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Resumen

The purpose of this article is to obtain mean value characterizations
of solutions to some nonlinear PDEs. To motivate the results we review
some recent results concerning Tug-of-War games and their relation with
PDEs. In particular, we will show that solutions to certain PDEs can be
obtained as limits of values of Tug-of-War games when the parameter
that controls the length of the possible movements goes to zero. Since the
equations under study are nonlinear and not in divergence form we will
make extensive use of the concept of viscosity solutions.

Palabras clave : Mean value properties, Tug-of-War games, viscosity
solutions.

Clasificación por materias AMS : 35J60, 91A05, 49L25, 35J25.

1. Introduction

The fundamental works of Doob, Hunt, Kakutani, Kolmogorov and many
others have shown a deep connection between the classical linear potential
theory and the corresponding probability theory. The idea behind this classical
interplay is that harmonic functions and martingales have a common origin in
mean value properties.

Our main goal in this article is to show that this approach turns out to be
useful in the nonlinear theory as well.

First, we explain through an elementary example a way in which the
Laplacian arise in Probability. Next, we will enter in what is the main goal
of this article, the approximation by means of values of games of solutions to
nonlinear problems like p−harmonic functions, that is, solutions to the PDE,
div(|∇u|p−2∇u) = 0 (including the nowadays popular case p = ∞). From
this connection we can deduce some asymptotic mean value formulas that
characterize solutions to these equations.

Our main result (we include a proof here, see also [24]) reads as follows:
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Theorem 1.1 Let 1 < p ≤ ∞ and let u be a continuous function in a domain
Ω ⊂ RN . The asymptotic expansion

u(x) =
α

2

{
máx
Bε(x)

u + mı́n
Bε(x)

u

}
+ β

∫

Bε(x)

u(y) dy + o(ε2), as ε → 0,

holds for all x ∈ Ω in the viscosity sense if and only if

∆pu(x) = 0

in the viscosity sense. Here α and β are determined by α = p−2
p+N , and β = 2+N

p+N .

There is also a parabolic version of this result (see [27] for details).

Theorem 1.2 Let 1 < p ≤ ∞ and let u be a continuous function in ΩT =
Ω× (0, T ). The asymptotic mean value formula

u(x, t) =
α

2

∫ t

t−ε2

{
máx

y∈Bε(x)
u(y, s) + mı́n

y∈Bε(x)
u(y, s)

}
ds

+ β

∫ t

t−ε2

∫

Bε(x)

u(y, s) dy ds + o(ε2), as ε → 0,

holds for every (x, t) ∈ ΩT in the viscosity sense if and only if u is a viscosity
solution to

(N + p)ut(x, t) = |∇u|2−p ∆pu(x, t).

Here, as before, α = p−2
p+N , and β = 2+N

p+N .

Note that, as the elliptic and the parabolic case involve a nonlinear equation,
the asymptotic mean value formulas are nonlinear (they involve a máx and a
mı́n). Also note that the equations involved are 1−homogeneous as well as the
mean value formulas that characterize their solutions.

In this article we assume that the reader is familiar with basic tools from
probability theory (like conditional expectations) and with the (not so basic)
concept of viscosity solutions for second order elliptic and parabolic PDEs (we
refer to the book [8] for this last topic).

2. Linear PDEs and probability

2.1. The probability of reaching the exit and harmonic functions

Let us begin by considering a bounded and smooth two-dimensional domain
Ω ⊂ R2 (a room) and assume that the boundary, ∂Ω is decomposed in two parts,
Γ1 (the exit) and Γ2 (the wall), that is, Γ1 ∪ Γ2 = ∂Ω with Γ1 ∩ Γ2 = ∅. We
begin with a position (x, y) ∈ Ω and ask the following question: assume that
you move completely at random beginning at (x, y) (we assume that we are
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in an homogeneous environment and that we do not privilege any direction, in
addition, we assume that every time the particle moves independently of its past
history) what is the probability u(x, y) of hitting the first part of the boundary
Γ1 (reaching the exit) the first time that the particle hits the boundary ?.

