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Abstract. We study the dependence of the finite blow-up time
with respect to the initial data for solutions of the equation ut =
∆um + up. We obtain Lipschitz continuity for a certain class of
initial data and Holder regularity for wider classes.

Introduction.

In this paper we study the dependence with respect to the initial
data of the blow-up time for solutions of the following problem

(1.1)

{
ut = ∆(um) + up, (x, t) ∈ RN × (0, T ),
u(x, 0) = u0(x), x ∈ RN ,

where m ≥ 1, p > 1 and u0 is nonnegative and smooth in its positivity
domain.

A remarkable fact is that the solution of parabolic problems may
develop singularities in finite time, no matter how smooth the initial
data are. It is well known that for many differential equations or sys-
tems the solutions can become unbounded in finite time (a phenomena
that is known as blow-up). The study of blow-up solutions has at-
tracted a considerable attention in recent years, see [7], [12], [14] and
the references therein.

For our problem, if the solution is defined on a maximal time interval,
[0, T ) with T < +∞, then limt↗T ‖u(·, t)‖L∞ = +∞. We say that T is
the blow-up time. The existence of blowing up solutions for (1.1) has
been proved in [5], [14]. In [8] it is proved that when 1 < p ≤ m + 2/N
every nontrivial solution blows up in finite time, while if p > m + 2/N
there are blowing up solutions for initial data large enough and also
global solutions for small initial data. The speed at which solutions
blow up (blow-up rate) and the spatial structure of the set in which
the solution becomes unbounded (blow-up sets) are well known for this
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problem. The blow-up rate is given by ‖u(·, t)‖L∞ ∼ (T − t)−1/(p−1).
Concerning the blow-up set, there are three different cases according
to p < m, p = m or p > m. In fact, the blow-up set is, typically,
the whole RN if p < m (global blow-up), a bounded subset if p = m
(regional blow-up) and a single point if p > m (single point blow-up).
See [2], [3], [14] and references therein.

Our main interest here is to investigate the dependence of the blow-
up time with respect to the initial data. We assume that we are dealing
with an initial datum u0 which produces a solution u that blows up at
time T = T (u0) and an arbitrary small perturbation h(x), such that
the solution uh with initial datum u0,h = u0(x) + h(x) also blows up in
finite time, that we call Th = T (u0,h). Our concern is to obtain bounds
for |Th − T | in terms of h.

For the semilinear case, m = 1, it is known that the blow-up time
is continuous with respect to the initial data in L∞ when 1 < p <
(N+2)/(N−2), see [1], [11], [13], if Ω is bounded (with Dirichlet bound-
ary conditions) and [4] if Ω = RN . That is, Th → T as ‖h‖L∞ → 0.
Remark that the restriction on p is not technical. Indeed, if it does
not hold, then the blow-up time is not even continuous as a function of
the initial data, see [6]. Moreover, in [9] it is proved that T is almost

Lipschitz in the following sense, |Th − T | ≤ C‖h‖L∞| ln(‖h‖L∞)|N+2
2

+ε.
The one dimensional case was treated in [10] where it was shown that
T is Lipschitz for some special initial data and some particular pertur-
bations h.

Here we improve the above mentioned results in two ways. On the
one hand, we show that, under certain conditions on u0, the blow-up
time T is Lipschitz without any restriction on the perturbations h. On
the other hand, the main ideas of the previous works, [1], [9], [11],
[13], heavily rely on the linearity of the Laplace operator, while our
approach, allows to deal with nonlinear operators such as the porous
medium equation (m > 1). For this equation, up to our knowledge,
this is the first analysis of the dependence of the blow-up time with
respect to the initial data.

One of the tools involved in the analysis presented relies on the natu-
ral scaling invariance of the problem. We mean the following, if u(x, t)
is a solution of (1.1) then uλ(x, t) = λ−αu(λ−βx, λ−1t) is also a solution
if we choose α = 1/(p− 1) and β = (p−m)/2(p− 1). This solution uλ

blows up at time Tλ = λT and has initial data uλ(x, 0) = λ−αu0(λ
−βx).

