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Abstract

We deal with boundary value problems (prescribing Dirichlet or Neumann boundary conditions) for
a nonlocal nonlinear diffusion operator which is analogous to the porous medium equation. First, we
prove existence, uniqueness and the validity of a comparison principle for these problems. Next, we
impose boundary data that blow up in finite time and study the behavior of the solutions.
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1 Introduction

The aim of this paper is to study the asymptotic behavior of solutions of a nonlocal nonlinear
diffusion operator under blowing up boundary conditions of Dirichlet or Neumann type.

First, let us introduce nonlocal diffusion problems. To this end, let J : R → R be a nonnegative,
smooth function with

∫
R

J(r)dr = 1, supported in [−1, 1], symmetric, J(r) = J(−r) and strictly
decreasing in [0, 1].
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Nonlocal equations of the form

ut(x, t) = J ∗ u − u(x, t) =
∫
R

J(x − y)u(y, t)dy − u(x, t), (1)

and variations of it, have been recently used to model diffusion processes, see [5], [7], [11],
[17]. As stated in [11] if u(x, t) is thought of as a density at the point x at time t and J(x −
y) is thought of as the probability distribution of jumping from location y to location x,
then (J ∗ u)(x, t) is the rate at which individuals are arriving to position x from all other
places and −u(x, t) = − ∫

R
J(y − x)u(x, t)dy is the rate at which they are leaving location

x to travel to all other sites. This consideration, in the absence of external sources, leads
immediately to the fact that the density u satisfies equation (1). Equation (1), so called nonlocal
diffusion equation, shares many properties with the classical heat equation, ut = Δu, such as:
bounded stationary solutions are constant, a maximum principle holds for both of them and
perturbations propagate with infinite speed.

Another classical equation that has been used to model diffusion is the well known porous
medium equation, ut = Δum with m > 1. This equation also shares several properties with
the heat equation but there is a fundamental difference, in this case we have finite speed of
propagation. Properties of solutions of the porous medium equation have been largely studied
over the past years. See for example [1], [16] and the corresponding bibliography.

In [9] a simple nonlocal model for diffusion that is analogous to the porous medium equation
is studied. In this model the probability distribution of jumping from location y to location
x is given by J

(
x−y

u(y,t)

)
1

u(y,t)
when u(y, t) > 0 and 0 otherwise. In this case the rate at which

individuals are arriving to position x from all other places is
∫
R

J
(

x−y
u(y,t)

)
dy and the rate at

which they are leaving location x to travel to all other sites is −u(x, t) = − ∫
R

J
(

y−x
u(x,t)

)
dy.

As before this consideration, in the absence of external sources, leads immediately to the fact
that the density u has to satisfy

ut(x, t) =
∫
R

J

(
x − y

u(y, t)

)
dy − u(x, t). (2)

In [6] we study this equation with homogeneous Neumann boundary conditions and prove that
solutions exist globally and stabilize to the mean value of the initial data as t → ∞.

The purpose of this paper is to continue the study of this nonlocal nonlinear evolution operator
by prescribing nonhomogeneous Dirichlet or Neumann boundary conditions. In particular, we
will look at the peaking phenomena, that is we impose that the boundary data blow up in
finite time and study the asymptotic behavior of solutions. These type of boundary conditions
appear in combustion processes, [14]. For the study of peaking for the porous medium equation
we refer to [8], [10], [12], [14], [15]. For general references on blow-up problems see [13] and
[15].
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First, we deal with Dirichlet boundary conditions. We impose the value of u(x, t) for x < 0,
and obtain the following problem,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) =
∫
R

J

(
x − y

u(y, t)

)
dy − u(x, t) x ≥ 0, t ≥ 0,

u(x, t) = f(x, t) x < 0, t ≥ 0,

u(x, 0) = d + w0(x) x ≥ 0.

We assume that d ≥ 0 and w0 is a non-negative L1(0, +∞) function. We will use the notation
R

+ = (0, +∞) and R
− = (−∞, 0). This problem can be written as, for x ∈ R

+,

ut(x, t) =
∫

R+

J

(
x − y

u(y, t)

)
dy +

∫
R−

J

(
x − y

f(y, t)

)
dy − u(x, t)

u(x, 0) = d + w0(x).

