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Abstract. We obtain upper bounds for the decay rate for solutions to the
nonlocal problem ∂tu(x, t) =

∫
Rn J(x, y)|u(y, t)−u(x, t)|p−2(u(y, t)−u(x, t))dy

with an initial condition u0 ∈ L1(Rn)∩L∞(Rn) and a fixed p > 2. We assume
that the kernel J is symmetric, bounded (and therefore there is no regularizing
effect) but with polynomial tails, that is, we assume a lower bounds of the form

J(x, y) ≥ c1|x− y|−(n+2σ), for |x− y| > c2 and J(x, y) ≥ c1, for |x− y| ≤ c2.

We prove that ∥u(·, t)∥Lq(Rn) ≤ Ct
− n

(p−2)n+2σ
(1− 1

q
)
for q ≥ 1 and t large.

1. Introduction.

In this paper we deal with nonlocal Cauchy problems of the form

(1.1) ∂tu(x, t) =

∫
Rn

J(x, y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t))dy

for t ∈ R+ and x ∈ Rn with n ≥ 2, a fixed p > 2 and an initial condition u(x, 0) =
u0(x) satisfying u0 ∈ L1(Rn)∩L∞(Rn). On the kernel J , we will always assume that
it is a bounded and symmetric function defined for (x, y) ∈ Rn ×Rn together with
the integrability condition J(·, y) ∈ L1(Rn) for all y ∈ Rn. Under these hypotheses
existence and uniqueness of a solution follows from a fixed point argument as in [1].

Nonlocal problems have been recently widely used to model diffusion processes
(see [6] and [5] for a general nonlocal vector calculus). Problem (1.1) and its sta-
tionary version have been considered recently in connection with real applications,
for example to peridynamics or a recent model for elasticity. We quote for instance
[2], [11], [12], [13], [14] and the recent book [1].

Our main goal here is to obtain upper bounds for the asymptotic behavior of
the solution of (1.1) as t → +∞. It is expected that the diffusive nature of the
equation implies that the solution goes to zero when t→ +∞.

To obtain our results the key assumptions are the following lower bounds for J :

(1.2)
J(x, y) ≥ c1|x− y|−(n+2σ), for |x− y| > c2,

and
J(x, y) ≥ c1, for |x− y| ≤ c2.

for certain constants c1, c2 > 0 and σ ∈ (0, 1). For simplicity we will assume c2 = 1.
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The main result of this paper reads as follows:

Theorem 1.1. Let n ≥ 2, q ∈ [1,+∞) and σ ∈ (0, 1). Let J be a kernel sat-
isfying (1.2). Then the solution of (1.1) associated to an initial condition u0 ∈
L1(Rn) ∩ L∞(Rn) decays in Lq(Rn) with the upper bound

∥u(·, t)∥Lq(Rn) ≤ Ct−
n

(p−2)n+2σ
(1− 1

q ),(1.3)

where the constant C depends on u0, q, σ and n.

Let us end the introduction with some comments on the previous bibliography.
For the linear case, p = 2, and for smooth kernels J with compact support, it is
proven in [8] that the solution u of the equation (1.1) has the decay estimate

∥u(·, t)∥Lq(Rn) ≤ Ct−
n
2 (1− 1

q )

for any q ∈ [1,∞). Note that this decay rate is the same as the one that holds for
solutions of the classical Heat equation. In the case of an equation in convolution
form, that is when J(x, y) = K(x − y) with K a nonnegative radial function, not
necessarily compactly supported, it is proven in [3] that the solutions of equations
with the form (1.1) have the decay estimate

∥u(·, t)∥Lq(Rn) ≤ Ct−
n
2σ (1− 1

q ),

provided the function K has a Fourier transform satisfying the expansion K̂(ξ) =
1 − A|ξ|2σ + o(|ξ|2σ), where A > 0 is a constant. In this case the decay estimate
is analogous to the one for the σ−order fractional heat equation, vt = −(−∆)σv,
with σ ∈ (0, 1). We also note that the convolution form of the equation allows the
use of Fourier analysis to obtain this result. However, the use of Fourier analysis is
not helpful here due to fact that our operator is not in convolution form. Despite
of this difficulty, energy methods can be applied, see [8], [4]. We borrow ideas and
techniques from these references. In particular we use Proposition 3.2 of [4] (whose
proof is included here for completeness). However we have to point out that in [4]
only the linear case, that is, p = 2, was treated, while here we deal with (1.1) for
any p ≥ 2. For examples of kernels with exponential decay bounds we refer to [9]
and [10].

