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Abstract. We consider the following problem: given a bounded con-
vex domain Ω ⊂ RN we consider the limit as p → ∞ of solutions to
−div

(
b−pp |Du|p−2 Du

)
= f+ − f−, in Ω, b−pp |Du|p−2 ∂u

∂η
= 0, on ∂Ω.

Under appropriate assumptions on the coefficients bp, that in particular
verify that limp→∞ bp = b uniformly in Ω, we prove that there is a uni-
form limit of upj (along a sequence pj →∞) and that this limit is a Kan-
torovich potential for the optimal mass transport problem of f+ to f−
with cost c(x, y) given by the formula c(x, y) = infσ(0)=x,σ(1)=y

∫
σ
b ds.

1. Introduction

Since the work by Evans and Gangbo on optimal mass transportation,
[5], the idea of taking limits as p → ∞ in p−Laplacian type problems to
find solutions to optimal mass transport problems was recently used by the
authors of this paper, see [6, 7, 8, 9]. Our main goal in the present paper is
to see what are the optimal transport problems that can be approximated
when one considers a spatially dependent coefficient in the p−Laplacian
approximations.

Associated with a positive and continuous function bp in Ω as diffusion
coefficient let us consider the following p−Laplacian type problem:

(1.1)

{
−div

(
b−pp |Du|p−2Du

)
= f, in Ω,

b−pp |Du|p−2 ∂u
∂η = 0, on ∂Ω.

Here Ω is a bounded and convex domain in RN and f = f+−f− ∈ L∞(Ω) has
zero mean in Ω,

∫
Ω f = 0 (otherwise this problem does not have solutions).

Concerning the coefficient bp we also assume that there exists a continuous

positive function b in Ω such that

(1.2) bpp ≤
Bp

c1
, bp ≤ c2b

p
p
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for any p and for fixed constants B, c1, c2 > 0, and moreover, it holds that

(1.3) lim
p→∞

bp = b

uniformly in Ω. The simplest example of positive bp that verifies (1.3) is to
consider bp independent of p, bp(x) = b(x), for a fixed positive continuous

function on Ω.

Existence and uniqueness (up to an additive constant) for this problem
of a continuous weak solution in the Sobolev space W 1,p(Ω) can be easily
obtained from variational arguments. It turns out that this weak solution
is also a viscosity solution, see [10].

Limits as p → ∞ of similar type problems are related to optimal mass
transport problems for the Euclidean distance. In fact, this relation was
the key to the first complete proof of the existence of an optimal transport
map for the classical Monge problem (here the transport cost of one unit
of mass between x and y is the Euclidean distance |x − y|) given by Evans
and Gangbo in [5]. Note that the usual Euclidean distance is not a strictly
convex cost. This makes this optimal mass transport different from the
strictly convex cost case in which there is existence of a convex function
(solution to a Monge Ampere type problem) whose gradient provides an
optimal transport map, see [11]. For notation and general results on Mass
Transport Theory we refer to [1, 2, 4, 5, 11] and [12].

In our case, we can pass to the limit in (1.1) and obtain that, for a
sequence pj → ∞, upj ⇒ u∞ uniformly in Ω. It turns out that this limit
u∞ is a Kantorovich potential for the optimal transport problem that we
describe below.

An optimal mass transport problem with a non-standard cost. Assume
that we have some production in a domain Ω encoded in f+ and some
consumption encoded in f−. To transport one unit of material from x to y
we pay as transport cost c(x, y) (that may take into account that the cost
is not translation invariant in this transport operation) that in our case is
given in terms of b by the formula

(1.4) c(x, y) = inf
σ∈Γ(x,y)

∫
σ
b ds,

where Γ(x, y) := {σ ∈ C1([0, 1],Ω) : σ(0) = x, σ(1) = y}.
Our main goal is to move the whole production and satisfy the whole

demand minimizing the total cost of the operation.

In its relaxed version (Monge-Kantorovich problem), this optimal trans-
port problem reads as follows: Let Π(f+, f−) be the set of transport plans
between f+ and f−, that is, the set of nonnegative Radon measures µ in
Ω×Ω such that projx(µ) = f+dx and projy(µ) = f−dx; the aim is to find a
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measure µ∗ ∈ Π(f+, f−) which minimizes the cost functional

Kc(µ) :=

∫
Ω×Ω

c(x, y) dµ(x, y),

in the set Π(f+, f−).

