p sin(π/p) , and 1/p + 1/p′ = 1. The eigenfunctions corresponding to the

zero eigenvalue are the non-zero constants; those corresponding to λn,p with n > 0
are

un+1(x) =
αL

nπp
sinp

(
nπp
L

(
x− L

2n

))
, α ∈ R \ {0},

where sinp is the p−sine function.
Note that {λn,p} coincides with the usual Neumann eigenvalues of the Laplacian

when p = 2.
Finally, we want to remark that the first non-zero Neumann eigenvalue is

(2.7) λ2,p =
(πp
L

)p p
p′
,
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and the eigenfunctions u2 corresponding to λ2,p have the following property∫ L

0

|u2(x)|p−2u2(x) dx = 0.

2.2. Quantum Graphs. We now remind here some basic knowledge about quan-
tum graphs, see for instance [2] and references therein.

A graph Γ consists of a finite or countable infinite set of vertices V(Γ) = {vi}
and a set of edges E(Γ) = {ej} connecting the vertices. A graph Γ is said a finite
graph if the number of edges and the number of vertices are finite.

Two vertices u and v are called adjacent (denoted u ∼ v) if there is an edge
connecting them. An edge and a vertex on that edge are called incident. We will
denote v ∈ e when e and v are incident. We define Ev(Γ) as the set of all edges
incident to v. The degree dv(Γ) of a vertex V(Γ) is the number of edges that incident
to it, where a loop (an edge that connects a vertex to itself) is counted twice.

A graph Γ is said connected if a path exists between every pair of vertices, that
is a graph which is connected in the sense of a topological space.

A graph Γ is called a directed graph if each of its edges is assigned a direction.
In the remainder of the section, Γ is a directed graph.

Each edge e can be identified with an ordered pair (ve,ue) of vertices.The vertices
ve and ue are the initial and terminal vertex of e. The edge ê is called the reversal
of the edge e if vê = ue and uê = ve.

Definition 2.1 (See Definition 1.2.3 in [2]). A graph Γ is called a metric graph, if

(1) each edge e is assigned a positive length `e ∈ (0,+∞];
(2) the lengths of the edges that are reversals of each other are assumed to be

equal, that is `e = `ê;
(3) a coordinate xe ∈ Ie = [0, `e] increasing in the direction of the edge is

assigned on each edge;
(4) the relation xê = `e−xe holds between the coordinates on mutually reserved

edges.

A finite metric graph whose edges all have finite lengths will be called compact.
If a sequence of edges {ej}nj=1 forms a path, its length is defined as

∑n
j=1 `ej .

For two vertices v and u, the distance d(v,u) is defined as the minimal length of
the path connected them. A compact metric graph Γ becomes a metric measure
space by defining the distance d(x, y) of two points x and y of the graph (that are
not necessarily vertices) to be the short path on Γ connected these points, that is

d(x, y) := inf

{∫ 1

0

|γ′(t)| dt : γ : [0, 1]→ Γ Lipschitz, γ(0) = x, γ(1) = y

}
.

The total length of a metric graph (denoted `(Γ)) is the sum of the length of all
edges and its diameter (denoted by diam(Γ)) is the maximum length between two
points in Γ.

A function u on a metric graph Γ is a collection of functions ue defined on (0, `e)
for all e ∈ E(Γ), not just at the vertices as in discrete models.

Let 1 ≤ p ≤ +∞. We say that u belongs to Lp(Γ) if ue belongs to Lp(0, `e) for
all e ∈ E(Γ) and

‖u‖pLp(Γ) :=
∑

e∈E(Γ)

‖ue‖pLp(0,`e) < +∞.
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The Sobolev space W 1,p(Γ) is defined as the space of continuous functions u on Γ
such that ue ∈W 1,p(Ie) for all e ∈ E(Γ) and

‖u‖pW 1,p(Γ) :=
∑

e∈E(Γ)

‖ue‖pLp(0,`e) + ‖u′e‖
p
Lp(0,`e) < +∞.

Observe that the continuity condition in the definition of W 1,p(Γ) means that for
each v ∈ V(Γ), the function on all edges e ∈ Ev(Γ) assume the same value at v.

The space W 1,p(Γ) is a Banach space for 1 ≤ p ≤ ∞. It is reflexive for 1 < p <∞
and separable for 1 ≤ p <∞.

Theorem 2.2. Let Γ be a compact graph and 1 < p < +∞. The injection
W 1,p(Γ) ⊂ Lq(Γ) is compact for all 1 ≤ q ≤ +∞.

A quantum graph is a metric graph Γ equipped with a differential operator H,
accompanied by a vertex conditions. In this work, we will consider

H(u)(x) := −∆pu(x) = −(|u′(x)|p−2u′(x))′.

Our vertex conditions are the following

(2.8)
∑

e∈Ev(Γ)

∣∣∣∣ ∂u∂xe

∣∣∣∣p−2
∂u

∂xe
(v) = 0, ∀v ∈ V(Γ),

where the derivatives are assumed to be taken in the direction away from the vertex.