The case 1 ≤ p < 2 remains open as well as the corresponding estimate for the
L∞-norm.

2. Basic Facts and Preliminaries.

First, we need to introduce fractional Sobolev spaces and its seminorms, we refer
to [7] for details. For σ ∈ (0, 1) and r ∈ [1,∞), W σ,r(Rn) is the fractional Sobolev
space of all Lr(Rn) functions with finite fractional seminorm [v]σ,r, given by

[v]rσ,r =

∫∫
R2n

|v(x+ z)− v(x)|r

|z|n+rσ
dx dz.(2.1)

Under these definitions, we have the following fractional Sobolev-type inequality,
there exists a constant C > 0 such that for each v ∈ Wσ,r(Rn) with σr < n, it
holds

||v||rLs(Rn) ≤ C[v]rσ,r,(2.2)
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where s = nr/(n− σr) (see [7]).

First, we consider a positive smooth function ψ : Rn → R with the following
properties

(2.3) supp(ψ) ⊂ B1, and

∫
Rn

ψ(x)dx = 1.

With the aid of this function, we split a function u into two parts. We will denote
the “smooth” part of u as v and the remaining as w. We let

(2.4) v(x, t) :=

∫
Rn

ψ(x− z)u(z, t)dz; w(x, t) := u(x, t)− v(x, t).

Sometimes, for simplicity in the notation and where the context is clear, we will
write u, v and w as functions depending only of x.

As a first property of this decomposition we have that each Lr norm of the
functions v and w is controlled by the corresponding norm of u.

Lemma 2.1. Let v and w be given by (2.4). For each r ∈ (1,+∞), there exists
C = C(r, ψ) such that

∥v∥Lr(Rn) ≤ C∥u∥Lr(Rn), and ∥w∥Lr(Rn) ≤ C∥u∥Lr(Rn).

Proof. We start with v. Denoting r′ = r/(r − 1) the Hölder conjugate of r and
using the definition of v, we have∫

Rn

|v(x)|rdx =

∫
Rn

∣∣∣ ∫
Rn

ψ(x− y)u(y)dy
∣∣∣rdx

=

∫
Rn

∣∣∣ ∫
Rn

ψ(x− y)1/r
′
ψ(x− y)1/ru(y)dy

∣∣∣rdx
≤

∫
Rn

[( ∫
Rn

ψ(x− y)dy
)1/r′(∫

Rn

ψ(x− y)|u(y)|rdy
)1/r]r

dx

= C(r, ψ)

∫
Rn

|u(y)|r
∫
Rn

ψ(x− y)dxdy

≤ C(r, ψ)

∫
Rn

|u(y)|rdy.

The inequality for w easily follows immediately from the triangular inequality in
Lr. �

Now we state a key result to get the desired estimate on the decay rate.

Proposition 2.2. Let n ≥ 2 and let J : Rn×Rn → R+ be a kernel satisfying (1.2),
ψ satisfying (2.3), β ∈ (0, 1) and r > max{1, 2β}. Then, there exists a constant
C > 0 such that for all u ∈ Lr(Rn) and v, w defined in (2.4), we have

(2.5) [v]r2βr−1,r + ∥w∥rLr(Rn) ≤ C

∫∫
R2n

J(x, y)|u(x)− u(y)|rdx dy.