We have the following result:

Theorem 1.1. Let up be the unique solution to (1.1) that verifies
∫

Ω up = 0
and assume (1.2) and (1.3). Then, there is a sequence pj → ∞ such that
the uniform limit of the solutions upj , u∞, is a Kantorovich potential for
the optimal transport problem of f+ to f− with the cost given by c(x, y) in
(1.4), that is,

min
{
Kc(µ) : µ ∈ Π(f+, f−)

}
= sup

{∫
Ω
vf : v ∈ Kc(Ω)

}
=

∫
Ω
u∞f,

where

Kc(Ω) := {v : Ω→ R : |v(x)− v(y)| ≤ c(x, y), ∀x, y ∈ Ω}.

Note that we can approximate the total transport cost since we have that

lim
pj→∞

∫
Ω
upjf =

∫
Ω
u∞f.

Let us end the introduction with a brief description of the main techniques
used in the proofs. Concerning approximations using p−Laplacian type
operators, we quote [3], from where the main idea to show the key bounds
for the Lp-norm of the gradient is taken. Once we have a uniform in p
bound for the Lp-norm of the gradients we can extract a subsequence that
converge uniformly and show that this limit is a maximizer of

∫
Ω vf dx in

K1(Ω). From this the proof follows using the general duality argument that
can be found, for example, in [11].

When bp is of the form bp = Be−η, η > 0, for the study of the limit
equation (in the viscosity sense) when p → ∞ we refer to [10]. Here we
focus our attention on the mass transport problem obtained in this limit
procedure rather than in the equation that is verified by the limit.

The paper is organized as follows: In Section 2 we prove that there is
a sequence of solutions to (1.1) that converges uniformly; in Section 3 we
prove that the uniform limit is a solution (Kantorovich potential) to the
optimal mass transport problem.

2. A p−Laplacian limit

Recall that we are considering problem (1.1). First, we show existence
and uniqueness to it. The proof is standard but we include the details for
the sake of completeness.
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Lemma 2.1. Let p > N be fixed, then there it exists a unique continuous
solution to the variational problem

min
Sp

{∫
Ω

1

bpp

|Du|p

p
−
∫

Ω
uf

}
where

Sp =

{
u ∈W 1,p (Ω) :

∫
Ω
u = 0

}
.

This minimum is a weak solution of problem (1.1), that is, it verifies∫
Ω

1

bpp
|Du|p−2DuDφ =

∫
Ω
fφ, ∀φ ∈ C∞(Ω).

Proof. By our assumptions we have that b−pp is bounded from below and

above, 0 < c1B
−p ≤ b−pp ≤ c2,p < ∞ (note that even c1 can depend on p

here since p is fixed along this proof). Hence, we obtain that for every u
∈W 1,p (Ω) there holds

c1B
−p
∫

Ω

|Du|p

p
≤
∫

Ω

1

bpp

|Du|p

p
≤ c2,p

∫
Ω

|Du|p

p

and then the functional

Θ(u) =

∫
Ω

1

bpp

|Du|p

p
−
∫

Ω
uf,

is well defined in the set Sp which is convex, weakly closed and non empty.
On the other hand, Θ is coercive, bounded below and lower semicontinuous
in Sp, for this reason there is a minimizing sequence un ∈ Sp ⊂ W 1,p (Ω),
such that un ⇀ u ∈ Sp, and

inf
S

Θ = lim inf
n→+∞

Θ(un) ≥ Θ(u).

Hence the minimum of Θ in Sp is attained. From the strict convexity of Θ
in Sp we obtain that up is the unique minimum of Θ in Sp. Finally, up, the
unique minimizer, is a weak solution of (1.1). The fact that up is continuous

follows from the fact that W 1,p(Ω) ↪→ C(Ω) since p > N . �

Remark 2.1. Note that we have imposed that
∫

Ω u = 0 just to obtain
uniqueness of the solution. As usually happens for homogeneous Neumann
problems there are infinitely many solutions to (1.1) but any two of them
differ by an additive constant.

Remark 2.2. Following the ideas in [10] it can be proved that a continuous
weak solution to (1.1) is a viscosity solution to the same equation.

Our next step is to prove that we can extract a sequence of solutions to
(1.1), {upj}j , with pj →∞, that converges uniformly as j →∞.
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Lemma 2.2. Let up be solution to (1.1), p > N . There exists a sequence
pj →∞ such that

upj ⇒ u∞

uniformly in Ω. Moreover, the limit u∞ is Lipschitz continuous.

Proof. Along this proof we will denote by C a constant independent of p
that may change from one line to another.