Throughout this work,
∫

Γ
u(x)dx denotes

∑
e∈E(Γ)

∫ `e
0
ue(x)dx.

3. The first non-zero eigenvalue in Γ.

Let Γ be a compact connected quantum graph and p ∈ (1,∞). We say that the
value λ ∈ R is a Neumann eigenvalue of the p−Laplacian in Γ if there exists non
trivial function u ∈W 1,p(Γ) such that

(3.9)

∫
Γ

|u′(x)|p−2u′(x)v′(x)dx = λ

∫
Γ

|u(x)|p−2u(x)v(x)dx

for all v ∈W 1,p(Γ). In which case, u is called an eigenfunction associated to λ.
Of course, the first eigenvalue is λ = 0 with eigenfunction u ≡ 1. Moreover, if

λ > 0 is an eigenvalue and u is an associated eigenfunction, then, taking v ≡ 1 as
a test function in (3.9), we have

∫
Γ
|u(x)|p−2u(x) dx = 0.

Thus, the existence of the first non-zero eigenvalue λ2,p(Γ) is related to the
problem of minimizing the quotient

∫
Γ
|v′(x)|pdx/

∫
Γ
|v(x)|pdx among all functions

v ∈ W 1,p(Γ) such that v 6= 0 and
∫

Γ
|v(x)|p−2v(x) dx = 0. This is exactly the

content of Theorem 1.1 that we prove next.

Proof of Theorem 1.1. Take a minimizing sequence un for λ2,p(Γ) and normalize it
according to ‖un‖Lp(Γ) = 1. This sequence verifies that

∫
Γ
|un(x)|p−2un(x) dx = 0

and its W 1,p-norm is bounded. Hence, by a standard compactness argument, using
the compactness result Theorem 2.2, it follows that there exists a subsequence unj
that converges strongly in Lp(Γ) and weakly in W 1,p(Γ). The limit of this sub-
sequence verifies ‖u‖Lp(Γ) = 1,

∫
Γ
|u(x)|p−2u(x) dx = 0 and ‖u‖pW 1,p(Γ) = λ2,p(Γ).

Therefore, λ2,p(Γ) is attained and it is the first non-zero Neumann eigenvalue of the
p−Laplacian in Γ. The fact that a minimizer verifies (1.3) is standard and therefore
we omit its proof. �
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Remark 3.1. In general, the second eigenvalue λ2,p(Γ) is not simple. For instance,
let Γ be a simple graph with 4 vertices and 3 edges, that is V(Γ) = {v1, v2, v3, v4}
and E(Γ) = {[v1, v2], [v2, v3], [v2, v4]},

Γ

L L

L
v1 v2

v3

v4

λ2,p(Γ) =
( πp

2L

)p p
p′
.

Observe that

u(x) =



2L

πp
sinp

( πp
2L

(x− L)
)
, if x ∈ I[v1,v2] = [0, L],

2L

πp
sinp

( πp
2L
x
)
, if x ∈ I[v2,v3] = [0, L],

0 otherwise,

v(x) =



2L

πp
sinp

( πp
2L

(x− L)
)
, if x ∈ I[v1,v2] = [0, L],

2L

πp
sinp

( πp
2L
x
)
, if x ∈ I[v2,v4] = [0, L],

0 otherwise,

are two linearly independent eigenfunctions associated to λ2,p(Γ).
Also remark that in this example, the above described eigenfunctions associated

with λ2,p(Γ) vanishes on an entire edge. Therefore here we have that the set {u = 0}
is nontrivial.

These features correspond to a highly symmetric case. If we change the graph
just by taking the same configuration but with three different lengths L1, L2, L3 for
the three different edges we have a an eigenvalue whose associated eigenfunction
vanishes only at one point (hence its zero set has zero length). In fact, that an
eigenfunction associated with the first nontrivial eigenvalue vanishes at the vertex
v2 is impossible since for different lengths we have different values of the first
eigenvalue of the p−Laplacian with mixed boundary conditions (u = 0 at one
endpoint and u′ = 0 at the other endpoint). By the same reason, an eigenfunction
must vanish only inside the longest edge and there is only one possibility for this
point xp (it must be the only one such that the first eigenvalue with mixed boundary
conditions in the interval between the vertex vi and the point xp in the longest edge
equals λ2,p(Γ)).

Our next result shows an upper bound and a lower bound for λ2,p(Γ) which
depend on p, the length of a metric graph and the number of elements in E(Γ). The
prove is similar to the one of [8, Theorems 3.5 and 3.8]. See also [18, Theorem 1].

Theorem 3.2. Let Γ be a connected compact metric graph, and p ∈ (1,+∞). Then(
πp
`(Γ)

)p
p

p′
≤ λ2,p(Γ) ≤

(
card(E(Γ))πp

`(Γ)

)p
p

p′
,

where card(E(Γ)) is the number of elements in E(Γ).
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Note that the bounds given in the previous theorem are optimal. For instance,
let Γ be a graph with only one edge, that is, V(Γ) = {v1, v2} and E(Γ) = {[v1, v2]},

Γ

`(Γ)
v1 v2

Then, by (2.7), we have that

λ2,p(Γ) =

(
πp
`(Γ)

)p
p

p′
,

and then the upper and lower bound in Theorem 3.2 are attained and coincide.

