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Abstract

We study the simultaneous blow-up rates of a system of two heat
equations coupled through the boundary in a nonlinear way. We com-
plete the previous known results by covering the whole range of possible
parameters.

1 Introduction
We devote our attention to the parabolic system
Ut = Uy, Vp = Ugg, (x,t) € (0,L) x (0,7),
with a nonlinear coupling at one of the ends of the interval
—ug(0,t) = uP11(0,t)0P2(0,t), —v,(0,t) = uP?'(0,t)vP*2(0,t), te€ (0,T),

zero flux at the other end, u,(L,t) = 0, vy(L,t) =0, t € (0,7T) and initial
data u(z,0) = ug(x), v(x,0) = vo(z), x € (0,L), which are smooth and
compatible with the boundary conditions. We consider all possible parame-
ters satisfying p;; > 0. Moreover, we will restrict to decreasing in space and
increasing in time solutions.

The time T' denotes the maximal existence time for the solution (u,v).
If it is infinite we say that the solution is global. If it is finite we say that the
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solution blows up. Nontrivial solutions of our problem blow up if and only
if the exponents p;; verify any of the following conditions, p11 > 1, pe2 > 1
or p12p21 > (1 — p11)(1 — paz2), [10] (see also [11], [12]). In this case we have

limsup {||u(-,t)|loc + [[v(-,t)|loc} = 00.
¢ T

However, a priori there is no reason why both components, v and v, should
go to infinity simultaneously at time 7. Indeed, if p1; > po1 + 1 there are
solutions for which u blows up while v remains bounded. Analogously, if
pog > pio + 1 there are solutions for which v blows up while u remains
bounded, [6]. If p11 > p21 + 1 and poe < pi2 + 1, or pe2 > pi2 + 1 and
p11 < po1 + 1, then blow-up is always non-simultaneous, while if p1; <
po1 + 1 and poo < p12+ 1, blow-up is always simultaneous. It is also possible
that simultaneous and non-simultaneous blow-up coexist. This happens if
P11 > p21 + 1 and paa > p1a + 1. See [1].

When blow-up is non-simultaneous, the blow-up rate for the blow-up
component coincides with the rate for the scalar problem in which the
bounded component is substituted by a constant. For instance, if u blows
up while v remains bounded then u(0,t) ~ (T'—)~1/2(u=1 [1]. By f ~ g
we mean that there exist constants ¢, C > 0 such that cf < g < Cf.

What is the blow-up rate when blow-up is simultaneous? There are some
partial results. Let

B 1+ p12 — poo _ 14 pa1 —pu
a1 = a9 =

2(p1apa1 — (1 — p11)(1 — p22))’ 2(p1apa1 — (1 = p11)(1 — p22))

The case p11 < 1+ pa1, p2a < 1+ pi2, prap21 > (1 — p11)(1 — pa2) has
been studied in [5], where the authors show that

w(0,8) ~ (T — )", v(0,8) ~ (T —t)~°2, (1.1)

provided p1; < 1 when p11 < pao + p21 — p12 or pe2 < 1 when pap <
P11 + p12 — p21. This includes the particular case p11 < 1, pao < 1, propar >
(1 —=p11)(1 — p22), previously studied in [9] under additional assumptions on
the initial data. Very recently [13] have proved, adapting the scaling method
from [4] to systems, see also [2], [8], [14], that the simultaneous blow-up rate
is also given by (1.1) when p1; > 1 and paa > 1 with a1, ae > 0.

The above results do not cover the whole range of parameters for which
simultaneous blow-up is possible. Our aim is to fill in all the gaps, namely

(i.a) p11 <1and 1 < poo < p11 + pr2 — pa1 if pra > pa1 or
(i.b) p22 < 1,1 <p11 < p22+p21 — pi12 if pa1 > p12;
(ii) p11 = p21 + 1 and pag < p12 + 1;

)
(iii) po2 = p12 + 1 and p11 < par + 1.
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Figure 1:— Gaps for pi2 > pa1

We prove the following theorem, covering the whole range of parameters.