A simple way to get some insight to solve the question runs as follows: First,
we simplify the problem and approximate the movement by random increments
of step h in each of the axes directions, with h > 0 small. From (x, y) the particle
can move to any of the four points, (x+h, y), (x−h, y), (x, y +h), or (x, y−h),
each movement being chosen at random with probability 1/4. Starting at (x, y),
let uh(x, y) be the probability of hitting the exit part Γ1 + Bδ(0) the first time
that ∂Ω + Bδ(0) is hitt when we move on the lattice of side h. Observe that we
need to enlarge a little the boundary to capture points on the lattice of size h
(that do not necessarily lie on ∂Ω).

Applying conditional expectations we get that uh verifies

uh(x, y) =
1
4
uh(x + h, y) +

1
4
uh(x− h, y) +

1
4
uh(x, y + h) +

1
4
uh(x, y − h). (1)

That is,
0 = uh(x + h, y)− 2uh(x, y) + uh(x− h, y)

+uh(x, y + h)− 2uh(x, y) + uh(x, y − h).
(2)

Now, assume that uh converges as h → 0 to a function u uniformly in Ω.
Note that this convergence can be proved rigorously.

Let φ be a smooth function such that u − φ has a strict minimum at
(x0, y0) ∈ Ω. By the uniform convergence of uh to u there are points (xh, yh) such
that (uh−φ)(xh, yh) ≤ (uh−φ)(x, y)+o(h2), (x, y) ∈ Ω and (xh, yh) → (x0, y0)
as h → 0. Note that uh is not necessarily continuous. Hence, from (2) at the
point (x, y) = (xh, yh) and using that

uh(x, y)− uh(xh, yh) ≥ φ(x, y)− φ(xh, yh) + o(h2) (x, y) ∈ Ω,

we get

0 ≥ φ(xh + h, yh)− 2φ(xh, yh) + φ(xh − h, yh)

+φ(xh, yh + h)− 2φ(xh, yh) + φ(xh, yh − h) + o(h2).
(3)

Now, we just observe that

φ(xh + h, yh)− 2φ(xh, yh) + φ(xh − h, yh) = h2 ∂2φ

∂x2
(xh, yh) + o(h2)

φ(xh, yh + h)− 2φ(xh, yh) + φ(xh, yh − h) = h2 ∂2φ

∂y2
(xh, yh) + o(h2).

Hence, substituting in (3), dividing by h2 and taking limit as h → 0 we get

0 ≥ ∂2φ

∂x2
(x0, y0) +

∂2φ

∂y2
(x0, y0).
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Therefore, a uniform limit of the uh, u, has the following property: each time
that a smooth function φ touches u from below at a point (x0, y0) the derivatives
of φ must satisfy,

0 ≥ ∂2φ

∂x2
(x0, y0) +

∂2φ

∂y2
(x0, y0).

An analogous argument considering ψ a smooth function such that u − ψ
has a strict maximum at (x0, y0) ∈ Ω shows a reverse inequality. Therefore,
each time that a smooth function ψ touches u from above at a point (x0, y0) the
derivatives of ψ must verify

0 ≤ ∂2ψ

∂x2
(x0, y0) +

∂2ψ

∂y2
(x0, y0).

But at this point we realize that this is exactly the definition of being u a
viscosity solution to the Laplace equation

−∆u(x, y) = −
(

∂2u

∂x2
+

∂2u

∂y2

)
(x, y) = 0, (x, y) ∈ Ω.

Hence, we obtain that the uniform limit of the sequence of solutions to the
approximated problems uh, u is the unique viscosity solution (that is also a
classical solution in this case) to the following boundary value problem




−∆u = 0 in Ω,
u = 1 on Γ1,
u = 0 on Γ2.

(4)

The boundary conditions can be easily obtained from the fact that uh ≡ 1
in a neighborhood (of width h) of Γ1 and uh ≡ 0 in a neighborhood of Γ2.

Note that we have only required uniform convergence to get the result, and
hence no requirement is made on derivatives of the approximating sequence uh.
Moreover, we do not assume that uh is continuous.

Notice that in higher dimensions Ω ⊂ RN nothing changes, the same
arguments described above leads in the same simple way to viscosity solutions
to the Laplace operator.