4. The limit as p→∞.

In this section we deal with the limit as p→∞ of the eigenvalue problem (1.1).
We split the proof of Theorem 1.2 in several steps.

Lemma 4.1. There holds

(4.10) lim sup
p→+∞

λ2,p(Γ)
1/p ≤ Λ2,∞(Γ).

Proof. Let w ∈ W 1,∞(Γ) be admissible for Λ2,∞(Γ) i.e. maxΓ w = −minΓ w = 1.
Now, multiply the positive part of w, w+, by ap ∈ R and the negative part of w,
w−, by bp ∈ R to obtain ∫

Γ

|z(x)|p−2z(x) dx = 0,

with

z(x) = apw
+(x)− bpw−(x).

Note that z is continuous in Γ and we can always assume that

max
Γ
|z| = 1,

hence ap = 1 or bp = 1. Also note that we have

ap

(∫
Γ

(w+(x))p−1 dx

)1/(p−1)

= bp

(∫
Γ

(w−(x))p−1 dx

)1/(p−1)

and hence

lim
p→∞

ap = lim
p→∞

bp = 1

since

lim
p→∞

(∫
Γ

(w+(x))p−1 dx

)1/(p−1)

= lim
p→∞

(∫
Γ

(w−(x))p−1 dx

)1/(p−1)

= 1.

Then, z is an admissible function for the minimization problem defining λ2,p(Γ),
hence we get

λ
1/p
2,p (Γ) ≤

‖z′‖Lp(Γ)

‖z‖Lp(Γ)
.

Now, we just observe that

lim
p→∞

‖z‖Lp(Γ) = ‖w‖L∞(Γ) = 1,
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and

lim
p→∞

‖z′‖Lp(Γ) = ‖w′‖L∞(Γ) = max
{
‖(w+)′‖L∞(Γ); ‖(w−)′‖L∞(Γ)

}
.

Hence, it follows that,

lim sup
p→∞

λ2,p(Γ)
1/p ≤ ‖w′‖L∞(Γ),

and we conclude

lim sup
p→+∞

λ2,p(Γ)
1/p ≤ Λ2,∞(Γ).

�

As a second step, we prove that, up to a subsequence, up converges uniformly to
a minimizer of Λ2,∞(Γ).

Lemma 4.2. Let up be an eigenfunction associated to λ2,p(Γ) normalized with
‖up‖Lp(Γ) = 1. Then, up to a subsequence, up converge uniformly in Γ and weakly

in W 1,r(Γ) for any 1 < r < ∞ to some u∞ ∈ W 1,∞(Γ) which is a minimizer of
Λ2,∞(Γ).

Moreover, we have

lim
p→∞

λ2,p(Γ)1/p = Λ2,∞(Γ).

Proof. We first notice that {up}p≥r is bounded in W 1,r(Γ) for any r. Indeed, by
Holder’s inequality, ∫

Γ

|u′p(x)|r dx ≤ ‖u′p‖
p
Lp(Γ)|Γ|

1−r/p

so that by (4.10),

(4.11) ‖u′p‖Lr(Γ) ≤ λ2,p(Γ)
1/p|Γ|1/r−1/p ≤ C.

By Morrey’s inequality {up}p>r is bounded in some Holder space C0,α(Γ), and
then, up to a subsequence, that up → u∞ in C(Γ). We can also assume that this
convergence holds weakly in W 1,r(Γ) for any r.

Let us prove that ‖u∞‖L∞(Γ) = 1. We have∫
Γ

|up(x)|r dx ≤ ‖up‖pLp(Γ)|Γ|
1−r/p

so that by the normalization ‖up‖Lp(Γ) = 1, we get

(4.12) ‖up‖Lr(Γ) ≤ |Γ|
1/r−1/p.

Letting p, r → ∞ in (4.12), we see that ‖u∞‖L∞(Γ) ≤ 1. Now, suppose that
‖u∞‖L∞(Γ) ≤ 1−2ε < 1 for some ε > 0. Since ‖up‖L∞(Γ) → ‖u∞‖L∞(Γ) as p→∞,
we have ‖up‖L∞(Γ) ≤ 1− ε for p large. Then

1 =

∫
Γ

|up(x)|p dx ≤ (1− ε)p|Γ| → 0,

as p→ +∞, which is a contradiction with the normalization ‖up‖Lp(Γ) = 1.