Theorem 1.1 When blow-up is simultaneous, u(0,t) ~ x(t), v(0,t) ~ y(t),
where x and y solve

! . 2p11—1, 2p12 /I, .2p21,,2p22—1
x = ptPUT P2 y = xePgePT (1.2)

Thus, a straightforward integration shows that the blow-up rate is given
by (1.1) if aj, e > 0, whenever blow-up is simultaneous. However, when
one of the «; vanishes a logarithmic blow-up rate appears. This happens
precisely in the borderline cases between simultaneous and non-simultaneous
blow-up. For instance, when the parameters go through the critical line
p11 = p21 + 1 (with paa < 14 p12), v passes from a pure power blow-up rate
to being bounded; in between, as becomes zero and we have a weaker form
of blow-up given by

0(0,1) ~ (= In(T — t))"/CPr2+1=p22)) (1.3)
The u component also has a logarithmic correction on that line,
w(0,t) ~ (T — t)—l/(Z(Pn—l))(_ In(T — t))P12/(2(P12+1—P22)(P11—1)). (1.4)

Notice that the pure power component of the blow-up rate of w on the
critical line coincides with the one for non-simultaneous blow-up. Moreover,
a1 — 1/(2(p11 — 1)) as p11 /" p21 + 1. At the point where both critical lines
meet, we recover a pure power behaviour

w(0,t) ~ (T — )~/ CPu=14p2)) = (0, 1) ~ (T — ¢)~ Y/ @EP2=14p21) (1 5)



2 Proof of Theorem 1.1
We first fill in the gap (i.a). The case (i.b) is similar.

Lemma 2.1 If pi1 < 1, 1 < pao < pi1 + pi2 — p21, then (1.1) holds if
P12 > P21-

Proof. If pao < p11 + p12 — po1, we have the one-sided blow-rates
u(0,t) > C(T —t)~ ™, v(0,t) < C(T —t)~ 2, (2.6)

see [5]. Then, u; = uzy with —ug(0,t) < CuP(0,t)(T — t)~*2P12 and
uz(L,t) = 0. Using Proposition 1 in [9] we get

w(0,t) < O(T — t)~°.

To obtain the rate from below for v, instead of using its equation we use again
the equation satisfied by u. Using the well-known representation formula and
the jump relation, [3], we have

P12 (0, s)

t
u(0,t) ~ /0 uP11 (0, s)m ds.
Since u(0,t) ~ (T —t)~,

t vP12(0, 5)
T — )" ~ T — g)~@1P11 ) .
(T 1) /0 R L

Integrating by parts, since v is increasing,

t (T _ S)*quu
_ - P12
(T —t)™™ <Cwv (O,t)/o (1)1 ds

t
< CvP2(0,t) / (T — s)~apn=1/2 gg
0
< CwP12(0,t)(T — t)~putl/2,

Hence v(0,t) > C(T —t)~*2. The obtained blow-up rates coincide with the
behaviour of the solutions of (1.2). O

Next, we fill in the gap (ii). Gap (iii) can be handled in a similar way.

Lemma 2.2
(a) Let p11 = po1 + 1 and pao < p12 + 1, then (1.3) and (1.4) hold.
(b) Let p11 = po1 + 1 and pee = p12 + 1, then (1.5) holds.



Proof. (a) Following [7], define M (t) = u(0,t) and N(t) = v(0,¢) and set,
fort <T and y >0, —t < bs,ds <0

u(ay,bs + 1)
M)

v(cy,ds +t)

¢N(y75) = N(f) >

em(y,s) =

with ¢ = MI"PUN"P12 b = g% ¢ = NI7P2 ) [Pt = ¢%. Since p1; > 1, a
and b go to zero as t /' T. We want that ¢ and d also go to zero. This is
true, if poo > 1. Hence, let us assume that poo < 1.