From the explicit form of Tλ and uλ(x, 0) it is not difficult to derive
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Lispschitz continuity in this case. The result for this particular per-
turbation and standard comparison arguments allow us to handle a
general perturbation h.

Theorem 1.1. Assume that u0 verifies

(1.2) −∂(uλ(x, 0))

∂λ

∣∣∣
λ=1

= αu0(x) + βx∇u0(x) ≥ c > 0, x ∈ supp(u0).

Then, the blow-up time is Lispchitz with respect to the initial data in
the following sense, there exist a positive constant C such that

|T − Th| ≤ Cdist(u0; u0,h),

for every u0,h with dist(u0, u0,h) = (‖u0 − u0,h‖L∞ + |a− ah|) small.
Here a and ah denote the corresponding interfaces for u0 and u0,h and
|a− ah| stands for the usual distance between sets.

We note that the Lipschitz constant cannot be uniform. This follows
just by looking at the ODE ut = up. Now we want to comment on the
hypotheses that appear in Theorem 1.1. The distance involves a term
related to the interfaces, which is natural since solutions of the porous
medium equation have finite speed of propagation of their supports.
Obviously, if u0 is positive, this term does not appear. Concerning
our assumption (1.2), we first note that, since the problem is invariant
under spatial translations (keeping the same blow-up time), one can
check it on any translation of u0. Using this fact, one can see that,
after an appropriate spatial translation, (1.2) holds for a wide class of
initial data, including positive or compactly supported bell shaped ones
when 1 < p < m. Moreover, in this range of exponents the blow-up
behavior is described by means of a self-similar solution with a profile
that verifies (1.2). Therefore, one can expect that solutions satisfy
(1.2) for times close to their blow-up time. If p ≥ m, since β ≥ 0, (1.2)
implies that u0 must be positive. Also in this case, one can check the
existence of initial data verifying (1.2) with a suitable behavior at ∞.

The ideas involved in the proof, also give Holder continuity results
for wider classes of initial data, imposing higher order conditions on
u0.

Theorem 1.2. Let u0 be such that

∂k(uλ(x, 0))

∂λk

∣∣∣
λ=1

6= 0,

when x verifies ∂j(uλ(x, 0))/∂λj = 0 for 1 ≤ j ≤ k − 1. Assume that
T is continuous at u0, then T is Holder continuous with exponent 1/k,
that is

|T − Th| ≤ C(dist(u0; u0,h))
1/k.
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This result improves continuity to Holder continuity when (1.2) does
not hold. Remark that for certain initial data even continuity may fail,
[6]. As a particular application, we note that Theorem 1.2 provides with
Holder 1/2 continuity, for instance, for concave compactly supported
data.

One can consider other scalings that leave invariant the equation, for
instance uλ(x, t) = u(x, t + λ). In this case, imposing ut > 0 one gets
again Lipschitz continuity. We will comment on these extensions after
the proof of Theorem 1.2.

Finally, we remark that the same ideas can be used to deal with
equations involving other operators and/or source terms like ut = ∆u+
eu, ut = div(|∇u|q−2∇u) + up, etc. We only need a scaling invariance
law together with a comparison result.

Proof of the results

Proof of Theorem 1.1.

To begin our analysis let us prove the result for the one-parameter
family of initial data obtained by using the scaling invariance of the
equation. As we mentioned in the introduction, if u(x, t) is a solution
of ut = ∆um + up a straightforward calculation shows that

uλ(x, t) = λ−αu(λ−βx, λ−1t),

is also a solution when α and β are the self-similar exponents associated
to the problem under consideration, namely,

α =
1

p− 1
, β =

p−m

2(p− 1)
.