Another way (that is closely related to the core of this article) to understand
this strong relation between probabilities and the Laplacian is through the mean
value property of harmonic functions. In the same context of the problem solved
above, assume that a closed ball Br(x0, y0) of radius r and centered at a point
(x0, y0) is contained in Ω. Starting at (x0, y0), the probability density of hitting
first a given point on the sphere ∂Br(x0, y0) is constant on the sphere, that is,
it is uniformly distributed on the sphere. Therefore, the probability u(x0, y0) of
exiting through Γ1 starting at (x0, y0) is the average of the exit probabilities u
on the sphere, here we are using again the formula of conditional probabilities.
That is, u satisfies the mean value property on spheres:

u(x0, y0) =
1

|∂Br(x0, y0)|
∫

∂Br(x0,y0)

u(x, y) dS(x, y)
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with r small enough. It is well known that this property leads to u being
harmonic.

We can also say that, if the movement is completely random and
equidistributed in the ball Bh(x0, y0), then, by the same conditional expectation
argument used before, we have

uh(x0, y0) =
1

|Bh(x0, y0)|
∫

Bh(x0,y0)

uh(x, y) dx dy.

Again one can take the limit as h → 0 and obtain that a uniform the limit of
the uh, u, is harmonic (in the viscosity sense).

3. Tug-of-War games and the ∞−Laplacian

In this section we will look for a probabilistic approach to approximate
solutions to an elliptic equation called the ∞−Laplacian, this is the nonlinear
degenerate elliptic operator, usually denoted by ∆∞, given by,

∆∞u :=
(
D2u∇u

) · ∇u =
N∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xixj
,

and arises from taking limit as p → ∞ in the p-Laplacian operator in the
viscosity sense, see [3] and [7]. In fact, let us present a formal derivation. First,
expand (formally) the p−laplacian:

∆pu = div
(|∇u|p−2∇u

)
=

= |∇u|p−2∆u + (p− 2)|∇u|p−4
∑

i,j

uxiuxj uxi,xj =

= (p− 2)|∇u|p−4
{ 1

p− 2
|∇u|2∆u +

∑

i,j

uxiuxj uxi,xj

}

and next, using this formal expansion, pass to the limit in the equation ∆pu = 0,
to obtain ∆∞u =

∑
i,j uxiuxj uxi,xj = Du · D2u · (Du)t = 0. Note that this

calculation can be made rigorous in the viscosity sense, see [3].
The ∞-laplacian operator appears naturally when one considers absolutely

minimizing Lipschitz extensions of a boundary function F ; see [14] and also
the survey [3]. A fundamental result of Jensen [14] establishes that the
Dirichlet problem for ∆∞ is well posed in the viscosity sense. Solutions to
−∆∞u = 0 (that are called infinity harmonic functions) are also used in several
applications, for instance, in optimal transportation and image processing.
Also the eigenvalue problem related to the ∞-laplacian has been exhaustively
studied, see [17], [18], [19].

Let us recall the definition of an absolutely minimizing Lipschitz extension.
Let F : ∂Ω → R. We denote by L(F, ∂Ω) the smallest Lipschitz constant of F
in ∂Ω, i.e.,

L(F, ∂Ω) := sup
x,y∈∂Ω

|F (x)− F (y)|
|x− y| .
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If we are given a Lipschitz function F : ∂Ω → R, i.e., L(F, ∂Ω) < +∞,
then it is well-known that there exists a minimal Lipschitz extension (MLE
for short) of F to Ω, that is, a function h : Ω → R such that h|∂Ω = F

and L(F, ∂Ω) = L(h,Ω). The notion of a minimal Lipschitz extension is not
completely satisfactory since it involves only the global Lipschitz constant of
the extension and ignore what may happen locally. To solve this problem, in the
particular case of the euclidean space RN , Arosson [1] introduced the concept
of absolutely minimizing Lipschitz extension (AMLE for short) and proved the
existence of AMLE by means of a variant of the Perron’s method. The AMLE is
given by the following definition. Here we consider the general case of extensions
of Lipschitz functions defined on a subset A ⊂ Ω, but the reader may consider
A = ∂Ω.

Definition 3.1 Let A be any nonempty subset of Ω and let F : A ⊂ Ω → R be
a Lipschitz function. A function u : Ω → R is an absolutely minimizing Lipschitz
extension of F to Ω if

(i) u is an MLE of F to Ω,

(ii) whenever B ⊂ Ω and g : Ω → R is and MLE of F to Ω such that g = u in
Ω \B, then L(u,B) ≤ L(g, B).

