
Differential and Integral Equations Volume 16, Number 10, October 2003, Pages 1215–1222

UNIQUENESS AND NONUNIQUENESS FOR THE POROUS
MEDIUM EQUATION WITH NON LINEAR BOUNDARY

CONDITIONS

Carmen Cortazar1 and Manuel Elgueta1

Facultad de Matematicas, Universidad Catolica
Casilla 306 Correo 22 Santiago, Chile

Julio D. Rossi2

Departamento de Matemática, F.C.E y N., UBA
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Abstract. We study the uniqueness problem for nonnegative solutions
of ut = ∆um in Ω × [0, T ), − ∂um

∂n̂
(x, t) = uλ(x, t) on ∂Ω × (0, T ) and

u(x, 0) ≡ 0 on Ω where m > 1, λ ≥ 1, and Ω is a bounded domain with
smooth boundary in RN . We prove that the solution u ≡ 0 is unique if
and only if 2λ ≥ m + 1.

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary and let m > 1
and λ ≥ 1 be two real numbers. In this article we are concerned with the
uniqueness problem for nonnegative solutions, in the case of null initial data,
of the following initial boundary value problem:

ut = ∆um, in Ω × (0, T )

−∂um

∂n̂
= uλ, on ∂Ω × (0, T ) (1.1)

u(x, 0) = u0(x) on Ω.
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Here and in what follows n̂ denotes the inner unit normal to ∂Ω.
As is well known, in general problem (1.1) does not have classical solutions,

but if the initial data is positive in Ω and verifies a compatibility condition
at the boundary, then there exists a classical solution (see [1]). In what
follows, in the case of more general non negative initial data, we will say
that a continuous function u on Ω × [0, T ) is a solution, weak solution, of
(1.1) if∫

Ω
u0ϕ(·, 0)+

∫ T

0

∫
Ω

uϕt +
∫ T

0

∫
Ω

um∆ϕ−
∫ T

0

∫
∂Ω

uλϕ−
∫ T

0

∫
∂Ω

um ∂ϕ

∂n̂
= 0

(1.2)
for all ϕ ∈ C∞

0 (Ω × [0, T )).
This type of solution of (1.1) can be obtained, by a standard monotonicity

argument, as the limit of a decreasing sequence of classical solutions.
The problem of uniqueness and nonuniqueness for different parabolic non-

linear equations with non-Lipschitzian data has been addressed by several
authors. See for example [7] for the heat equation with a nonlinear source,
and [5] and [6] for semilinear reaction diffusion systems. In [11] a nonunique-
ness result is obtained for the porous medium equation with a non-Lipschitz
source term in the case of the Cauchy problem in RN . It is well known
that, in the above-mentioned problem, if the source term is Lipschitz then
solutions are unique.

Our main result is the following:

Theorem 1.1. Let u0 ≡ 0; then the solution u ≡ 0 to problem (1.1) is
unique if and only if 2λ ≥ m + 1.

We want to remark that in our case the nonlinear boundary condition is
given by a Lipschitz function; nevertheless, the nonuniqueness phenomenon
appears for a certain range of the parameters m and λ. We observe that this
type of result for the half line in R has been proved, by different methods,
in [2].

The idea of the proof of Theorem 1.1 is, up to some technical arguments,
the following: Since there is a comparison principle for problem (1.1), the
existence of a nontrivial subsolution would imply the existence of a nontrivial
solution via a standard monotonicity argument. On the other hand, if one
could construct arbitrarily small supersolutions, defined on a fixed interval
of time, then by comparison it would follow that the null solution is unique.
Thus, a key step in the proof is the construction of nontrivial subsolutions,
in the case 2λ < m + 1, and arbitrarily small supersolutions, if m + 1 ≤



uniqueness and nonuniqueness for the porous medium equation 1217

2λ, of problem (1.1) with u0 ≡ 0. This construction is based on a device,
already used in [3], that consists of producing sub- and supersolutions for
the multidimensional problem starting from solutions in the half line in R1,
provided one has a good knowledge of the one-dimensional solutions. This
is achieved by making a suitable change of coordinates in a neighborhood
of the boundary of Ω and then performing a rescaling of variables. The
solutions for the one-dimensional problem we use are the self-similar ones
that were obtained in [9] and [10].

The rest of this note is organized as follows. In the next section we describe
the change of variables near the boundary and how to compute the Laplacian
in these coordinates, review the self-similar one-dimensional solutions of [9]
and [10], and state a comparison principle. In the last section we construct
the sub- and supersolutions and prove Theorem 1.1.