Our first aim is to prove that the Lp-norm of the gradient of up is bounded
independently of p. We already proved in the previous Lemma 2.1 that up
is a minimizer of Θ in Sp. Let v a fixed Lipschitz function with |Dv| ≤ b
a.e. in Ω and

∫
Ω v = 0, then we have that v ∈ Sp and hence∫
Ω

1

bpp

|Dup|
p

p

−
∫

Ω
fup ≤

∫
Ω

1

bpp

|Dv|
p

p

−
∫

Ω
fv

≤
∫

Ω

bp

pbpp
−
∫

Ω
fv.

Now, from (1.2) we have∫
Ω

1

bpp

|Dup|p

p
≤ c2

p
|Ω| −

∫
Ω
fv +

∫
Ω
fup.

Thanks to the fact that
∫

Ω up = 0 (and the fact that the constant in the
inequality ‖up‖Lp(Ω) ≤ C‖Dup‖Lp(Ω) can be chosen independent of p, see
[8]) we get, ∫

Ω
fup ≤ C‖up‖Lp(Ω) ≤ C‖Dup‖Lp(Ω)

and then we get ∫
Ω

1

bpp

|Dup|p

p
≤ C + C‖Dup‖Lp(Ω).

Now we use that b−pp ≥ c1B
−p to obtain

(2.1)

∫
Ω
|Dup/B|p ≤ pC + pC‖Dup/B‖Lp(Ω).

From this inequality we can obtain that there exists C, independent of p,
such that (∫

Ω
|Dup|p

) 1
p

≤ C.

Now, using this uniform bound, we prove uniform convergence of a se-
quence upj . In fact, we take m such that N < m ≤ p and obtain the
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following bound

‖Dup‖Lm(Ω) =

(∫
Ω
|Dup|m · 1

) 1
m

≤

[(∫
Ω
|Dup|p

)m
p
(∫

Ω
1

) p−m
p

] 1
m

≤ C1 |Ω|
p−m
pm ≤ C2,

the constant C2 being independent of p. We have proved that {up}p>N is
bounded in W 1,m(Ω), and we know that

∫
Ω up = 0, so we can obtain a

weakly convergent sequence upj ⇀ u∞ ∈ W 1,m(Ω) with pj → +∞. Since

W 1,p(Ω) ↪→ C0,α(Ω̄) and upj ⇀ u∞ ∈ W 1,p(Ω), we obtain upj → u∞ in

C0,α(Ω), and in particular upj ⇒ u∞ uniformly in Ω. As upj ∈ C(Ω),

then u∞ ∈ C(Ω). Using a diagonal procedure we conclude the existence of
sequence upj that is weakly convergent in W 1,m(Ω) for every m.

Finally, let us show that the limit function u∞ is Lipschitz. In fact, we
proved that,(∫

Ω
|Du∞|m

) 1
m

≤ lim inf
pj→+∞

(∫
Ω

∣∣Dupj ∣∣m) 1
m

≤ C1 |Ω|
1
m ≤ C2.

Now, we take m → ∞ to obtain ‖Du∞‖L∞(Ω) ≤ C2. So, we have proved

u∞ ∈W 1,∞(Ω), that is, u∞ is a Lipschitz function. �

3. Mass transport interpretation of the limit

The goal of this section is to show that u∞ is a Kantorovich potential for
the mass transport problem of f+ to f− with the cost c(x, y) given by

c(x, y) = inf
σ∈Γ(x,y)

∫
σ
b ds,

that is,

c(x, y) = inf
σ∈Γ(x,y)

∫ 1

0
L(σ(t), σ′(t), t)dt,

with L the Lagrangian given by L(z, ξ) = b(z)|ξ|.
The key idea to identify the cost is as follows: if we have a Lipschitz

continuous function such that

|Du(x)| ≤ b(x) a.e. in Ω,

then, choosing a path σ with σ(0) = x, σ(1) = y, and

c(x, y) ≥
∫
σ
b ds− ε,
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we have

|u(x)− u(y)| =

∣∣∣∣∫ l

0
〈Du(σ(t)), σ′(t)〉dt

∣∣∣∣
≤
∫ l

0
b(σ(t))|σ′(t)|dt

≤ c(x, y) + ε.

Hence, we conclude that

|u(x)− u(y)| ≤ c(x, y).

Conversely, if we have

|u(x)− u(y)| ≤ c(x, y),

then

(3.1) |Du(x)| ≤ b(x) a.e. in Ω.