It turns out (see [3]) that the unique AMLE of F (defined on ∂Ω) to Ω is
the unique solution to

{ −∆∞u(x) = 0 in Ω,
u(x) = F (x) on ∂Ω.

Our main aim in this section is to describe a game that approximates this
problem in the same way as problems involving the random walk described in
the previous section approximate harmonic functions.

3.1. Description of the game

We follow [31] and [9], but we restrict ourselves to the case of a game in
a bounded smooth domain Ω ⊂ RN (the results presented in [31] are valid in
general length spaces).

A Tug-of-War is a two-person, zero-sum game, that is, two players are in
contest and the total earnings of one are the losses of the other. Hence, one of
them, say Player I, plays trying to maximize his expected outcome, while the
other, say Player II is trying to minimize Player I’s outcome (or, since the game
is zero-sum, to maximize his own outcome).

Let us describe briefly the game introduced in [31] by Y. Peres, O. Schramm,
S. Sheffield and D. Wilson. Consider a bounded domain Ω ⊂ RN , and take
ΓD ⊂ ∂Ω and ΓN ≡ ∂Ω \ ΓD. Let F : ΓD → R be a Lipschitz continuous
function. At an initial time, a token is placed at a point x0 ∈ Ω \ ΓD. Then,
a (fair) coin is tossed and the winner of the toss is allowed to move the game
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position to any x1 ∈ Bε(x0)∩Ω. At each turn, the coin is tossed again, and the
winner chooses a new game state xk ∈ Bε(xk−1)∩Ω. Once the token has reached
some xτ ∈ ΓD, the game ends and Player I earns F (xτ ) (while Player II earns
−F (xτ )). This is the reason why we will refer to F as the final payoff function.
In more general models, it is considered also a running payoff g(x) defined in
Ω, which represents the reward (respectively, the cost) at each intermediate
state x, and gives rise to nonhomogeneous problems. We will assume here that
g ≡ 0. This procedure yields a sequence of game states x0, x1, x2, . . . , xτ , where
every xk except x0 are random variables, depending on the coin tosses and the
strategies adopted by the players.

Now we want to give a precise definition of the value of the game. To
this end we have to introduce some notation and put the game into its
normal or strategic form (see [32] and [28]). The initial state x0 ∈ Ω \ ΓD

is known to both players (public knowledge). Each player i chooses an action
ai
0 ∈ Bε(0) which is announced to the other player; this defines an action profile

a0 = {a1
0, a

2
0} ∈ Bε(0) × Bε(0). Then, the new state x1 ∈ Bε(x0) (namely, the

current state plus the action) is selected according to a probability distribution
p(·|x0, a0) in Ω which, in our case, is given by the fair coin toss. At stage k,
knowing the history hk = (x0, a0, x1, a1, . . . , ak−1, xk), (the sequence of states
and actions up to that stage), each player i chooses an action ai

k. If the game
ends at time j < k, we set xm = xj and am = 0 for j ≤ m ≤ k. The current
state xk and the profile ak = {a1

k, a2
k} determine the distribution p(·|xk, ak)

(again given by the fair coin toss) of the new state xk+1.

Denote Hk = (Ω \ ΓD) × (
Bε(0) × Bε(0) × Ω

)k, the set of histories up to
stage k, and by H =

⋃
k≥1 Hk the set of all histories. Notice that Hk, as a

product space, has a measurable structure. The complete history space H∞ is
the set of plays defined as infinite sequences (x0, a0, . . . , ak−1, xk, . . .) endowed
with the product topology. Then, the final payoff for Player I, i.e. F , induces a
Borel-measurable function on H∞. A pure strategy Si = {Sk

i }k for Player i, is
a sequence of mappings from histories to actions, namely, a mapping from H

to Bε(0)
N

such that Sk
i is a Borel-measurable mapping from Hk to Bε(0) that

maps histories ending with xk to elements of Bε(0) (roughly speaking, at every
stage the strategy gives the next movement for the player, provided he win the
coin toss, as a function of the current state and the past history). The initial
state x0 and a profile of strategies {SI , SII} define (by Kolmogorov’s extension
theorem) a unique probability Px0

SI ,SII
on the space of plays H∞. We denote by

Ex0
SI ,SII

the corresponding expectation.