2. Preliminaries

Let us consider the following change of variables in a neighborhood of ∂Ω.
Let x̄ be a point in ∂Ω. We denote by n̂(x̄) the inner unit normal to ∂Ω at
the point x̄. Since ∂Ω is smooth it is well known that there exists δ > 0 such
that the mapping ϕ : ∂Ω× [0, δ] → RN given by ϕ(x̄, s) = x̄ + sn̂(x̄) defines
new coordinates (x̄, s) in a neighborhood V of ∂Ω in Ω.

A straightforward computation shows that, in these coordinates, ∆ ap-
plied to a function g(x̄, s) = g(s), which is independent of the variable x̄,
evaluated at a point (x̄, s) is given by

∆g(x̄, s) =
∂2g

∂s2
(x̄, s) −

N−1∑
j=1

Hj(x̄)
(1 − Hj(x̄)s)

∂g

∂s
(x̄, s), (2.1)

where Hj(x̄) for i = 1, . . . , N , denote the principal curvatures of ∂Ω at x̄.
We review now some results about the solutions of the following O.D.E.:

(fm)′′(η) + pηf ′(η) = qf(η) in [0, +∞), (2.2)

where p and q are real numbers.
Solutions of (2.2) provide self-similar solutions of the porous medium equa-

tion in the half line in R1. Equation (2.2) has been completely studied in
[9], [10], and [8]. We summarize, in the form of a lemma, the part of these
results that we will need later.

Lemma 2.1. (B. H. Gilding-L. A. Peletier) If p > 0 and q > 0 then for any
U ≥ 0 equation (2.2) has a unique weak solution f such that f is a positive
classical solution on an interval (0, ξ0), f(0) = U , f(ξ0) = 0, (fm)′(ξ0) = 0



1218 Carmen Cortazar, Manuel Elgueta, and Julio D. Rossi

and f(η) ≡ 0 for η ∈ [ξ0,∞). Moreover (fm)′(η) < 0 and (fm)′′(η) > 0 for
η ∈ [0, ξ0).

Let us define the function

h(η) =

{
(fm)′(η)
(fm)′′(η) if η ∈ [0, ξ0)
0 if η ∈ [ξ0,∞)

and state the following elementary lemma for future reference.

Lemma 2.2. If p > 0 and q > 0, then the function h is continuous and
hence bounded.

Proof. It suffices to prove that h is continuous at ξ0. This is immediate
because from the equation it follows that for η ∈ (0, ξ0) one has

−mfm−1(η)
pη

≤ h(η) ≤ 0,

and the lemma is proved. �
We will say that a function u is a strict supersolution of (1.1) if u is

continuous in Ω × [0, T ) and satisfies

ut ≥ ∆um in Ω × (0, T )

in the weak sense and

−∂um

∂n̂ > uλ on ∂Ω × (0, T ).

Analogously we say that u is a strict subsolution of (1.1) if in the definition
for strict supersolution the inequalities are reversed.

The last ingredients we need in our proof are the following comparison
principles.

Lemma 2.3. Let u be a solution of (1.1).
1) Let u be a strict supersolution of (1.1).

If u(x, 0) ≥ u0(x) in Ω and u(x, 0) > u0(x) in ∂Ω, then u ≥ u in Ω×(0, T ).

2) Let u be a strict subsolution of (1.1).

If u(x, 0) ≤ u0(x) in Ω and u(x, 0) < u0(x) in ∂Ω, then u ≤ u in Ω×(0, T ).

Proof. We sketch only the proof of 1). Suppose that the conclusion is false,
and set t0 = max{t ∈ (0, t)/ u ≥ u in Ω × (0, T )}. Clearly 0 ≤ t0 < T .
We claim that there exists x0 ∈ ∂Ω such that u(x0, t0) = u(x0, t0). Indeed,
if not, by continuity and the standard comparison result for the Dirichlet
problem, one has u ≥ u in Ω × (0, t0 + ε] for some ε > 0. This contradicts
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the choice of t0, and the claim is proved. From the hypotheses on the initial
condition and continuity it follows that t0 > 0. Now, using the boundary
conditions, one has −∂um

∂n̂ (x0, t0) > −∂um

∂n̂ (x0, t0), which also contradicts the
choice of t0, and the lemma is proved. �

Lemma 2.4. Let u1 and u2 be solutions of (1.1) with initial conditions
satisfying the compatibility condition on the boundary. If 0 < u1(x, 0) <
u2(x, 0) for all x ∈ Ω, then u1 ≤ u2 in Ω × [0, T ).