We now verify that maxΓ u∞ + minΓ u∞ = 0. From
∫

Γ
|up(x)|p−2up(x) dx = 0

we obtain that ∫
{up≥0}

|up(x)|p−1 dx =

∫
{up≤0}

|up(x)|p−1 dx .
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We already know that ‖u∞‖L∞(Γ) = 1. Let us show that maxΓ u∞ = 1 and
minΓ u∞ = −1. We argue by contradiction. Assume, e.g., that maxΓ u∞ = 1
but minΓ u∞ ≥ −1 + 2ε for some ε > 0. Since up → u∞ in C(Γ), we also have
minΓ up ≥ −1 + ε for p large. Then∫

{up≥0}
|up(x)|p−1 dx =

∫
{up≤0}

|up(x)|p−1 dx ≤ (1− ε)p−1|Γ| → 0

as p→∞. Since {up} is bounded in C(Γ) (because it converges), we obtain

1 =

∫
Γ

|up(x)|p dx ≤ C
∫

Γ

|up(x)|p−1 dx→ 0

which is a contradiction.
As ‖u∞‖L∞(Γ) = 1 and maxΓ u∞ + minΓ u∞ = 0, we have that u∞ is an ad-

missible test-function for Λ2,∞(Γ). It follows that Λ2,∞(Γ) ≤ ‖u′∞‖L∞(Γ). Since

up → u∞ weakly in W 1,r(Γ) for any ∞ > r > 1, we also have from (4.11) that

‖u′∞‖Lr(Γ) ≤ lim inf
p→+∞

‖u′p‖Lr(Γ) ≤ |Γ|1/r lim inf
p→+∞

λ2,p(Γ)1/p.

Letting r →∞, we obtain, using (4.10), that

Λ2,∞(Γ) ≤ ‖u′∞‖L∞(Γ) ≤ lim inf
p→+∞

λ2,p(Γ)
1/p ≤ lim sup

p→+∞
λ2,p(Γ)

1/p ≤ Λ2,∞(Γ)

from where we deduce the claim. �

Now, our goal is to show that Λ2,∞(Γ) = 2/diam(Γ). As a first step, we prove an
inequality.

Lemma 4.3. There holds Λ2,∞(Γ) ≥ 2/diam(Γ).

Proof. Given some admissible test-function u for the minimum defining Λ2,∞(Γ),
let x ∈ Γ be a point where u attains its maximum and y ∈ Γ a point where u
attains a minimum so that u(x) = 1 and u(y) = −1. Consider also some curve
γ : [0, T ]→ Γ joining y and x. Then

2 = u(x)− u(y) = u(γ(T ))− u(γ(0)) =

∫ T

0

u′(γ(s))γ′(s) ds = ‖u′‖L∞(Γ)Long(γ).

Taking the infimum over all such curves γ and all admissible u, we obtain

2 ≤ Λ2,∞(Γ)d(x, y),

from where we deduce the claim. �

We now prove the reverse inequality.

Lemma 4.4. There holds Λ2,∞(Γ) ≤ 2/diam(Γ).

Proof. Take two points x0, y0 ∈ Γ such that diam(Γ) = d(x0, y0). Consider the
function

u(z) =
2

diam(Γ)

(
d(z, x0)− diam(Γ)

2

)
, z ∈ Γ.

This function is admissible for the minimization problem for Λ2,∞ and has

‖u′‖L∞(Γ) =
2

diam(Γ)
.

This gives the desired upper bound.
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Another possible choice of a test-function is

u(z) = Cy(z)+ − Cx(z)+

where

Cy(z) = 1− 2

diam(Γ)
d(z, y) and Cx(z) = 1− 2

diam(Γ)
d(z, x)

are the cones centered at x and y of height 1 and slope 2

diam(Γ)
. �

Remark 4.5. In the example described in Remark 3.1 with three edges of the same
length L, we have that this limit selects (extracting a subsequence upj with pj →∞)
two edges as A∞, B∞ and the third edge is just {u = 0}. Here the diameter of Γ
is 2L and we obtain two sets of maximum diameter as A∞, B∞.

When we consider the same configuration of the graph, but with three different
lengths L1, L2, L3 (assume that L1 > L2 > L3) for the three different edges we get
that the diameter of Γ is L1 +L2 and our limit as p→∞ gives A∞ as the segment
of the longest edge of length (L1 + L2)/2 starting at v1 and B∞ as the rest of the
graph.

5. The limit as p→ 1+.

In this section we study the other limit case, p = 1. We will use functions of
bounded variation on the graph (that we will denote by BV (Γ)) and the perimeter
of a subset of the graph (denoted by Per(D)). We refer to [1] for precise definitions
and properties of functions and sets in this context.

We start by showing two technical lemmas that are required in the proof of
Theorem 1.3.

Lemma 5.1. Let Γ be a connected compact metric graph and v ∈ BV (Γ) such that

(5.13)

∫
Γ

sgn(v)(x) dx = 0.

If there exists a constant c 6= 0 such

(5.14)

∫
Γ

sgn(v − c)(x) dx = 0,

then ‖v − c‖L1(Γ) = ‖v‖L1(Γ) and

|{x : v(x) ≥ c}| = |{x : v(x) ≤ 0}| and |{x : 0 < v(x) < c}| = 0 if c > 0;

|{x : v(x) ≤ c}| = |{x : v(x) ≥ 0}| and |{x : c < v(x) < 0}| = 0 if c < 0.