Then, if SI and SII denote the strategies adopted by Player I and II
respectively, we define the expected payoff for player I as

Vx0,I(SI , SII) =

{
Ex0

SI ,SII
[F (xτ )], if the game terminates a.s.

−∞, otherwise.
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Analogously, we define the expected payoff for player II as

Vx0,II(SI , SII) =

{
Ex0

SI ,SII
[F (xτ )], if the game terminates a.s.

+∞, otherwise.

Finally, we can define the ε-value of the game for Player I as

uε
I(x0) = sup

SI

ı́nf
SII

Vx0,I(SI , SII),

while the ε-value of the game for Player II is defined as

uε
II(x0) = ı́nf

SII

sup
SI

Vx0,II(SI , SII).

In some sense, uε
I(x0), uε

II(x0) are the least possible outcomes that each player
expects to get when the ε-game starts at x0. Notice that, as in [31], we penalize
severely the games that never end.

If uε
I = uε

II := uε, we say that the game has a value. In [31] it is shown
that, under very general hypotheses, that are fulfilled in the present setting, the
ε-Tug-of-War game has a value.

The value of the game verifies a Dynamic Programming Principle, that in
our case reads as follows: the value of the game uε verifies

uε(x) =
1
2

sup
y∈Bε(x)∩Ω̄

uε(y) +
1
2

ı́nf
y∈Bε(x)∩Ω̄

uε(y),

where Bε(x) denotes the open ball of radius ε centered at x, see [25].
All these ε−values are Lipschitz functions with respect to the discrete

distance dε given by

dε(x, y) =

{
0 if x = y,

ε
([[

|x−y|
ε

]]
+ 1

)
if x 6= y.

(5)

where |.| is the Euclidean norm and [[r]] is defined for r > 0 by [[r]] := n, if
n < r ≤ n + 1, n = 0, 1, 2, . . . , that is,

dε(x, y) =





0 if x = y,
ε if 0 < |x− y| ≤ ε,
2ε if ε < |x− y| ≤ 2ε
...

see [31]. Note that, Lipschitz functions with respect to dε are not necessarily
continuous.

Let us present a simple example where we can compute explicitly the value
of the game.
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3.2. The 1− d game

Let us analyze in detail the one-dimensional game and its limit as ε → 0.
We set Ω = (0, 1) and play the ε−game described before. To simplify we assume
that ε = 1/2n. Concerning the final payoff, we end the game at x = 0 (with
zero final payoff) and at x = 1 (with final payoff equals to one). Note that, the
general result from [31] applies and hence we can assert the existence of a value
for this game. Nevertheless, in this simple 1−d case we can obtain the existence
of such value by direct computations. For the moment, let us assume that there
exists a value that we call uε and proceed, in several steps, with the analysis of
this sequence of functions uε for ε small. All the calculations below hold both
for uε

I and for uε
II .

Step 1. uε(0) = 0 and uε(1) = 1. Moreover, 0 ≤ uε(x) ≤ 1 (the value
functions are uniformly bounded).

Step 2. uε is increasing in x and strictly positive in (0, 1]. Indeed, if x < y
then for every pair of strategies SI , SII for Player I and II beginning at x we
can construct strategies beginning at y in such a way that xi,x ≤ xi,y (here
xi,x and xi,y are the positions of the game after i movements beginning at x
and y respectively). In fact, just reproduce the movements shifting points by
y − x when possible (if not, that is, if the jump is too large and ends outside
the interval, just remain at the larger interior position x = 1). In this way
we see that the probability of reaching x = 1 beginning at y is bigger than
the probability of reaching x = 0 and hence, taking expectations, infimum and
supremum, it follows that uε(x) ≤ uε(y).

To obtain the strict positivity of uε, we just observe that there is a
positive probability of obtaining a sequence of 1/ε consecutive heads, hence
the probability of reaching x = 1 when the first player uses the strategy that
points ε to the right is strictly positive. Therefore, uε(x) > 0, for every x 6= 0.