(3)

In this model we are prescribing the values of u(x, t) in R
− and impose that the equation

is satisfied in R
+. In this sense we are facing Dirichlet boundary conditions. Remark that

since the problem is nonlocal it is not enough to prescribe only u(0, t) and we have to impose
values in the whole R

−. Our first result states the existence and uniqueness of solutions and a
comparison principle.

Theorem 1.1 Let d ≥ 0 and w0 is a non-negative L1(R+) function. Then, for every function
f ∈ C([0, T ); L1(R−)), there exists a unique solution u ∈ C([0, T ); L1(R+)) of problem (3).

Moreover, a comparison principle holds for continuous solutions: If u and v are two continuous
solutions of (3) with u(x, 0) ≤ v(x, 0), ∀x ∈ R

+, then u(x, t) ≤ v(x, t), ∀ (x, t) ∈ R
+ × [0,∞).

Next, we deal with the peaking phenomena for this model. In fact, for simplicity, we consider
the particular case where the function f is given by

f(x, t) = (T − t)−α. (4)

Notice that this function blows up in finite time, t = T . Our blow-up result for this problem
reads as follows.

Theorem 1.2 Let f be given by (4). Then, the solution of (3) blows up at finite time T if and
only if α ≥ 1.

Moreover, blow-up is always global, and the asymptotic behaviour is given by (T−t)α−1u(x, t) →
1/(2(α − 1)) if α > 1 and by (− ln(T − t))−1u(x, t) → 1/2 if α = 1.

The total mass M(t) =
∫
R+ u(x, t) dx blows up if and only if α ≥ 1/2.

3
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Remark 1 Our ideas can be applied to more general boundary data. If f = f(t) is increasing
with limt↗T f(t) = +∞ we obtain that u blows up if and only if f is not integrable up to T .

Remark 2 Theorem 1.2 shows that peaking phenomena for this model is different from the one
for the porous medium equation. In fact, solutions of the porous medium equation, ut = (um)xx

with u(0, t) = (T − t)−α blows up if and only if α > 0. In this case the blow-up rate is (T − t)−α

and there exists a localization of the blow-up set if and only if α ≤ 1/(m − 1), [14].

Next, we impose Neumann boundary conditions. We deal with the problem

ut(x, t) =
∫

R+

J

(
x − y

u(y, t)

)
dy −

∫
R+

J

(
x − y

u(x, t)

)
dy +

∫
R−

J(x − y)f(y, t)dy

for (x, t) ∈ R
+ × [0,∞). In this model we assume that no individuals can jump outside the

domain, R
+, but it is prescribed the flux of individuals entering (or leaving) the domain through

the term involving f (the datum). We can rewrite our problem as follows.

ut(x, t) =
∫

R+

J

(
x − y

u(y, t)

)
dy +

∫
R−

J

(
x − y

u(x, t)

)
dy − u(x, t)

+
∫

R−

J(x − y)f(y, t)dy for (x, t) ∈ R
+ × [0,∞),

u(x, 0) = d + w(x, 0) for x ∈ R
+.

(5)

As before, we are considering a general class of initial conditions, that is u(x, 0) = d + w0(x),
with d ≥ 0, w0 ∈ L1(R+) and w0 ≥ 0.

Theorem 1.3 For every w0 ∈ L1(R+) and f nonnegative and integrable there exists a unique
solution u(x, t) of (5). Moreover, we have a comparison principle valid for continuous solutions.

We will use the notation f ∼ g to mean that there exist finite positive constants c1 and c2

such that c1f ≤ g ≤ c2f . Concerning the blow-up problem we have

Theorem 1.4 Let u(x, t) be a solution of (5) with boundary datum f given by 4. Then u blows
up if and only if α ≥ 1. The blow-up rate is given by ‖u(·, t)‖∞ ∼ (T − t)−α+1 if α > 1 and
‖u(·, t)‖∞ ∼ − ln(T − t) if α = 1. Blow-up is regional, the blow-up is given by B(u) = [0, 1].

The total mass M(t) =
∫
R+ u(x, t) dx blows up if and only if α ≥ 1.