Proof. We will consider the case c > 0. The other case is analogous. We begin by
introducing the following notation E+

0 = {x : v(x) > 0}, E−0 = {x : v(x) < 0}, E0 =
{x : v(x) = 0}, E+

c = {x : v(x) > c}, E−c = {x : v(x) < c}, Ec = {x : v(x) = c},
and E0,c = {x : 0 < v(x) < c}. By (5.13) and (5.14), there exist w1 ∈ sgn(v) and
w2 ∈ sgn(v − c) such that

(5.15) 0 =

∫
Γ

w1(x) dx = |E+
0 |+

∫
E0

w1(x) dx− |E−0 |,
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and

0 =

∫
Γ

w2(x) dx = |E+
c | − |E−c |+

∫
Ec

w2(x) dx

= |E+
c | − |E0,c| − |E0| − |E−0 |+

∫
Ec

w2(x) dx

≤ |E+
c | − |E0,c|+

∫
E0

w1(x) dx− |E−0 |+
∫
Ec

w2(x) dx (‖w1‖L∞(Γ) = 1)

= |E+
c | − |E0,c| − |E+

0 |+
∫
Ec

w2(x) dx (by (5.15))

= −2|E0,c|+
∫
Ec

(w2 − 1)(x) dx

≤ −2|E0,c| (note that ‖w2‖L∞(Γ) = 1).

Observe if we assume that |E0,c| > 0 we arrive to a contradiction in the last in-
equality. Then |E0,c| = 0. Therefore

0 =

∫
Γ

w1(x) dx = |E+
0 |+

∫
E0

w1(x) dx− |E−0 |

= |{x : v(x) ≥ c}|+
∫
E0

w1(x) dx− |E−0 |,

and

0 =

∫
Γ

w2(x) dx = |E+
c |+ |E−c |+

∫
Ec

w2(x) dx

= |E+
c | − |{x : v(x) ≤ 0}|+

∫
Ec

w2(x) dx.

Subtracting these equations we get

0 = |Ec|+
∫
E0

w1(x) dx+ |E0| −
∫
Ec

w2(x) dx

=

∫
E0

(w1 + 1)(x) dx+

∫
Ec

(1− w2)(x) dx.

Therefore, w1 = −1 in E0 and w2 = 1 in Ec due to ‖wi‖L∞(Γ) ≤ 1 for i = 1, 2.
Thus,

0 =

∫
Γ

w1(x) dx = |{x : v(x) ≥ c}|+
∫
E0

w1(x) dx− |E−0 |

= |{x : v(x) ≥ c}| − |{x : v(x) ≤ 0}|,
that is |{x : v(x) ≥ c}| = |{x : v(x) ≤ 0}|.

Finally,∫
Γ

|v − c|(x) dx =

∫
{x : v(x)≥c}

(v − c)(x) dx +

∫
{x : v(x)≤0}

(c− v)(x) dx

=

∫
Γ

|v(x)| dx+ c|{x : v(x) ≥ c}| − c|{x : v(x) ≤ c}|

=

∫
Γ

|v(x)| dx,

the proof is complete. �
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Lemma 5.2. Let Γ be a connected compact metric graph and v ∈ L1(Γ) and
{vn}n∈N such that

(5.16)

∫
Γ

sgn(vn)(x) dx = 0 ∀n ∈ N, and vn → v strongly in L1(Γ).

Then, ∫
Γ

sgn(v)(x) dx = 0.

Proof. For any n ∈ N, by (5.16), there exists wn ∈ sgn(vn) such that

(5.17)

∫
Γ

wn(x) dx = 0.

Moreover ‖wn‖L∞(Γ) ≤ 1 for all n ∈ N. Therefore, there exist a function w and a
subsequence still denoted {wn}n∈N such that

wn ⇀ w weakly in Lq(Ω) for any 1 < q <∞.
Thus, using (5.17), ∫

Γ

w(x) dx = lim
n→∞

∫
Γ

wn(x) dx = 0,

and for any ϕ ∈ C∞(Γ) we have∣∣∣∣∫
Γ

w(x)ϕ(x) dx

∣∣∣∣ =

∣∣∣∣ lim
n→∞

∫
Γ

wnϕ(x) dx

∣∣∣∣ ≤ ∫
Γ

|ϕ(x)| dx .

Then w ∈ L∞(Ω), and ‖w‖L∞(Ω) ≤ 1. In addition, by (5.16),

wn → sgn(v) a.e. in {x ∈ Γ: v(x) 6= 0}
as n→∞. Thus, w ∈ sgn(u1) and

∫
Γ
w(x) dx = 0, that is

∫
Γ

sgn(v)(x) dx = 0. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We split the proof in 3 steps.

Setp 1. First we show that {up}1<p≤2 is bounded in W 1,1(Γ).
Let ϕ ∈ C∞(Γ) such that ϕe is odd respect to the center of Ie for any e ∈ E(Γ).