Proof. The proof is similar to the one of the previous lemma, but in this
case one takes t0 = max{t ∈ (0, T )/ u2 ≥ u1 + k in Ω × (0, t)} where k > 0
is such that u2(x, 0) > u1(x, 0) + 2k for all x ∈ Ω. �

3. Proof of Theorem 1

Throughout this section we will always assume that u0 ≡ 0 in (1.1). We
split the proof into two cases.
The case 2λ < m + 1. Let f be the solution of (2.2) with

p =
(m − λ)

m + 1 − 2λ
and q =

1
m + 1 − 2λ

.

In this case it is easy to see, by rescaling, that it is possible to choose U
such that −(fm)′(0) = fλ(0). Then the function v(s, t) = tqf( s

tp ) satisfies
vt = (vm)ss and −(vm)s(0, t) = vλ(0, t) in [0,∞) × [0,∞).

We proceed now to do the rescaling. Let ε be such that 0 < ε < 1 and
pick c such that 0 < c < m−1

2 . Choose T0 such that ξ0ε
m−1

2 ((1−εc)T0)p ≤ δ.
For points in V of coordinates (x̄, s, t) such that 0 ≤ t ≤ T0 and 0 ≤ s ≤
ξ0ε

m−1
2 ((1 − εc)t)p define

uε(x̄, s, t) = εv(
s

ε(m−1)/2
, (1 − εc)t)

and extend uε as zero to the whole of Ω × [0, T0].
We can state now

Proposition 3.1. There exists ε0 such that for any ε such that 0 < ε ≤ ε0

the function uε is a strict subsolution of (1.1) in Ω × [0, T0].

Proof. As 0 < ε < 1 and λ < m+1
2 one has

−∂um
ε

∂s
(x̄, 0, t) < uλ

ε (x̄, 0, t), (3.1)
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and hence the boundary condition is satisfied. We set

ξ =
s

ε(m−1)/2((1 − εc)t)p
.

A straightforward computation shows that if (x̄, s, t) is such that 0 < t < T0

and 0 ≤ s ≤ ξ0ε
m−1

2 ((1 − εc)t)p, then

(uε)t(x̄, s, t) − ∆um
ε (x̄, s, t) = −ε1+c((1 − εc)t)q−1(fm)′′(ξ)

×
[
1 − ε

m−1
2

−c((1 − εc)t)p
N−1∑
j=1

Hj(x̄)
(1 − Hj(x̄)s)

h(ξ)
]
.

Now since, by Lemma 2.2, the function h is bounded and (fm)′′(ξ) > 0 for
ξ ∈ [0, ξ0], we obtain that if ε is small enough then

(uε)t(x̄, s, t) − ∆um
ε (x̄, s, t) ≤ 0 (3.2)

if 0 < t < T0 and 0 ≤ s ≤ ξ0ε
m−1

2 ((1−εc)t)p. Finally that uε is a subsolution,
in the weak sense in the whole of Ω× [0, T0), follows from the fact that uε is
continuous in Ω × [0, T0), and since (fm)′(ξ0) = 0, one has ∇um

ε = 0 on the
free boundary, as can be checked by a direct computation. The proposition
is proved. �

We are in a position now to give the proof of nonuniqueness in the case
2λ < m+1. Pick a sequence, vn, n = 0, 1, 2, . . . , of positive classical solutions
of (1.1) with compatible initial data such that 0 < vn(x, 0) < vj(x, 0) if n > j
and vn(x, 0) → 0 as n → ∞. By Lemma 2.3 and Lemma 2.4, making T0

smaller if necessary, we obtain that for a fixed small-enough ε one has

uε ≤ vn ≤ vj ≤ v0

in Ω × [0, T0) if n > j.
We define now u(x, t) = lim vn(x, t) as n → ∞. By the monotone conver-

gence theorem we obtain that u satisfies (1.2), and it follows from Theorem
6.2, p1̇13, of [4] that u is continuous in Ω× [0, T0]. Clearly uε ≤ u and hence
u is nontrivial. This proves the theorem in the case 2λ < m + 1.

The case m + 1 ≤ 2λ. In this case let f be the solution of (2.2) with
p = m−1

2 , q = 1 and, say, such that f(0) = 1.
Let A > 0 and define for (s, t) ∈ [0,∞) × [0,∞)

v(s, t) = A
1

m−1 eAtf(
s

e(m−1)At/2
).
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Then v satisfies vt = (vm)ss and −(vm)s(0, t) = −A1/2(fm)′(0)v
m+1

2 (0, t).
Therefore if we pick, once and for all, A such that −A1/2(fm)′(0) > 1, then
one has

vt = (vm)ss in [0,∞) × [0,∞)
−(vm)s(0, t) > v

m+1
2 (0, t) on [0,∞)

v(s, 0) = A
1

m−1 f(s) on [0,∞).
(3.3)

We will construct now supersolutions for (1.1) when 2λ ≥ m + 1.
Let ε > 0 and pick c such that 0 < c < m−1

2 . Let T0 be such that

ξ0(εeA(1+εc)T0)(m−1)/2 < δ,

define uε(x̄, s, t) = εv( s
ε(m−1)/2 , (1 + εc)t) for 0 ≤ t < T0 and 0 ≤ s <

ξ0(εeA(1+εc)t)(m−1)/2, and extend uε as zero to the whole of Ω × [0, T0).
We can state now

Proposition 3.2. There exist ε0 and T0 such that for any 0 ≤ ε ≤ ε0 and
0 < T ≤ T0 the function uε is a strict supersolution of (1.1).