The constant C depends on ψ, β, r and n.
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Proof. For the estimate concerning w, we have∫
Rn

|w(x)|rdx =

∫
Rn

|u(x)− v(x)|rdx

=

∫
Rn

∣∣∣u(x)− ∫
Rn

ψ(x− z)u(z)dz
∣∣∣rdx

=

∫
Rn

∣∣∣ ∫
Rn

ψ(x− z)(u(x)− u(z))dz
∣∣∣rdx

=

∫
Rn

∣∣∣ ∫
Rn

ψ(x− z)1/r
′
ψ(x− z)1/r(u(x)− u(z))dz

∣∣∣rdx.
Applying Holder’s inequality, we get∫

Rn

|w(x)|rdx

≤
∫
Rn

(∫
Rn

ψ(x− z)dz
)r/r′(∫

Rn

ψ(x− z)|u(x)− u(z)|rdz
)
dx

≤ C(r, r′, ψ)

∫
Rn

∫
Rn

ψ(x− z)|u(x)− u(z)|rdz dx,

where r′ = r/(r − 1).

Since ψ is supported in B1, we have that ψ(x − z) ≤ J(x, z) for all |x − z| ≥ 1
and since J verifies J(x, z) ≥ c1 for |x−z| ≤ 1, there exists a constant C depending
only on |ψ|∞ such that ψ(x− z) ≤ CJ(x, z). Then

∥w∥rLr(Rn) ≤ C

∫∫
R2n

J(x, y)|u(x)− u(y)|rdx dy.

Now we deal with the term with v. We split the fractional seminorm as

[v]r2βr−1,r =

∫∫
|x−y|>1

|v(x)− v(y)|r

|x− y|n+2β
dxdy +

∫∫
|x−y|≤1

|v(x)− v(y)|r

|x− y|n+2β
dxdy

=: Iext + Iint

and look at these integrals separately. For Iext, using the definition of v we have

Iext =

∫∫
|x−y|>1

∣∣∣ ∫
Rn

(u(x− z)− u(y − z))ψ(z)dz
∣∣∣r|x− y|−(n+2β)dxdy.

Now, we can look at the measure µ(dz) = ψ(z)dz as a probability measure
(because of (2.3)) and since the function t 7→ |t|r is convex in R, we can apply
Jensen’s inequality on the dz−integral in right-hand side of the last expression to
obtain

Iext ≤
∫∫

|x−y|>1

∫
Rn

|u(x− z)− u(y − z)|rψ(z)dz|x− y|−(n+2β)dxdy,

which, after an application of Fubini’s Theorem, gives

Iext ≤
∫
Rn

ψ(z)
(∫∫

|x−y|>1

|u(x− z)− u(y − z)|r|x− y|−(n+2β)dxdy
)
dz,
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Then, applying the change x̃ = x−z, ỹ = y−z in the dxdy integral and using (2.3),
we conclude

Iext ≤
∫
Rn

ψ(z)
(∫∫

|x̃−ỹ|>1

|u(x̃)− u(ỹ)|r|x̃− ỹ|−(n+2β)dx̃dỹ
)
dz

=

∫∫
|x̃−ỹ|>1

|u(x̃)− u(ỹ)|r|x̃− ỹ|−(n+2β)dx̃dỹ.

Using this last expression, we obtain from the assumption (1.2) that

(2.6) Iext ≤ C

∫∫
R2n

J(x, y)|u(x)− u(y)|rdx dy.

Now we deal with Iint. In this case, using the definition of v, we can write

(2.7) Iint =

∫∫
|x−y|<1

∣∣∣ ∫
Rn

u(z)(ψ(x− z)− ψ(y − z))dz
∣∣∣r|x− y|−(n+2β)dxdy.

Note that by using (2.3), we have for all x, y ∈ Rn∫
Rn

u(x)(ψ(x− z)− ψ(y − z))dz = u(x)
(∫

Rn

ψ(x− z)dz −
∫
Rn

ψ(y − z)dz
)
= 0,

and then∫
Rn

u(z)(ψ(x− z)− ψ(y − z))dz =

∫
Rn

(u(z)− u(x))(ψ(x− z)− ψ(y − z))dz.

Thus, using this equality into (2.7), we get

Iint =

∫∫
|x−y|<1

∣∣∣ ∫
Rn

(u(z)− u(x))(ψ(x− z)− ψ(y − z))dz
∣∣∣r|x− y|−(n+2β)dxdy.