Step 3. In this one dimensional case it is easy to identify the optimal
strategies for players I and II: to jump ε to the right for Player I and to jump
ε to the left for Player II. That is, if we are at x, the optimal strategies lead to
x → mı́n{x + ε, 1} for Player I, and to x → máx{x− ε, 0} for Player II.

This follows from step 2, where we have proved that the function uε is
increasing in x. As a consequence, the optimal strategies follow: for instance,
Player I will choose the point where the expected payoff is maximized and this
is given by mı́n{x + ε, 1},

sup
z∈[x−ε,x+ε]∩[0,1]

uε(z) = máx
z∈[x−ε,x+ε]∩[0,1]

uε(z) = uε(mı́n{x + ε, 1}),

since uε is increasing. This is also clear from the following intuitive fact: player I
wants to maximize the payoff (reaching x = 1) and player II wants to minimize
the payoff (hence pointing to 0).

Step 4. uε is constant in every interval of the form (kε, (k + 1)ε) for
k = 1, ..., N (we denote by N the total number of such intervals in (0, 1]).
Indeed, from step 3 we know what are the optimal strategies for both players,
and hence the result follows noticing that the number of steps that one has to
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advance to reach x = 0 (or x = 1) is the same for every point in (kε, (k + 1)ε).
Note that uε is discontinuos at every point of the form yk = kε ∈ (0, 1).

Step 5. Let us call ak := uε |(kε,(k+1)ε). Then we have

a0 = 0, ak =
1
2
(ak−1 + ak+1),

for every i = 2, ..., n− 1, and
an = 1.

Notice that these identities follow from the Dynamic Programming Principle,
using that from step 3 we know the optimal strategies, that from step 4 uε is
constant in every subinterval of the form (kε, (k + 1)ε), we immediately get the
conclusion.

Note the similarity with a finite difference scheme used to solve uxx = 0 in
(0, 1) with boundary conditions u(0) = 0 and u(1) = 1. In fact, a discretization
of this problem in a uniform mesh of size ε leads to the same formulas obtained
in step 5.

Step 6. We have

uε(x) = εk, x ∈ (kε, (k + 1)ε). (6)

Indeed, the constants ak = εk are the unique solution to the formulas obtained
in step 5. Since formula (6) is in fact valid for uε

I and uε
II , this proves that the

game has a value.
Note that uε verifies that 0 ≤ uε(x)− uε(y) ≤ 2(x− y) for every x > y with

x − y > ε. This is a sort of equicontinuity valid for ”far apart points”. In this
one dimensional case, we can pass to the limit directly, by using the explicit
formula for uε (see Step 7 below). However, in the N -dimensional case there
is no explicit formula, and then we will need a compactness result (a sort of
Arzela-Ascoli lemma).

Step 7.
ĺım
ε→0

uε(x) = x,

uniformly in [0, 1]. This follows from the explicit formula for uε in every interval
of the form (kε, (k + 1)ε) found in step 6 and from the monotonicity stated
in step 2 (to take care of the values of uε at points of the form kε, we have
ak−1 ≤ uε(kε) ≤ ak).

Note that the limit function u(x) = x is the unique viscosity (and classical)
solution to ∆∞u(x) = (uxx(ux)2)(x) = 0 x ∈ (0, 1), with boundary conditions
u(0) = 0, u(1) = 1.

3.3. Mixed boundary conditions for ∆∞

Now we continue the analysis of the Tug-of-War game described previously.
As before we assume that we are in the general case of a bounded domain Ω
in RN . The game ends when the position reaches one part of the boundary ΓD
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(where there is a specified final payoff F ) and look for the condition that the
limit must verify on the rest of it, ∂Ω \ ΓD.

All these ε−values are Lipschitz functions with respect to the discrete
distance dε defined in (5), see [31] (but in general they are not continuous
as the one-dimensional example shows), which converge uniformly when ε → 0.
The uniform limit as ε → 0 of the game values uε is called the continuous value
of the game that we will denote by u and it can be seen (see below) that u is a
viscosity solution to the problem

{ −∆∞u(x) = 0 in Ω,
u(x) = F (x) on ΓD.

(7)

When ΓD ≡ ∂Ω it is known that this problem has a unique viscosity solution,
(as proved in [14]; see also [4], and in a more general framework, [31]).