Remark 3 Also in this case the blow-up phenomena for our model is different from the one
for the porous medium equation, see [8].
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2 The Dirichlet Problem

2.1 Existence and uniqueness

As in [9], Existence and uniqueness follow from a fixed point argument, we give some details
here for the reader’s convenience. For some t0 > 0 fixed, we consider the space C([0, t0]; L

1(R+))
with the norm

|||w||| = max
0≤t≤t0

||w(·, t)||L1(R+).

Let Xto = {w ∈ C([0, t0]; L
1(R+))/ w ≥ 0} that is closed in C([0, t0]; L

1(R+)). We will look
for a solution of 3 of the form u(x, t) = d + w(x, t) where w is a fixed point of the operator
Tw0 : Xt0 −→ Xt0 , given by

Tw0(w) (x, t) =

t∫
0

e(s−t)
∫

R+

J

(
x − y

w(y, s) + d

)
dy ds

+

t∫
0

e(s−t)
∫

R−

J

(
x − y

f(y, s)

)
dy ds + e−tw0(x) − d(1 − e−t)

with f ∈ C([0, T ); L1(R−)).

Lemma 2.1 Let w0, z0 ∈ L1(R+) nonnegative functions, w, z ∈ Xt0 and f, g ∈ C([0, T ); L1(R−)),
then

|||Tw0(w) − Tz0(z)||| ≤ (1 − e−t0)|||w − z||| + ||w0 − z0||L1(R+)

+(1 − e−t0) max
0≤t≤t0

||f(·, t)− g(·, t)||L1(R−).
(6)

Proof. To obtain a bound for |||Tw0(w) − Tz0(z)||| let us proceed as follows,

∫
R+

|Tw0(w)(x, t) − Tz0(z)(x, t)| dx

≤
t∫

0

es−t
∫

R+

∣∣∣∣∣∣
∫

R−

(
J

(
x − y

f(y, s)

)
− J

(
x − y

g(y, s)

))
dy

∣∣∣∣∣∣ dx ds

+ e−t
∫

R+

|w0 − z0|(y) dy.

5
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To study the first term let us consider A+(s) = {y ∈ R

+/ w(y, s) ≥ z(y, s)} and A−(s) =
{y ∈ R

+/ w(y, s) ≤ z(y, s)}. We obtain

∫
R+

∣∣∣∣∣∣
∫

R+

(
J

(
x − y

w(y, s) + d

)
− J

(
x − y

z(y, s) + d

))
dy

∣∣∣∣∣∣ dx

=
∫

R+

∫
A+(s)

(
J

(
x − y

w(y, s) + d

)
− J

(
x − y

z(y, s) + d

))
dy dx

+
∫

R+

∫
A−(s)

(
J

(
x − y

z(y, s) + d

)
− J

(
x − y

w(y, s) + d

))
dy dx.

We can apply Fubini’s Theorem to obtain

∫
R+

∫
A+(s)

(
J

(
x − y

w(y, s) + d

)
− J

(
x − y

z(y, s) + d

))
dy dx

≤
∫

A+(s)

∫
R

(
J

(
x − y

w(y, s) + d

)
− J

(
x − y

z(y, s) + d

))
dx dy

=
∫

A+(s)

(w(y, s)− z(y, s)) dy.

Analogously

∫
R+

∫
A−(s)

(
J

(
x − y

z(y, s) + d
)

)
− J

(
x − y

w(y, s) + d

))
dy dx

=
∫

A−(s)

(z(y, s) − w(y, s)) dy.

Therefore, the first integral satisfies the following bound

∫
R+

∣∣∣∣∣∣
∫

R+

(
J

(
x − y

w(y, s) + d
)

)
− J

(
x − y

z(y, s) + d

))
dy

∣∣∣∣∣∣ dx

≤
∫

R+

|w(y, s)− z(y, s)| dy.

To study the second term we argue in a similar way considering B+(s) = {y ∈ R
−/ f(y, s) ≥ g(y, s)}

and B−(s) = {y ∈ R
−/ f(y, s) ≤ g(y, s)}. In this case we obtain

∫
R+

∣∣∣∣∣∣
∫

R−

(
J

(
x − y

f(y, s)

)
− J

(
x − y

g(y, s)

))
dy

∣∣∣∣∣∣ dx ≤
∫

R−

|f(y, s)− g(y, s)| dy.