However, note that if |x − z| ≥ 2 in the dz integral, since |x − y| < 1 necessarily
|y − z| > 1. Then, due to the fact that ψ is supported in the unit ball, the
contribution of the integrand when |x − z| ≥ 2 is null in the dz integral. Taking
this into account, applying Hölder’s inequality into the dz−integral, we have

Iint =

∫∫
|x−y|<1

∣∣∣ ∫
|x−z|<2

(u(z)− u(x))(ψ(x− z)− ψ(y − z))dz
∣∣∣r

× |x− y|−(n+2β)dxdy

≤
∫∫

|x−y|<1

(∫
|x−z|<2

|u(z)− u(x)|rdz
)

×
(∫

|x−z̃|<2

|ψ(x− z̃)− ψ(y − z̃)|r
′
dz̃

)r/r′

|x− y|−(n+2β)dxdy.

By Fubini’s Theorem we can write

Iint =

∫
x∈Rn

(∫
|x−z|<2

(u(z)− u(x))rdz
)
Ψ(x)dx,

where

Ψ(x) =

∫
|x−y|<1

(∫
|x−z̃|<2

|ψ(x− z̃)− ψ(y − z̃)|r
′
dz̃

)r/r′

|x− y|−(n+2β)dy.
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Using the regularity of ψ, we have

Ψ(x) ≤
∫
|x−y|<1

(∫
|x−z̃|<2

||Dψ||r
′

∞|x− y|r
′
dz̃

)r/r′

|x− y|−(n+2β)dy

≤||Dψ||r∞|B2|r/r
′
∫
|x−y|<1

|x− y|r|x− y|−(n+2β)dy,

and since r > 2β, we conclude that the last integral is convergent, obtaining

Ψ(x) ≤ Cn,β,r||Dψ||r∞|B2|r/r
′
,

which leads us to the following estimate for Iint

Iint ≤ C

∫
x∈Rn

∫
|x−z|<2

|u(z)− u(x)|rdzdx.

From this, it is easy to get

Iint ≤ C

∫
|x−z|≤2

|u(z)− u(x)|r

(1 + |x− z|)n+2β
dzdx,

which, by the use of (1.2), let us conclude that

Iint ≤ C

∫∫
R2n

J(x, y)|u(x)− u(y)|rdx dy.

This last estimate together with (2.6) concludes the proof. �

3. Proof of Theorem 1.1

As mentioned in the introduction, existence and uniqueness of solutions to prob-
lem (1.1) follows as in [1]. In fact, the symmetry, boundedness and integrability
assumptions over J , allows us to perform a fixed point argument to obtain the
following result whose proof is omitted.

Theorem 3.1. Let u0 ∈ L1(Rn) ∩ L∞(Rn), then, there exists a unique solu-
tion u ∈ C([0,+∞), L1(Rn) ∩ L∞(Rn)) of equation (1.1). This solution satisfies
||u(·, t)||L1(Rn) ≤ ||u0||L1(Rn) and ||u(·, t)||L∞(Rn) ≤ ||u0||L∞(Rn) for all t ≥ 0.

Now, let us introduce the main idea behind the energy methods. To clarify the
exposition, let us perform these computations in the local case and next see how we
can adapt them to our nonlocal problem with the help of Proposition 2.2. Let us
describe briefly how the energy method can be applied to obtain decay estimates
for local problems. Let us begin with the simpler case of the estimate for solutions
to the p−Lapacian evolution equation in L2-norm. Let u be a solution to

∂tu = ∆pu.

If we multiply the equation by u and integrate in Rn, we obtain

∂t

∫
Rn

1

2
u2(x, t)dx = −

∫
Rn

|∇u(x, t)|p dx.

Now we use Sobolev’s inequality∫
Rn

|∇u(x, t)|p dx ≥ C

(∫
Rn

|u(x, t)|p
∗
dx

)p/p∗
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with p∗ = pn/(n− p) to obtain

∂t

∫
Rn

u2(x, t) dx ≤ −C
(∫

Rn

|u(x, t)|p
∗
dx

)p/p∗

.

If we use interpolation and that ∥u(·, t)∥L1(Rn) ≤ C(u0) for any t > 0, we have

∥u(·, t)∥L2(Rn) ≤ ∥u(·, t)∥αL1(Rn)∥u(·, t)∥
1−α
Lp∗ (Rn)

≤ C∥u(·, t)∥1−α
Lp∗ (Rn)

with α determined by

1

2
= α+

1− α

p∗
, that is, α =

(
1

2
− 1

p∗

)
p∗

(p∗ − 1)
.