Then ∫
Γ

|ϕ(x)|p−2ϕ(x) dx = 0 ∀p ∈ (1,+∞).

Then, by Hölder’s inequality and using that and up be a minimizer for λ2,p(Γ) and
‖up‖Lp(Ω)=1, we get

‖u′p‖
p
L1(Γ) ≤ ‖u

′
p‖
p
Lp(Γ)|Γ|

p−1 ≤
‖ϕ′‖pLp(Γ)

‖ϕ‖pLp(Γ)

|Γ|p−1.

Therefore, {up}1<p≤2 is bounded in W 1,1(Γ).

Setp 2. Next, we show that

lim inf
p→1+

λ2,p(Γ)
1/p ≥ Λ2,1(Γ).

Let {upn}n∈N be a subsequence of {up}p∈(1,2) such that pn → 1+ as n→∞ and

(5.18) lim
n→∞

‖u′pn‖Lpn (Γ) = lim inf
p→1+

λ2,p(Γ)
1/p.
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By step 1, {upn}n∈N is bounded in W 1,1(Γ). Then, by Theorem 8.8 in [6] and
Theorem 1 in [9, Section 5.2.1], there exist a constant C > 0, u1 and a subsequence
that we still call {upn}n∈N such that

‖upn‖L∞(Ω) ≤ C ∀n ∈ N,(5.19)

upn → u1 strongly in Lq(Γ) for any q ∈ [1,∞),(5.20)

upn → u1 a.e. in Γ,(5.21)

and

(5.22)
‖u′1‖(Γ) ≤ lim inf

n→∞
‖u′pn‖L1(Γ) ≤ lim inf

n→∞
‖u′pn‖Lp(Γ)|Γ|

pn−1
pn

= lim inf
p→1+

λ2,p(Γ)
1/p.

Moreover, by (5.19), (5.20) and Holder’s inequality, we have that∫
Γ

|u1(x)| dx = lim
n→+∞

∫
Γ

|upn(x)| dx ≤ lim
n→+∞

‖upn‖Lpn (Ω)|Γ|
pn−1
pn = 1

≤ lim
n→+∞

Cpn−1‖upn‖L1(Ω)|Γ|
pn−1
pn =

∫
Γ

|u1(x)| dx.

Then ‖u1‖L1(Γ) = 1.

On the other hand, by (5.19), we have that {|upn |pn−2upn}n∈N is bounded
in L∞(Γ). Therefore, there exist a function w and a subsequence still denoted
{upn}n∈N such that

|upn |pn−2upn ⇀ w weakly in Lq(Ω) for any 1 < q <∞.

Thus ∫
Γ

w(x) dx = lim
n→∞

∫
Γ

|upn(x)|pn−2upn(x) dx = 0

and for any ϕ ∈ C∞(Γ) we have∣∣∣∣∫
Γ

w(x)ϕ(x) dx

∣∣∣∣ =

∣∣∣∣ lim
n→∞

∫
Γ

|upn(x)|pn−2upn(x)ϕ(x) dx

∣∣∣∣
≤ lim
n→∞

Cpn−1

∫
Γ

|ϕ(x)| dx (by (5.19))

=

∫
Γ

|ϕ(x)| dx .

Then w ∈ L∞(Ω), and ‖w‖L∞(Ω) ≤ 1. In addition, by (5.21),

|upn |pn−2upn → sgn(u1)

a.e. in {x : u1(x) 6= 0} as n → ∞. Thus, w ∈ sgn(u1) and
∫

Γ
w(x) dx = 0, that is∫

Γ
sgn(u1)(x) dx = 0.

Finally, since u ∈ BV (Γ) and
∫

Γ
sgn(u1)(x) dx = 0, we get

Λ2,p(Γ) ≤ ‖u′1‖(Γ) ≤ lim inf
p→1+

λ2,p(Γ)
1/p,

since ‖u1‖L1(Γ) = 1 and (5.22).

Setp 3. Finally, we show that

lim sup
p→1+

λ2,p(Γ)
1/p ≤ Λ2,1(Γ).
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Let {pn}n∈N ⊂ (1, 2) such that pn → 1+ and

(5.23) lim sup
p→1+

λ2,p(Γ)
1/p = lim

n→∞
λ2,pn(Γ)

1/pn .

Given v ∈ BV (Γ)\{0} such that
∫

Γ
sgn(v)(x) dx = 0, by Theorem 2 in [9, Subsection

5.2.2], there exists {ϕj}j∈N ⊂ C∞(Γ) such that

ϕj → v strongly in L1(Γ),(5.24)

ϕj → v a.e in Γ,(5.25)

‖ϕ′j‖L1(Γ) → ‖v′‖(Γ).(5.26)

Moreover, there exists a constant C > 0 such that

(5.27) ‖ϕj‖L∞(Γ) ≤ C ∀j ∈ N.
Fix j ∈ N, for any n ∈ N there exists cj,n ∈ [minx∈Γ ϕj(x),maxx∈Γ ϕj(x)] such

that

(5.28)

∫
Γ

|ϕj(x)− cj,n|pn−2(ϕj(x)− cj,n) dx = 0.