6
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Summing up, we get

∫
R+

|Tw0(w)(x, t) − Tz0(z)(x, t)| dx ≤
t∫

0

es−t
∫

R+

|w(y, s)− z(y, s)| dy ds

+

t∫
0

es−t
∫

R−

|f(y, s) − g(y, s)| dy ds + e−t
∫

R+

|w0 − z0|(y) dy.

From where it follows that

‖Tw0(w)(·, t) − Tz0(z)(·, t)‖L1(R+) ≤ (1 − e−t)‖w(·, t)− z(·, t)‖L1(R+)

+(1 − e−t)‖f(·, t) − g(·, t)‖L1(R−) + e−t‖w0 − z0‖L1(R+).

Hence, we obtain (6) as we wanted to prove. �

Now we are ready to prove existence and uniqueness of solutions of (3).

Theorem 2.1 Let u0 ∈ L1(R+) and f ∈ C([0, T ); L1(R−)). Then, there exists a unique solu-
tion u ∈ C([0, T ); L1(R+)) of (3).

Proof. First, we observe that Tw0 : Xt0 −→ Xt0 . Indeed, for w ∈ Xt0 we get

Tw0(w)(x, t) ≥
t∫

0

e(s−t)
∫

R+

J
(

x − y

d

)
dy ds + e−tw0(x) − d(1 − e−t)

= e−tw0(x) ≥ 0

From Lemma 2.1 we obtain that Tw0 is a strict contraction for t0 > 0. Therefore there exists
a unique fixed point of Tw0 in Xt0 . This shows that there exists a unique solution in [0, t0].
Arguing in the same way taking as initial datum u(x, t0) we get a unique solution defined in
[0, 2t0]. We may continue and obtain a solution defined for 0 < t < T . �

Remark 4 Solutions of (3) depend continuously on the initial data. In fact, if u and v are
solutions of (3) with initial data u0 and v0 respectively and the same boundary data, then

max
0≤t≤t0

‖u(·, t) − v(·, t)‖L1(R+) ≤ et0 ‖u(·, 0) − v(·, 0)‖L1(R+) .

Remark 5 Solutions of (3) depend continuously on the boundary data. In fact, if u and v are
solutions of (3) with boundary data f and g respectively and the same initial datum, then

max
0≤t≤t0

‖u(·, t) − v(·, t)‖L1(R+) ≤ (et0 − 1) max
0≤t≤t0

‖f(·, t) − g(·, t)‖L1(R−).

7
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Remark 6 The function u is a solution of (3) if and only if

u(x, t) =

t∫
0

e(s−t)
∫

R+

J

(
x − y

u(y, s)

)
dyds +

t∫
0

e(s−t)
∫

R−

J

(
x − y

f(y, s)

)
dyds + e−tu0(x).

Notice that the solution does not have to be continuous at x = 0, even if the initial datum u0

is continuous.

Next, we state a comparison principle. The proof is similar to the one given in [9], we omit the
details.

Theorem 2.2 Let u and v two continuous solutions of (3). If u(x, 0) ≤ v(x, 0) for all x ∈ R
+,

then u(x, t) ≤ v(x, t) for all (x, t) ∈ R
+ × [0,∞).

2.2 Blow-up analysis

In this subsection we consider f(x, t) = (T − t)−α, which blows up at finite time T . In this
case equation (3) reads

ut(x, t) =
∫

R+

J

(
x − y

u(y, t)

)
dy +

∫
R−

J ((x − y)(T − t)α) dy − u(x, t).

Proof of Theorem 1.2. Taking account that the first integral is positive and performing the
change of variables r = (x − y)(T − t)α in the second integral we obtain

ut(x, t) + u(x, t) ≥ 1

(T − t)α

∞∫
x(T−t)α

J(r)dr.

Then,

u(x, t) ≥ e−tu0 + e−t

t∫
0

es

(T − s)α

∞∫
x(T−t)α

J(r) dr ds.