Proof. Since 2λ ≥ m+1 it is clear that, as long as t satisfies εA
1

m−1 eA(1+εc)t

< 1, one has

−∂um
ε

∂s
(x̄, 0, t) > uλ

ε (x̄, 0, t).

Therefore, making T0 smaller if necessary, the boundary condition is satis-
fied. Setting

ξ =
s

(εeA(1+εc)t)(m−1)/2
,

the same calculation as in the previous case shows that

(uε)t(x̄, s, t) − ∆um
ε (x̄, s, t) = ε1+cA

m
m−1 eA(1+εc)t(fm)′′(ξ)

×
[
1 + ε(m−1)/2(A

1
m−1 eA(1+εc)t)

m−1
2

N−1∑
j=1

Hj(x̄)
(1 − Hj(x̄)s)

h(ξ)
]

whenever 0 ≤ t < T0 and 0 ≤ s < ξ0(εeA(1+εc)t)(m−1)/2.
Since the function h is bounded, as seen in Lemma 2.2, and (fm)′′(ξ) ≥ 0

we obtain that if ε is small enough, then

(uε)t(x̄, s, t) − ∆um
ε (x̄, s, t) ≥ 0 (3.4)

as long as 0 ≤ t < T0 and 0 ≤ s < ξ0(εeA(1+εc)t)(m−1)/2.
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Now, uε is continuous on Ω × [0, T0), and as before ∇um
ε = 0 on the free

boundary. It follows that uε is a supersolution on the whole of Ω × [0, T0).
This ends the proof of the proposition. �

We are ready now to give the proof of uniqueness in the case m + 1 ≤ 2λ.
Assume for a contradiction that there exists a solution u of (1.1) with u0 ≡ 0
which is not identically null. Without loss of generality we can assume that
it is not identically zero in Ω× [0, T ) for some T < T0. It follows, by Lemma
2.3, that

u ≤ uε on Ω × [0, T )
for all ε ≤ ε0. This is a contradiction since uε → 0 uniformly in Ω × [0, T )
as ε → 0. The theorem is proved.

References

[1] H. Amann, Quasilinear parabolic systems under nonlinear boundary conditions, Arch.
Rat. Mech. Anal., 92 (1986), 153–192.

[2] Ph. Benilan, C. Cortazar, and M. Elgueta, Uniqueness and nonuniqueness of the
solutions of a mixed boundary value problem for the porous medium equation, Rev.
UMA., 37 (1991), 10–16.

[3] C. Cortazar, M. del Pino, and M. Elgueta, On the short-time behavior of the free
boundary of a porous medium equation, Duke J. Math., 87 (1997), 133–149.

[4] E. Di Benedetto, Continuity of weak solutions to a general porous medium equation,
Ind. Univ. Math. J, 32 (1983), 83–118.

[5] M. Escobedo and M.A. Herrero, A uniqueness result for a semilinear reaction-diffusion
system, Proc. Amer. Math. soc., 112 (1991), 175–186.

[6] M. Escobedo and M.A. Herrero, A semi-linear parabolic system in a bounded domain,
Ann. di Mat. Pura ed Appl., CLXV (1993), 315–336.

[7] H. Fujita and S. Watanabe, On the uniqueness and non-uniqueness of solutions of
initial value problems for some quasi-linear parabolic equations, Comm. Pure Appl.
Math., 21 (1968), 631–652.

[8] B.H. Gilding, On a class of similarity solutions of the porous media equation III, J.
Math. Anal. Appl., 77 (1980), 381–402.

[9] B.H. Gilding and L.A. Peletier, On a class of similarity solutions of the porous media
equation, J. Math. Anal. Appl., 55 (1976), 351–364.

[10] B.H. Gilding and L.A. Peletier, On a class of similarity solutions of the porous media
equation II, J. Math. Anal. Appl., 57 (1977), 522–538.

[11] A. de Pablo and J.L. Vazquez, The balance between strong reaction and slow diffusion,
Comm. PDE, 15 (1990), 159–183.