By (5.27), there exist cj ∈ [minx∈Γ ϕj(x),maxx∈Γ ϕj(x)] and a subsequence that we
still call {cj,n}n∈N such that cj,n → cj as n → ∞. Moreover, proceeding as in the
step 2, one can check that there exists wj ∈ sgn(ϕj− cj) such that

∫
Γ
wj(x) dx = 0,

that is
∫

Γ
sgn(ϕj(x)− cj) dx = 0.

Then,

(5.29)

lim sup
p→1+

λ2,p(Γ)
1/p = lim

n→∞
λ2,pn(Γ)

1/pn ≤ lim inf
n→∞

‖(ϕj − cj,n)′‖Lpn (Γ)

‖(ϕn − cj,n)‖Lpn (Γ)

≤ lim inf
n→∞

‖(ϕj − cj,n)′‖
pn−1
pn

L∞(Γ)‖(ϕni − cni,pi)
′‖

1
pn

L1(Γ)

|Γ|
1−pn
pn ‖(ϕj − cj)‖L1(Γ)

=
‖(ϕj − cj)′‖L1(Γ)

‖ϕj − cj‖L1(Γ)
.

On the other hand, by (5.27) and since cj ∈ [minx∈Γ ϕj(x),maxx∈Γ ϕj(x)] for all
j ∈ N, there exists c ∈ R and a subsequence still call {cj}j∈N such that cj → c as
j →∞. Then, by (5.24), we have that ϕj−cj → v−c strongly in L1(Γ). Therefore,
by Lemma 5.2,

∫
Γ

sgn(v(x) − c)dx = 0. Hence, by (5.29), (5.26) and Lemma 5.2,
we obtain

lim sup
p→1+

λ2,p(Γ)
1/p ≤ lim

j→∞

‖(ϕj − cj)′‖L1(Γ)

‖ϕj − cj‖L1(Γ)
= lim
j→∞

‖ϕ′j‖L1(Γ)

‖ϕj − cj‖L1(Γ)

=
‖v′‖(Γ)

‖v − c‖L1(Γ)
=
‖v′‖(Γ)

‖v‖L1(Γ)
.

Since v is arbitrary, we have that

lim sup
p→1+

λ2,p(Γ)
1/p ≤ Λ2,1(Γ).

Therefore, from this inequality and step 2, we conclude that

lim
p→1+

λ2,p(Γ) = Λ2,1(Γ)

and that u1 is a minimizer for (1.5). �



16 L. M. DEL PEZZO AND J. D. ROSSI

The next result gives a curious property that we include here just for complete-
ness but is not needed in the proof of our main results.

Lemma 5.3. Let Γ be a connected compact metric graph and ϕ ∈ C∞(Γ) such that

(5.30)

∫
Γ

sgn(ϕ)(x) dx = 0,

and {cp}p>1 be a subset of (minx∈Γ ϕ(x),maxx∈Γ ϕ(x)) such that

(5.31)

∫
Γ

|ϕ(x)− cp|p−2(ϕ(x)− cp)dx = 0.

Then cp → 0 as p→ 1+.

Proof. We show that all convergent subsequence of {cp}p>1 converge to 0. Let
{cpi}i∈N be a subsequence of {cp}p>1 such that

pi → 1+ and cpi → c ∈
[
min
x∈Γ

ϕ(x),max
x∈Γ

ϕ(x)

]
as i→∞. We will see that c = 0.

It is clear that there exists a constant C > 0 such that

(5.32) ‖ϕ− cpi‖L∞(Ω) ≤ C ∀i ∈ N.

Then {|ϕ− cpi |pi−2(ϕ− cpi)}i∈N is bounded in Lq(Γ) for all q ∈ [1,∞]. Therefore,
there exist v ∈ Lq(Ω) and a subsequence that will still call {|ϕ−cpi |pi−2(ϕ−cpi)}i∈N
such that

|ϕ− cpi |pi−2(ϕ− cpi) ⇀ v weakly in Lq(Ω)

for any 1 < q <∞. Thus∫
Γ

v(x) dx = lim
i→∞

∫
Γ

|ϕ(x)− cpi |pi−2(ϕ(x)− cpi) dx = 0 (by (5.31))

and for any φ ∈ C∞(Γ) we have∣∣∣∣∫
Γ

v(x)φ(x) dx

∣∣∣∣ =

∣∣∣∣ lim
i→∞

∫
Γ

|ϕ(x)− cpi |pi−2(ϕ(x)− cpi)φ(x) dx

∣∣∣∣
≤ lim
i→∞

Cpi−1

∫
Γ

|φ(x)| dx (by (5.32))

=

∫
Γ

|φ(x)| dx .

Then v ∈ L∞(Ω), ‖v‖L∞(Ω) ≤ 1 and

(5.33)

∫
Γ

v(x) dx = 0.