On the other hand, there exists δ > 0 such that for T − δ ≤ t < T

∞∫
x(T−t)α

J(r) dr ≥ 1

4
.

Hence, for T − δ ≤ t < T

u(x, t) ≥ e−T u0 +
e−T

4

t∫
0

1

(T − s)α
ds.

8
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Therefore u blows up a time T for all x ∈ R

+ and α ≥ 1 and

u(x, t) ≥

⎧⎪⎨
⎪⎩

C(T − t)−α+1, α > 1,

−C ln(T − t), α = 1.

In order to obtain the upper bound we compare with w(x, t) = A(T − t)−α+1. To prove that
w is a supersolution we need that

A(α − 1)

(T − t)α
≥

∞∫
0

J

(
(x − y)(T − t)α−1

A

)
dy

+
1

(T − t)α

∞∫
x(T−t)α

J(r)dr +
A

(T − t)α−1
.

(7)

Performing the change of variables z = (x−y)(T−t)α−1

A
in the first integral we obtain

∞∫
0

J

(
(x − y)(T − t)α−1

A

)
dy =

x(T−t)α−1

A∫
−∞

A

(T − t)α−1
J(z)dz

≤
∫
R

A

(T − t)α−1
J(z)dz =

A

(T − t)α−1
.

On the other hand, as x > 0 the second integral in (7) satisfies

1

(T − t)α

∞∫
x(T−t)α

J(r)dr ≤ 1

(T − t)α

∞∫
0

J(r)dr =
1

2(T − t)α
.

Summing up, we have that for t near T , the function w is a supersolution if

A >
1

2(α − 1)
for α > 1.

Moreover, if u(x, t) is a solution of (3) then, taking A larger if necessary, u(x, t) ≤ A(T − t)1−α

for all x ∈ R
+. For the case α = 1 we consider as supersolution the function w(x, t) =

−A ln(T − t).

Up to now, we have proved that u(x, t) ∼ (T − t)1−α. Next, we use this fact to obtain the
asymptotic behaviour. Assume that α > 1 (the case α = 1 is analogous). We have

ut(x, t) ≤
∫

R+

J

(
x − y

u(y, t)

)
dy +

∫
R−

J ((x − y)(T − t)α) dy

≤
∫

R+

J

(
x − y

C(T − t)1−α

)
dy +

1

2(T − t)α
≤ C

(T − t)α−1
+

1

2(T − t)α
.

9
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Integrating in [0, t] and taking limits we obtain

lim sup
t↗T

(T − t)α−1u(x, t) ≤ 1

2(α − 1)
.

To get the lower bound we observe that

ut(x, t) ≥ −u(x, t) +
∫

R−

J ((x − y)(T − t)α) dy

≥ − C

(T − t)α−1
+

1

(T − t)α

∞∫
x(T−t)α

J(z) dz.

Integrating and taking limits we get

lim inf
t↗T

(T − t)α−1u(x, t) ≥ 1

2(α − 1)
.

We have proved that

lim
t↗T

(T − t)α−1u(x, t) =
1

2(α − 1)
.

If α < 1, taking v(x, t) = C1 − C2(T − t)1−α as a supersolution, we obtain that there exists a
constant K = K(T, α, u0) such that u(x, t) ≤ K, for all (x, t) ∈ R

+ × (0, T ).

Next, we study the behavior of the mass, M(t) =
∫ ∞
0 u(x, t) dx, which satisfies the equation

M ′(t) =

∞∫
0

∞∫
0

J

(
x − y

u(y, t)

)
dydx +

∞∫
0

1

(T − t)α

∞∫
x(T−t)α

J(r)drdx− M(t). (8)

Applying Fubini’s Theorem in the first integral it is easy to check that

∞∫
0

∞∫
0

J

(
x − y

u(y, t)

)
dx dy ≤ M(t)

For the second integral we observe that for r ≥ x(T − t)α ≥ 1 then J(r) = 0. Therefore,

∞∫
0

1

(T − t)α

∞∫
x(T−t)α

J(r) dr dx =

1
(T−t)α∫

0

1

(T − t)α

∞∫
x(T−t)α

J(r) dr dx

=

1∫
0

∞∫
θ

1

(T − t)2α
J(r) dr dθ =

B

(T − t)2α
.