The solution uλ has initial datum uλ(x, 0) = λ−αu0(λ
−βx), and blow-up

time Tλ = Tλ. Therefore, we get

|T − Tλ| = T |1− λ|
and

dist(u0; u0,λ) = |1− λ| (‖αu0(x) + βx∇u0(x)‖L∞ + |β||a0|)

+o(|1− λ|).
Hence

|T − Tλ| ≤ Cdist(u0; u0,λ),

where the constant C can be chosen as

C =
T

(‖αu0(x) + βx∇u0(x)‖L∞ + |β||a0|) + o(1),
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for |1− λ| small. Therefore, Theorem 1.1 follows for the special family
u0,λ.

In order to deal with general perturbations, the main idea is to use
comparison arguments between uh (the solution with initial datum u0,h)
and a suitable uλ.

Given u0,h with dist(u0, u0,h) small, let us define

λ+ = sup{λ < 1; u0,λ(x) ≥ u0,h(x)},
and

λ− = inf{λ > 1; u0,λ(x) ≤ u0,h(x)}.
Note that both λ+ and λ− are well defined by our hypothesis (1.2).

From the definition of λ+ and λ− it is clear that

u0,λ−(x) ≤ u0,h(x) ≤ u0,λ+(x).

By using a well known comparison argument, we get

uλ−(x, t) ≤ uh(x, t) ≤ uλ+(x, t).

Then, if we denote by Tλ+ , Th and Tλ− the blow-up times for uλ+ , uh

and uλ− respectively, we obtain

Tλ+ ≤ Th ≤ Tλ− .

Therefore

|T − Th| ≤ max{Tλ− − T ; T − Tλ+}.
Hence we want to obtain bounds on Tλ−−T and T −Tλ+ in terms of

dist(u0, u0,h). We deal with Tλ− − T in detail. The bound for T − Tλ+

can be handled in a similar way, but some differences appear. We
perform the details when appropriate.

Using the previous result for the family uλ, we get

Tλ− − T ≤ Cdist(u0; u0,λ−).

If u0 is positive, in order to estimate the distance dist(u0; u0,λ−) in
terms of dist(u0; u0,h) we remark that u0,h and u0,λ− must have at least
a contact point, xλ− , that may be ∞. Then

dist(u0, u0,h) ≥ ‖u0 − u0,h‖L∞ ≥ |u0(xλ−)− u0,h(xλ−)|
= |u0(xλ−)− u0,λ−(xλ−)| ≥ C|1− λ−|,

where we can take

C = inf |αu0 + βx∇u0|+ o(1).

Remark that C > 0 by our hypothesis on the initial data u0, (1.2).
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On the other hand,

|1− λ−| ≥ Cdist(u0, u0,λ−).

Collecting all these bounds we get

Tλ− − T ≤ Cdist(u0, u0,h).

If u0 is compactly supported, to bound Tλ−−T the previous calculations
remain valid since again in this case the contact point verify xλ− ∈
supp(u0).

When considering T − Tλ+ , the only difference in the arguments
appears if u0 is compactly supported since for u0 > 0 the contact point
always belong to its support. Also in this case u0,h and u0,λ+ must have
a contact point, xλ+ . However xλ+ must not necessarily belong to the
support of u0. First, if xλ+ ∈ supp(u0), the case is analogous to the
previous one and can be handled in a similar fashion. It remains to
deal with xλ+ 6∈ supp(u0). If u0,h(xλ+) ≥ |1− λ+| we get

dist(u0, u0,h) ≥ ‖u0 − u0,h‖L∞ ≥ |u0(xλ+)− u0,h(xλ+)|
= |u0,λ+(xλ+)| ≥ |1− λ+|,

and we finish the argument as above. Finally, if u0,h(xλ+) < |1 − λ+|,
the condition involving the interfaces comes into account and we have,
using our hypothesis on u0, (1.2),

dist(u0, u0,h) ≥ |a− ah| ≥ C|1− λ+|.
This ends the proof of Theorem 1.1. ¤
Proof of Theorem 1.2.