In fact, for ξ ∈ RN and h ∈ R with |h| small enough, if we just consider the
path σ : [0, 1]→ Ω given by

σ(t) = x+ t(hb−1(x)ξ)

we have

|〈b−1(x)Du(x), ξ〉| = |〈Du(x), b−1(x)ξ〉| ≤ lim inf
h→0

c(x, x+ hb−1(x)ξ)

|h|

≤ lim inf
h→0

1

|h|

∫
σ
b ds = lim inf

h→0

∫ 1

0
b(x+ thb−1(x)ξ)b−1(x)|ξ| dt = |ξ|,

from where we get (3.1).

Therefore, if c and b are related by

c(x, y) = inf
σ∈Γ(x,y)

∫
σ
b ds,

then the set of functions

Kc(Ω) :=

{
u : Ω 7→ R : |u(x)− u(y)| ≤ c(x, y) and

∫
Ω
u = 0

}
coincides with the set

K̃b(Ω) :=

{
u : Ω 7→ R : |Du(x)| ≤ b(x) and

∫
Ω
u = 0

}
.

Hence, we have that

(3.2) sup

{∫
Ω
vf : v ∈ Kc(Ω)

}
= sup

{∫
Ω
vf : v ∈ K̃b(Ω)

}
.
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Lemma 3.1. Any limit of a sequence upj , u∞, is a Kantorovich potential
for the optimal transport problem of f+ to f− with the cost given by

c(x, y) = inf
σ∈Γ(x,y)

∫
σ
b ds,

that is, it holds that

min{Kc(µ) : µ ∈ Π(f+, f−)} = sup

{∫
Ω
vf : v ∈ Kc(Ω)

}
=

∫
Ω
u∞f .

Proof. The equality

min{Kc(µ) : µ ∈ Π(f+, f−)} = sup

{∫
Ω
vf : v ∈ Kc(Ω)

}
follows by well known duality arguments, using that c is a distance, see [11].
Therefore, due to (3.2), we just need to show that

sup

{∫
Ω
vf : v ∈ K̃b(Ω)

}
=

∫
Ω
u∞f.

From the proof of Lemma 2.2 we have that, for every v a Lipschitz function
with |Dv| ≤ b a.e. in Ω and

∫
Ω v = 0, it holds

−
∫

Ω
fup ≤

∫
Ω

1

bpp

|Dup|
p

p

−
∫

Ω
fup ≤

∫
Ω

1

bpp

|Dv|
p

p

−
∫

Ω
fv

≤
∫

Ω

bp

pbpp
−
∫

Ω
fv

≤ c2

p
|Ω| −

∫
Ω
fv.

Taking limits as p→∞ we obtain∫
Ω
fu∞ ≥ sup

{∫
Ω
vf : v ∈ K̃b(Ω)

}
.

Then we just need to show that u∞ ∈ K̃b(Ω). From the uniform convergence
of upj to u∞ we immediately conclude that

∫
Ω u∞ = 0. Now, using again

the computations of the proof of Lemma 2.2, we get∫
Ω

1

bpp

|Dup|p

p
≤ C,

with C independent of p. Hence,(∫
Ω

∣∣∣∣Dupbp
∣∣∣∣p)1/p

≤ (pC)1/p.

Since
Dup
bp

⇀
Du∞
b
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arguing as in the final part of the proof of Lemma 2.2 and using that
(pC)1/p → 1 as p→∞ we get

‖b−1Du∞‖L∞(Ω) ≤ 1,

that is,

|Du∞(x)| ≤ b(x)

a.e. in Ω and we conclude that u∞ ∈ K̃b(Ω). �

Remark 3.1. In one space dimension, that is Ω = (a, b) ⊂ R, it is easy to
see that

min
{
Kc(µ) : µ ∈ Π(f+, f−)

}
= sup

{∫
Ω
vf : v ∈ Kc(Ω)

}
=

∫
Ω
u∞f

= sup

{∫
Ω
vf : v ∈ Kc̃(Ω)

}
where

c̃(x, y) :=

∫ 1

0
b((1− t)x+ ty)dt |x− y| =

∫ |x−y|
0

b
(
x+ t

y − x
|x− y|

)
dt,

being the last term 0 when x = y. Nevertheless, in general, for dimension
greater than one, this total cost is strictly less than

min
{
Kc̃(µ) : µ ∈ Π(f+, f−)

}
.

In one dimension, both total costs coincide, indeed, if we set d(r) =
∫ r

0 b(s)ds,
then

c(x, y) = c̃(x, y) = |d(x)− d(y)|.
In larger dimensions this is not true in general since with the cost c̃ we are
using straight lines to go from x to y and we can have functions b for which
a straight line is not the optimal one when computing the cost c(x, y) given
by (1.4).
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