Summing up, we obtain

M ′(t) ≤ B

(T − t)2α
,

10
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and by integration we conclude the upper bound

M(t) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C, α < 1/2,

−C ln(T − t), α = 1/2,

C(T − t)−2α+1, α > 1/2.

From the positivity of the first integral in (8), we also have

M ′(t) ≥ B

(T − t)2α
− M(t),

which, by integration, gives us the inverse inequality. �

3 The Neumann Problem

3.1 Existence and uniqueness

As in the previous section, the existence and uniqueness of solutions of (5) is a consequence of
a fixed point argument. Let us consider the operator Lw0 : Xt0 −→ Xt0 given by

Lw0(w)(x, t) =

t∫
0

e(s−t)
∫

R+

J

(
x − y

w(y, s) + d

)
dy ds

+

t∫
0

e(s−t)
∫

R−

J

(
x − y

w(x, s) + d

)
dyds +

t∫
0

e(s−t)
∫

R−

J(x − y)f(y, s)dyds

+e−tw0(x) − d(1 − e−t).

Lemma 3.1 Let w0, z0 nonnegative functions such that w0, z0 ∈ L1(R+), w, z ∈ Xt0 and
f, g ∈ C([0, t0], L

1(R−)), then

|||Lw0(w) − Lz0(z)||| ≤ (1 − e−t0)|||w − z||| + ||w0 − z0||L1(R+)

+(1 − e−t0) max
0≤t≤t0

||f(·, t) − g(·, t)||L1(R−).

Proof. It is analogous to the proof of Lemma 2.1 in [9]. �

The next theorem shows existence and uniqueness of solutions of (5).

Theorem 3.1 For every u0 ∈ L1(R+) and f ∈ C([0, T ); L1(R−)) nonnegative there exists a
unique solution u(x, t) of (5).

11



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Proof. It is similar to the proof of Theorem 2.1 (see also [9]. �

We have some consequences of the previous arguments that we collect as remarks.

Remark 7 The solution of (5) depends continuously on the initial datum. If u and v are
solutions of (5) with initial data u0 and v0 respectively, then

max
0≤t≤t0

‖u(·, t) − v(·, t)‖L1(R+) ≤ et0 ‖u(·, 0) − v(·, 0)‖L1(R+) .

Remark 8 The solution of (5) depends continuously on the boundary datum. If u and v are
solutions of (5) with boundary data f and g respectively and with the same initial datum, than

max
0≤t≤t0

‖u(·, t) − v(·, t)‖L1(R+) ≤ (et0 − 1) max
0≤t≤t0

‖f(·, t) − g(·, t)‖L1(R−).

Remark 9 The function u is a solution of (5) if and only if

u(x, t) =

t∫
0

e(s−t)
∫

R+

J

(
x − y

u(y, s)

)
dy ds +

t∫
0

e(s−t)
∫

R−

J

(
x − y

u(x, s)

)
dy ds

+

t∫
0

e(s−t)
∫

R−

J(x − y)f(y, s)dy ds + e−tu0(x).

Notice that the solution does not have to be continuous at x = 0, even if the initial datum u0

is continuous.

As before, we have a comparison principle valid for continuous solutions. Again we omit the
details of the proof.

Theorem 3.2 If u and v are solutions of (5) with u(x, 0) ≤ v(x, 0) for all x ∈ R
+, then

u(x, t) ≤ v(x, t) for all (x, t) ∈ R
+ × [0,∞).

3.2 Blow-up analysis

In this subsection we deal with solutions of (5) with f(x, t) = (T − t)−α.

Proof of Theorem 1.4 We have

ut(x, t) =
∫

R+

J

(
x − y

u(y, t)

)
dy +

∫
R−

J

(
x − y

u(x, t)

)
dy

−u(x, t) +
∫

R−

J(x − y)
1

(T − t)α
dy.

12
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Changing variables, ζ = x − y, we obtain

ut(x, t) + u(x, t) =
∫

R+

J

(
x − y

u(y, t)

)
dy +

∫
R−

J

(
x − y

u(x, t)

)
dy +

1

(T − t)α

∞∫
x

J(ζ).