Hence we get

∂t

∫
Rn

u2(x, t) dx ≤ −C
(∫

Rn

u2(x, t) dx

) 1
1−α

from where the decay estimate

∥u(·, t)∥L2(Rn) ≤ C t−
1
2

(
n

n(p−2)+2

)
, t > 0,

follows. To obtain a decay bound for ∥u(·, t)∥Lq(Rn) we can use the same idea

multiplying by uq−1 at the beginning.

Now we are ready to proceed with the proof of our main result.

Proof of Theorem 1.1. The symmetry assumption on J allows us to mimic this
idea and use an energy approach in order to get Theorem 1.1. Roughly speaking,
this assumption allows us to “integrate by parts” equation (1.1). For q = 1 the
proof is finished by Theorem 3.1. For q > 1 we multiply the equation by q|u|q−2u
and integrate, obtaining the identity

∂t

∫
Rn

|u(x)|qdx = −q
2

∫∫
R2n

J(x, y)|u(y)− u(x)|p−2(u(y)− u(x))

× (|u(y)|q−2u(y)− |u(x)|q−2u(x)) dy dx,

(3.1)

where we omitted the dependence on t of the function u for simplicity.

Now we recall the following inequality (whose proof is straightforward): let q > 1
and a, b ̸= 0. Then, there exists a constant C depending only on q, such that

(a− b)(|a|q−2a− |b|q−2b) ≥ C|a− b|q.

Hence, using this inequality into (3.1), we conclude

∂t||u||qLq(Rn) ≤ −C
∫∫

R2n

J(x, y)|u(y)− u(x)|p−2+qdydx =: −CE(u).(3.2)

Note that we get that the Lq-norm of u is decreasing in t. At this point we would
like to use Sobolev’s inequality, that is not available due to the lack of regularizing
effect of our nonlocal operator. Instead we will use Proposition 2.2 that involves a
good control of the smooth part v (but we have to take care of the rough part w).

By the definition of v and w in (2.4), we have

(3.3) ||u||qLq(Rn) ≤ 2q−1
(
||v||qLq(Rn) + ||w||qLq(Rn)

)
.
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Now we note that v belongs to Lp for all p. Hence, we can interpolate, obtaining

||v||qLq(Rn) ≤ ||v||qθLs(Rn)||v||
q(1−θ)
L1(Rn),

with

s =
n(p+ q − 2)

n− 2σ
where θ is given by

1

q
=
θ

s
+ (1− θ), that is θ =

s(q − 1)

q(s− 1)
.

Recalling ||v||L1(Rn) ≤ ||u(·, t)||L1(Rn) ≤ ||u0||L1(Rn) and the Sobolev-type inequal-
ity (2.2), we obtain

(3.4) ||v||qLq(Rn) ≤ C[v]qθσ̃,p+q−2,

where σ̃ = 2σ(p+ q − 2)−1 and the constant C depends on u0, q, σ and n.

Concerning w we can also interpolate and obtain

||w||qLq(Rn) ≤ ||w||qγLp+q−2(Rn)||w||
q(1−γ)
L1(Rn),

with γ given by

1

q
=

γ

p+ q − 2
+ (1− γ), that is γ =

(p+ q − 2)(q − 1)

q(p+ q − 3)
.

Note that we are using that p > 2 here. Now we use that

||w||L1(Rn) ≤ ||u(·, t)||L1(Rn) ≤ ||u0||L1(Rn)

to get

(3.5) ||w||qLq(Rn) ≤ C||w||qγLp+q−2(Rn),

with C depending on u0, q, σ and n.

From (3.3), (3.4) and (3.5) we obtain

(3.6) ||u||qLq(Rn) ≤ C[v]qθσ̃,p+q−2 + C||w||qγLp+q−2(Rn) .