In addition,

|ϕ− cpi |pi−2(ϕ− cpi)→ sgn(ϕ− c)
a.e. in {x : ϕ(x)− c 6= 0} as i→∞. Therefore, v ∈ sgn(ϕ− c).

On the other hand, by (5.30), there exists w ∈ sgn(ϕ) such that

(5.34) 0 =

∫
Γ

w(x) dx = |E+
0 |+

∫
E0

w(x) dx− |E−0 |,

where E+
0 = {x : ϕ(x) > 0}, E−0 = {x : ϕ(x) < 0}, and E0 = {x : ϕ(x) = 0}.
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We now suppose by contraction that c 6= 0. We will only consider the case c > 0.
The case c < 0 is analogous.

Taking E+
c = {x : ϕ(x) > c}, E−c = {x : ϕ(x) < c}, Ec = {x : ϕ(x) = c}, and

E0,c = {x : 0 < ϕ(x) < c}, we have that

0 =

∫
Γ

v(x) dx (by (5.33))

= |E+
c | − |E−c |+

∫
Ec

v(x) dx (v ∈ sgn(ϕ− c))

= |E+
c | − |E0,c| − |E0| − |E−0 |+

∫
Ec

v(x) dx

≤ |E+
c | − |E0,c|+

∫
E0

w(x) dx− |E−0 |+
∫
Ec

v(x) dx (‖w‖L∞(Γ) ≤ 1)

= |E+
c | − |E0,c| − |E+

0 |+
∫
Ec

v(x) dx (by (5.34))

= −2|E0,c|+
∫
Ec

(v − 1)(x) dx ≤ −2|E0,c| (‖v‖L∞(Γ) ≤ 1).

If |E0,c| > 0, we arrive to a contradiction. If |E0,c| = 0, we have two possibilities:
either ϕ ≥ c or ϕ ≤ 0. In the case ϕ ≥ c we get a contradiction with (5.34). Finally,
if ϕ ≤ 0 we arrive to a contradiction with (5.33). Consequently, c = 0. �

Proof of Theorem 1.4. We begin by observing that

Λ2,1(Γ) ≤ inf

{
Per(E)

min {|E|, |Γ \ E|}
: D ( Γ, E 6= ∅

}
.

Therefore, if u = χA − χΓ\A is a minimizer for Λ2,1(Γ) then

Λ2,1(Γ) =
‖u′‖(Γ)

‖u‖L1(Γ)
=

2 Per(A)

`(Γ)
≥ inf

{
Per(E)

min {|E|, |Γ \ E|}
: D ( Γ, E 6= ∅

}
,

that is

Λ2,1(Γ) =
2 Per(A)

`(Γ)
= inf

{
Per(E)

min {|E|, |Γ \ E|}
: E ( Γ, E 6= ∅

}
.

On the other hand, suppose that (1.6) is valid. For any v ∈ BV (Γ) such that∫
Γ

sgn(v)(x) dx = 0, v 6= 0, by coarea formula (see [9, Theorem 1 in Section 5.5]),
we have that

(5.35) ‖v′‖(Γ) =

∫ ∞
−∞

Per(E+
t )dt

where E+
t = {x : v(x) > t}.
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Since
∫

Γ
sgn(v)(x) dx = 0, we also have that |E+

t | ≤ |{x : v(x) ≤ t}| for all t ≥ 0,

and |E+
t | ≥ |{x : v(x) ≤ t}| for all t < 0. Then, by (5.35) and (1.6), we get

‖v′‖(Γ) =

∫ ∞
0

Per(E+
t )dt+

∫ 0

−∞
Per(E+

t )dt

≥ 2 Per(A)

`(Γ)

(∫ ∞
0

|E+
t |dt+

∫ 0

−∞
|{x ∈ Γ: v(x) ≤ t}|dt

)
≥ 2 Per(A)

`(Γ)
‖v‖L1(Γ).

Then,

(5.36) Λ2,1(Γ) ≥ 2 Per(A)

`(Γ)
=
‖u′‖(Γ)

‖u‖L1(Γ)
.

Finally, we observe that |x : u(x) > 0| = |A| = |Γ \ A| = |{x : u(x) ≤ 0}|. Then∫
Γ

sgn(u)(x) dx = 0, and by (5.36), u is a minimizer for Λ2,1(Γ). �

Remark 5.4. In the example described in Remark 3.1 with three edges of the same
length L, we have that this limit selects (as for the case p =∞) two edges as A∞,
B∞ and the third edge is just {u = 0}. Here we have only one ”cut” in our graph
Γ (the perimeter of A and B inside Γ is one).

Now, let us consider the same configuration of the graph, but with three different
lengths L1, L2, L3 for the three different edges and let us assume that L1 > L2 > L3

with L1 > L2 + L3. In this case we get that this limit finds a point x0 ∈ Γ that
divides Γ in two sets A and B with the same total length. The position of x0 is the
point in L1 whose distance to v1 is (L1 + L2 + L3)/2.

Γ

L1
L2

L3
v1 v2

v3

v4

x0
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