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Abstract

We study the simultaneous blow-up rates of a system of two heat
equations coupled through the boundary in a nonlinear way. We com-
plete the previous known results by covering the whole range of possible
parameters.

1 Introduction

We devote our attention to the parabolic system

ut = uxx, vt = vxx, (x, t) ∈ (0, L)× (0, T ),

with a nonlinear coupling at one of the ends of the interval

−ux(0, t) = up11(0, t)vp12(0, t), −vx(0, t) = up21(0, t)vp22(0, t), t ∈ (0, T ),

zero flux at the other end, ux(L, t) = 0, vx(L, t) = 0, t ∈ (0, T ) and initial
data u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, L), which are smooth and
compatible with the boundary conditions. We consider all possible parame-
ters satisfying pij ≥ 0. Moreover, we will restrict to decreasing in space and
increasing in time solutions.

The time T denotes the maximal existence time for the solution (u, v).
If it is infinite we say that the solution is global. If it is finite we say that the
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solution blows up. Nontrivial solutions of our problem blow up if and only
if the exponents pij verify any of the following conditions, p11 > 1, p22 > 1
or p12p21 > (1− p11)(1− p22), [10] (see also [11], [12]). In this case we have

lim sup
t↗T

{‖u(·, t)‖∞ + ‖v(·, t)‖∞} = ∞.

However, a priori there is no reason why both components, u and v, should
go to infinity simultaneously at time T . Indeed, if p11 > p21 + 1 there are
solutions for which u blows up while v remains bounded. Analogously, if
p22 > p12 + 1 there are solutions for which v blows up while u remains
bounded, [6]. If p11 > p21 + 1 and p22 ≤ p12 + 1, or p22 > p12 + 1 and
p11 ≤ p21 + 1, then blow-up is always non-simultaneous, while if p11 ≤
p21 +1 and p22 ≤ p12 +1, blow-up is always simultaneous. It is also possible
that simultaneous and non-simultaneous blow-up coexist. This happens if
p11 > p21 + 1 and p22 > p12 + 1. See [1].

When blow-up is non-simultaneous, the blow-up rate for the blow-up
component coincides with the rate for the scalar problem in which the
bounded component is substituted by a constant. For instance, if u blows
up while v remains bounded then u(0, t) ∼ (T − t)−1/2(p11−1), [1]. By f ∼ g
we mean that there exist constants c, C > 0 such that cf ≤ g ≤ Cf .

What is the blow-up rate when blow-up is simultaneous? There are some
partial results. Let

α1 =
1 + p12 − p22

2(p12p21 − (1− p11)(1− p22))
, α2 =

1 + p21 − p11

2(p12p21 − (1− p11)(1− p22))
.

The case p11 < 1 + p21, p22 < 1 + p12, p12p21 > (1 − p11)(1 − p22) has
been studied in [5], where the authors show that

u(0, t) ∼ (T − t)−α1 , v(0, t) ∼ (T − t)−α2 , (1.1)

provided p11 < 1 when p11 ≤ p22 + p21 − p12 or p22 < 1 when p22 ≤
p11 + p12 − p21. This includes the particular case p11 < 1, p22 < 1, p12p21 >
(1− p11)(1− p22), previously studied in [9] under additional assumptions on
the initial data. Very recently [13] have proved, adapting the scaling method
from [4] to systems, see also [2], [8], [14], that the simultaneous blow-up rate
is also given by (1.1) when p11 ≥ 1 and p22 ≥ 1 with α1, α2 > 0.

The above results do not cover the whole range of parameters for which
simultaneous blow-up is possible. Our aim is to fill in all the gaps, namely

(i.a) p11 < 1 and 1 ≤ p22 < p11 + p12 − p21 if p12 > p21 or

(i.b) p22 < 1, 1 ≤ p11 < p22 + p21 − p12 if p21 > p12;

(ii) p11 = p21 + 1 and p22 ≤ p12 + 1;

(iii) p22 = p12 + 1 and p11 ≤ p21 + 1.
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Figure 1: Gaps for p12 > p21

We prove the following theorem, covering the whole range of parameters.