Now we use Proposition 2.2, with r = p+ q − 2 and β = σ, to obtain

||v||qθLs(Rn) ≤ C(E(u))
qθ

p+q−2 and ||w||qγLp+q−2(Rn) ≤ C(E(u))
qγ

p+q−2

and we conclude that

||u||qLq(Rn) ≤ C(E(u))
qθ

p+q−2 + C(E(u))
qγ

p+q−2

that is,

H−1(||u||qLq(Rn)) ≤ E(u)

with H(z) = Cz
qθ

p+q−2 +Cz
qγ

p+q−2 . Since ||u||qLq(Rn)(t) ≤ ||u0||qLq(Rn) (recall that the

Lq-norm of the solution decreases) and qθ
p+q−2 <

qγ
p+q−2 we have

H−1(||u||qLq(Rn)) ≥ C(||u||qLq(Rn))
p+q−2

qθ .

Then, from (3.2), we obtain

∂t||u(·, t)||qLq(Rn) ≤ −CE(u) ≤ −CH−1(||u||qLq(Rn)) ≤ −C(||u||qLq(Rn))
p+q−2

qθ
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from where it follows that

||u(·, t)||qLq(Rn) ≤ Ct−
qθ

p+q−2−qθ ,

that is,

||u(·, t)||qLq(Rn) ≤ Ct−
(q−1)n

q((p−2)n+2σ) ,

as we wanted to show.

Aknowledgements: partially supported by MECMTM2010-18128 and MTM2011-
27998 (Spain).

References

[1] F. Andreu-Vaillo, J. M. Mazon, J. D. Rossi and J. J. Toledo-Melero. Nonlocal diffusion prob-
lems. Mathematical Surveys and Monographs, 165. American Mathematical Society, Provi-

dence, RI; 2010.
[2] P. Bates, X. Chen, A. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite

nonlocal interactions, Calc. Var. 24 (2005), 261–281.
[3] E. Chasseigne, M. Chaves and J. D. Rossi. Asymptotic Behavior for Nonlocal Diffusion

Equations. J. Math. Pures Appl., (9) 86, (2006), no. 3, 271–291.
[4] E. Chasseigne, P. Felmer, J. D. Rossi and E. Topp. Fractional decay bounds for nonlocal zero

order heat equations. Preprint.
[5] Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou. A nonlocal vector calculus, nonlocal volume-

constrained problems, and nonlocal balance laws. Preprint.
[6] P. Fife. Some nonclassical trends in parabolic and parabolic-like evolutions, in “Trends in

nonlinear analysis”, pp. 153–191, Springer-Verlag, Berlin, 2003.
[7] E. Di Neza, G. Palatucci and E. Valdinoci. Hitchhiker’s Guide to the Fractional Sobolev

Spaces. Bull. Sci. Math., 136, (2012), no. 5, 521–573.
[8] L. Ignat and J. D. Rossi. Decay Estimates for Nonlocal Problems Via Energy Methods. J.

Math. Pures Appl., (9) 92, (2009), no. 2, 163–187.

[9] L. Ignat, J. D. Rossi and A. San Antolin. Lower and upper bounds for the first eigenvalue
of nonlocal diffusion problems in the whole space. J. Differential Equations, 252(12), (2012),
6429–6447.

[10] L. Ignat, D. Pinasco, J. D. Rossi and A. San Antolin. Decay estimates for nonlinear nonlocal

diffusion problems in the whole space. To appear in J. d’Analyse Math.
[11] V. Hutson, S. Mart́ınez, K. Mischaikow and G. T. Vickers. The evolution of dispersal, J.

Math. Biol. 47 (2003), 483–517.
[12] M. L. Parks, R. Lehoucq, S. Plimpton and S. Silling. Implementing peridynamics within a

molecular dynamics code, Computer Physics Comm., 179, (2008), 777–783.
[13] S. A. Silling. Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces.

J. Mech. Phys. Solids, 48, (2000), 175-209.
[14] S. A. Silling and R. Lehoucq. Convergence of Peridynamics to Classical Elasticity Theory.

J. Elasticity, 93 (2008), 13–37.

C. Esteve: Departamento de Análisis Matemático, Universidad de Alicante, Ap.
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correos 99, 03080, Alicante, Spain.
angel.sanantolin@ua.es