Hence

ut(x, t) + u(x, t) ≥ 1

(T − t)α

∞∫
x

J(ζ) dζ.

Then,

u(x, t) ≥ e−tu0(x) + e−t

t∫
0

1

(T − t)α

∞∫
x

J(ζ) dζ ds.

Let A =
∫ ∞
x J(ζ) dζ . If x ≥ 1 then A = 0. Therefore, for 0 < x < 1 we have

u(x, t) ≥ e−tu0(x) + Ae−t

t∫
0

1

(T − t)α
ds

and hence

u(x, t) ≥ C

t∫
0

1

(T − t)α
ds

for x ∈ (0, 1) and 0 < t < T . We have proved that u blows up if α ≥ 1 and the estimates valid
for x ∈ (0, 1),

a) If α > 1, then u(x, t) ≥ C(T − t)−α+1.
b) If α = 1, then u(x, t) ≥ −C ln(T − t).

In an analogous way, we obtain that if D > 1
2(α−1)

, with α > 1, then z(x, t) = D(T − t)1−α is a

supersolution of (5) for t close to T . Moreover, if u(x, t) is a solution of (5) then, taking D larger
if needed, u(x, t) ≤ D(T − t)1−α for all 0 < x < 1. If α = 1 we obtain u(x, t) ≤ −D ln(T − t),
considering as supersolution w(x, t) = −D ln(T − t). Finally, if α < 1, using as supersolution
v(x, t) = C1 − C2(T − t)1−α, we get that there exists K such that u(x, t) ≤ K.

To find the blow-up set we argue as follows: if x > 1, using the blow-up rate, we have

ut(x, t) ≤
1∫

0

J

(
x − y

u(y, t)

)
dy +

∞∫
1

J

(
x − y

u(y, t)

)
dy

≤ (T − t)1−α

x
(T−t)1−α∫

x−1

(T−t)1−α

J(z) dz +

∞∫
1

J

(
x − y

u(y, t)

)
dy.

13
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Notice that

(T − t)1−α

x
(T−t)1−α∫

x−1

(T−t)1−α

J(z) dz ≤ C.

Hence we can use a comparison argument with u(x, t) = Ket (with K large) in [1,∞) to end
the proof.

Next, we study the behavior of the mass, M(t) =
∫ ∞
0 u(x, t) dx, which satisfies the equation

M ′(t) =
1

(T − t)α

∞∫
0

0∫
−∞

J (x − y) dy dx =
C

(T − t)α
.

Direct integration gives that M blows up if and only if α ≥ 1. �

References

[1] D. G. Aronson. The porous medium equation, in Nonlinear Diffusion Problems, A. Fasano and
M. Primicerio eds. Lecture Notes in Math. 1224, Springer Verlag, (1986).

[2] P. Bates and F. Chen. Spectral analysis and multidimensional stability of travelling waves for
nonlocal Allen-Cahn equation. J. Math. Anal. Appl., 273, 45-57, (2002).

[3] P. Bates and A. Chmaj. An integrodifferential model for phase transitions: stationary solutions
in higher dimensions. J. Statistical Phys., 95, 1119-1139, (1999).

[4] P. Bates and A. Chmaj. A discrete convolution model for phase transitions. Arch. Rat. Mech.
Anal., 150, 281-305, (1999).

[5] P. Bates, P. Fife, X. Ren and X. Wang. Travelling waves in a convolution model for phase
transitions. Arch. Rat. Mech. Anal., 138, 105-136, (1997).

[6] M. Bogoya, R. Ferreira and J. D. Rossi. Neumann boundary conditions for a nonlocal nonlinear
diffusion operator. Continuous and discrete models. To appear in Procc. Amer. Math. Soc.

[7] X Chen. Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution
equations. Adv. Differential Equations, 2, 125-160, (1997).

[8] C. Cortazar and M. Elgueta. Localization and boundedness of the solutions of the Neumann
problem for a filtration equation. Nonlinear Anal. 13(1), 33-41, (1989).

[9] C. Cortazar, M. Elgueta and J. D. Rossi. A non-local diffusion equation whose solutions develop
a free boundary. Ann. Henri Poincaré, 6(2), 269-281, (2005).
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