Theorem 1.1 When blow-up is simultaneous, u(0, t) ∼ x(t), v(0, t) ∼ y(t),
where x and y solve

x′ = x2p11−1y2p12 , y′ = x2p21y2p22−1. (1.2)

Thus, a straightforward integration shows that the blow-up rate is given
by (1.1) if α1, α2 > 0, whenever blow-up is simultaneous. However, when
one of the αi vanishes a logarithmic blow-up rate appears. This happens
precisely in the borderline cases between simultaneous and non-simultaneous
blow-up. For instance, when the parameters go through the critical line
p11 = p21 + 1 (with p22 < 1 + p12), v passes from a pure power blow-up rate
to being bounded; in between, α2 becomes zero and we have a weaker form
of blow-up given by

v(0, t) ∼ (− ln(T − t))1/(2(p12+1−p22)). (1.3)

The u component also has a logarithmic correction on that line,

u(0, t) ∼ (T − t)−1/(2(p11−1))(− ln(T − t))p12/(2(p12+1−p22)(p11−1)). (1.4)

Notice that the pure power component of the blow-up rate of u on the
critical line coincides with the one for non-simultaneous blow-up. Moreover,
α1 → 1/(2(p11− 1)) as p11 ↗ p21 + 1. At the point where both critical lines
meet, we recover a pure power behaviour

u(0, t) ∼ (T − t)−1/(2(p11−1+p12)), v(0, t) ∼ (T − t)−1/(2(p22−1+p21)). (1.5)
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2 Proof of Theorem 1.1

We first fill in the gap (i.a). The case (i.b) is similar.

Lemma 2.1 If p11 < 1, 1 ≤ p22 < p11 + p12 − p21, then (1.1) holds if
p12 > p21.

Proof. If p22 ≤ p11 + p12 − p21, we have the one-sided blow-rates

u(0, t) ≥ C(T − t)−α1 , v(0, t) ≤ C(T − t)−α2 , (2.6)

see [5]. Then, ut = uxx with −ux(0, t) ≤ Cup11(0, t)(T − t)−α2p12 and
ux(L, t) = 0. Using Proposition 1 in [9] we get

u(0, t) ≤ C(T − t)−α1 .

To obtain the rate from below for v, instead of using its equation we use again
the equation satisfied by u. Using the well-known representation formula and
the jump relation, [3], we have

u(0, t) ∼
∫ t

0
up11(0, s)

vp12(0, s)
(t− s)1/2

ds.

Since u(0, t) ∼ (T − t)−α1 ,

(T − t)−α1 ∼
∫ t

0
(T − s)−α1p11

vp12(0, s)
(t− s)1/2

ds.

Integrating by parts, since v is increasing,

(T − t)−α1 ≤ Cvp12(0, t)
∫ t

0

(T − s)−α1p11

(t− s)1/2
ds

≤ Cvp12(0, t)
∫ t

0
(T − s)−α1p11−1/2 ds

≤ Cvp12(0, t)(T − t)−α1p11+1/2.

Hence v(0, t) ≥ C(T − t)−α2 . The obtained blow-up rates coincide with the
behaviour of the solutions of (1.2). 2

Next, we fill in the gap (ii). Gap (iii) can be handled in a similar way.

Lemma 2.2
(a) Let p11 = p21 + 1 and p22 < p12 + 1, then (1.3) and (1.4) hold.
(b) Let p11 = p21 + 1 and p22 = p12 + 1, then (1.5) holds.
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Proof. (a) Following [7], define M(t) = u(0, t) and N(t) = v(0, t) and set,
for t < T and y > 0, −t < bs, ds < 0

ϕM (y, s) =
u(ay, bs + t)

M(t)
, ψN (y, s) =

v(cy, ds + t)
N(t)

,

with a = M1−p11N−p12 , b = a2, c = N1−p22M−p21 , d = c2. Since p11 > 1, a
and b go to zero as t ↗ T . We want that c and d also go to zero. This is
true, if p22 ≥ 1. Hence, let us assume that p22 < 1.

We claim that for γ < min{1, p21/(1 − p22)}, there exists a constant
K large enough such that Kuγ > v. Indeed, let w = Kuγ . Since γ < 1,
wt − wxx is a supersolution of the heat equation. As K is large we have
w(x, t0) > v(x, t0), for a fixed t0 close to T . Now, we argue by contradiction.
Let t1 be the first time, such that there exists x1 ∈ [0, L] with w(x1, t1) =
v(x1, t1). From the maximum principle it follows that x1 = 0. At this point
the flux boundary conditions satisfied by w and v lead to a contradiction.
Therefore, w = Kuγ > v, for t close to T . The claim implies that d1/2 =
c ≤ CMγ(1−p22)−p21 → 0.

Using the technique described in [4] (see also [7]), which is based in the
use of well-known Schauder estimates to pass to the limit as t ↗ T , it is
easy to show that

c ≤ (ϕM )s(0, 0) ≤ C, c ≤ (ψN )s(0, 0) ≤ C. (2.7)

Writing (2.7) in terms of M and N , we get that solutions behave as those
of (1.2).
(b) The proof of this case is similar to the previous one. The same calcula-
tions used to prove the claim taking γ = 1 show that u ∼ v. The use of the
ideas of [4] is even easier, since p11, p22 > 1 imply that a, b, c, d → 0. The
relation between u and v together with (2.7) provides us with the desired
rates. 2
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