We claim that for v < min{l,p2;/(1 — pa2)}, there exists a constant
K large enough such that Ku” > v. Indeed, let w = Ku”. Since v < 1,
Wy — Wy 18 a supersolution of the heat equation. As K is large we have
w(z,to) > v(x,to), for a fixed ¢ close to T'. Now, we argue by contradiction.
Let t; be the first time, such that there exists z1 € [0, L] with w(x1,t1) =
v(z1,t1). From the maximum principle it follows that z; = 0. At this point
the flux boundary conditions satisfied by w and v lead to a contradiction.
Therefore, w = KuY > v, for ¢ close to T. The claim implies that d*/2 =
c< CMY(=p22)—p21 _, ()

Using the technique described in [4] (see also [7]), which is based in the
use of well-known Schauder estimates to pass to the limit as t ~ T, it is
easy to show that

c< (@M)S(Ov 0) <, c< (wN)S(Ov 0) <C. (2'7)

Writing (2.7) in terms of M and N, we get that solutions behave as those
of (1.2).

(b) The proof of this case is similar to the previous one. The same calcula-
tions used to prove the claim taking v = 1 show that u ~ v. The use of the
ideas of [4] is even easier, since pi1,pee > 1 imply that a,b,¢,d — 0. The
relation between u and v together with (2.7) provides us with the desired
rates. O

Acknowledgements C. Brandle and F. Quirds partially supported by project
BFM2002-04572-C02-02 (Spain). J. D. Rossi supported by ANPCyT PICT 50009,
UBA X066, Fundaciéon Antorchas and CONICET (Argentina).

References

[1] Brandle, C.; Quirés, F.; Rossi, J. D. Non-simultaneous blow-up for a quasilin-
ear parabolic system with reaction at the boundary. Commun. Pure Appl. Anal
4 (2005), no. 3, 523-536.

[2] Chlebik, M.; Fila, M. From critical exponents to blow-up rates for parabolic
problems. Rend. Mat. Appl. 19 (1999), no. 4, 449-470.

[3] Friedman, A. “Partial differential equations of parabolic type”. Prentice-Hall
Inc. Englewood Cliffs, N.J. 1964.



[4]

Hu, B.; Yin, H. M. The profile near blowup time for solution of the heat equa-
tion with a nonlinear boundary condition. Trans. Amer. Math. Soc. 346 (1994),
no. 1, 117-135.

Pedersen, M.; Lin, Z. Blow-up estimates of the positive solution of a parabolic
system. J. Math. Anal. Appl. 255 (2001), no. 2, 551-563.

Pinasco, J. P.; Rossi, J. D. Simultaneous versus non-simultaneous blow-up.
New Zealand J. Math. 29 (2000), no. 1, 55-59.

Quirés, F.; Rossi, J. D. Blow-up sets and Fujita type curves for a degenerate
parabolic system with nonlinear boundary conditions. Indiana Univ. Math. J.

50 (2001), no. 1, 629-654.

Quirés, F.; Rossi, J. D. Non-simultaneous blow-up in a monlinear parabolic
system. Adv. Nonlinear Stud. 3 (2003), no. 3, 397-418.

Rossi, J. D. The blow-up rate for a system of heat equations with non-trivial
coupling at the boundary. Math. Methods Appl. Sci. 20 (1997), no. 1, 1-11.

Wang, M. X. Parabolic systems with nonlinear boundary conditions. Chinese
Sci. Bull. 40 (1995), no. 17, 1412-1414.

Wang, M. Fast-slow diffusion systems with nonlinear boundary conditions.
Nonlinear Anal. 46 (2001), no. 6, Ser. A: Theory Methods, 893-908.

Wang, M.; Wang, S. Quasilinear reaction-diffusion systems with nonlinear
boundary conditions. J. Math. Anal. Appl. 231 (1999), no. 1, 21-33.

Zheng, S.; Liu, B.; Li, F. Blow-up rate estimates for a doubly coupled reaction-
diffusion system. To appear in J. Math. Anal. Appl.

Zheng, S.; Song, X.; Jiang, Z. Critical fujita exponents for degenerate parabolic
equations coupled via mnonlinear boundary flux. J. Math. Anal. Appl. 298
(2004), no. 1, 308-324.