Now we want to show how to obtain Holder regularity by imposing
higher order conditions. Let us analyze in detail the case k = 2. As-
sume that u0 verifies ∂2(uλ(x, 0))/∂λ2 6= 0 for x where (1.2) fails and
that T is continuous at u0. Under these assumptions, by using appro-
priate modifications of the ideas above, we get that T is Holder contin-
uous with exponent 1/2. It will be convenient to deal first with regular
perturbations of the form u+

0,ε = u0 + ε if x ∈ supp(u0) compactly sup-

ported and such that dist(u0, u
+
0,ε) ≤ 2ε and u−0,ε = (u0−ε)+. This spe-

cial family of initial data will play the same role as the family uλ in the
previous case when dealing with general perturbations. Once we have
proved Holder continuity for the family u0,ε, from u+

0,ε ≥ u0,h ≥ u−0,ε,
we obtain the general result.

In order to get the Holder 1/2 regularity for this special perturba-
tions, we use again the family uλ obtained by scaling. For a given ε, let
us consider u+

ε the solution with initial data u+
0,ε and T+

ε its blow-up
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time. We select the only value λ∗ such that Tλ∗ = λ∗T = T+
ε . From

this choice, it is clear that both data u+
0,ε and u∗λ must have an intersec-

tion point x∗ (otherwise they will be ordered and their blow-up times
will be different). If x∗ ∈ supp(u0), at this point we have, for ε small
(since the continuity of the blow-up time implies |1− λ∗| small),

ε = uλ∗(x
∗, 0)− u0(x

∗) =
∂uλ(x

∗, 0)

∂λ

∣∣∣
λ=1

(λ∗ − 1)

+
∂2uλ(x

∗, 0)

∂λ2

∣∣∣
λ=1

(λ∗ − 1)2 + o((λ∗ − 1)2).

Therefore
(dist(u0, u

+
0,ε))

1/2 = (ε)1/2 ≥ C|1− λ∗|,
and hence

|T+
ε − T | = |Tλ∗ − T | = T |1− λ∗| ≤ C(dist(u0, u

+
0,ε))

1/2.

The same procedure gives an analogous estimate when considering
u−0,ε. On the other hand, if x does not belong to the support of u0, the
condition on the interface appears by using similar arguments to those
in Theorem 1.1.

For a general u0,h we take a value of ε of order (dist(u0, u0,h)) such
that u−0,ε ≤ u0,h ≤ u+

0,ε and proceed as before. Indeed, from T+
ε ≤ Th ≤

T−
ε we obtain

|Th − T | ≤ max{T − T+
ε , T−

ε − T} ≤ C(ε)1/2 ≤ C(dist(u0, u0,h))
1/2.

In a similar way we deal with higher order conditions,

∂k(uλ(x, 0))

∂λk
6= 0

at points where the first k − 1 derivatives vanish, obtaining Holder
continuity with exponent 1/k. ¤
Further results.

Finally, we consider the family uλ given by time translations,

uλ(x, t) = u(x, t + λ).

Assume that u0 is an initial data such that the solution u(x, t) is defined
for t ∈ (−a, a) and that ut(x, 0) ≥ c > 0. Let u0,h be a perturbation of
u0 and assume that Th ≤ T . Define

τ+ = inf{τ > 0; u0,h(x) ≤ u(x, τ)}.
This τ+ is well defined due to our assumption ut > 0. We have

T − Th ≤ T − (T − τ+) = τ+.
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Moreover, as u(x, τ+) and u0,h must have a contact point, we get, as
before

dist(u0, u0,h) ≥ Cτ+.

Therefore we obtain a Lipschitz estimate.
If Th > T , we use

τ− = sup{τ < 0; u0,h(x) ≥ u(x, τ)}.
As above, τ− is well defined due to our assumption ut > 0 and the fact
that the initial datum u0 corresponds to a solution defined for negative
small times. We have

Th − T ≤ (T − τ−)− T = −τ−.

Moreover, as u(x, τ−) and u0,h must have a contact point, we get, as
before

dist(u0, u0,h) ≥ C(−τ−).

Therefore we get the result.

Also for this family we may impose higher order conditions obtaining
Holder regularity results.
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