However, when ΓD 6= ∂Ω the PDE problem (7) is incomplete, since there is
a missing boundary condition on ΓN = ∂Ω\ΓD. Our concern now is to find the
boundary condition that completes the problem. Assuming that ΓN is regular,
in the sense that the normal vector field ~n(x) is well defined and continuous
for all x ∈ ΓN , it is proved in [9] that it is in fact the homogeneous Neumann
boundary condition ∂u

∂n (x) = 0, x ∈ ΓN .
The key point of the proof of the fact that −∆∞u = 0 in Ω, see [31] and [9])

is the Dynamic Programming Principle, that in our case reads as follows: the
value of the game uε verifies

uε(x) =
1
2

sup
y∈Bε(x)∩Ω̄

uε(y) +
1
2

ı́nf
y∈Bε(x)∩Ω̄

uε(y) ∀x ∈ Ω̄ \ ΓD,

where Bε(x) denotes the open ball of radius ε centered at x.
This Dynamic Programming Principle, in some sense, plays the role of

the mean property for harmonic functions in the infinity-harmonic case.
This principle turns out to be an important qualitative property of the
approximations of infinity-harmonic functions, and is the main tool to construct
convergent numerical methods in this kind of problems; see [29].

We have the following result.

Theorem 3.1 Let u(x) be the continuous value of the Tug-of-War game
described above (as introduced in [31]). Assume that ∂Ω = ΓN ∪ ΓD, where
ΓN is of class C1, and F is a Lipschitz function defined on ΓD. Then,

i) u(x) is a viscosity solution to the mixed boundary value problem





−∆∞u(x) = 0 in Ω,
∂u

∂n
(x) = 0 on ΓN ,

u(x) = F (x) on ΓD.

(8)
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ii) Reciprocally, assume that Ω verifies that for every z ∈ Ω and every
x∗ ∈ ΓN z 6= x∗ that 〈 x∗ − z

|x∗ − z| ;n(x∗)
〉

> 0.

Then, if u(x) is a viscosity solution to (8), it coincides with the unique
continuous value of the game.

The hypothesis imposed on Ω in part ii) holds whenever Ω is strictly
convex. The first part of the theorem comes as a consequence of the Dynamic
Programming Principle read in the viscosity sense.

The proof of this result is not included in this work. We refer to [9] for details
and remark that the proof of the second part uses that the continuous value of
the game is determined by the fact that it enjoys comparison with quadratic
functions in the sense described in [31].

4. p−harmonious functions

The aim of this section is to describe games that approximate the
p−Laplacian that is given by ∆pu = div(|∇u|p−2∇u). We assume that 2 ≤
p < ∞. The case p = ∞ was considered in the previous section.

4.1. p−harmonious functions

Definition 4.1 The function uε is p-harmonious in Ω with boundary values a
bounded Borel function F : Γε → R if

uε(x) =
α

2

{
sup

Bε(x)

uε + ı́nf
Bε(x)

uε

}
+ β

∫

Bε(x)

uε dy for every x ∈ Ω, (9)

where α, β are defined in (23), and uε(x) = F (x), for every x ∈ Γε.

The reason for using the boundary strip Γε instead of simply using the boundary
∂Ω is the fact that for x ∈ Ω the ball Bε(x) is not necessarily contained in Ω.

Let us first explain the name p-harmonious. When u is harmonic, then it
satisfies the well known mean value property

u(x) =
∫

Bε(x)

u dy, (10)

that is (9) with α = 0 and β = 1. On the other hand, functions satisfying (9)
with α = 1 and β = 0

uε(x) =
1
2

{
sup

Bε(x)

uε + ı́nf
Bε(x)

uε

}
(11)

are called harmonious functions in [12] and [13] and are values of Tug-of-War
games like the ones described in the previous section. As we have seen, as ε goes
to zero, they approximate solutions to the infinity Laplacian.
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Now, recall that the p-Laplacian is given by

∆pu = div(|∇u|p−2∇u) = |∇u|p−2 {(p− 2)∆∞u + ∆u} . (12)

Since the p-Laplace operator can be written as a combination of the Laplace
operator and the infinity Laplacian, it seems reasonable to expect that the
combination (9) of the averages in (10) and (11) give an approximation to a
solution to the p-Laplacian. We will see that this is indeed the case. To be more
precise, we have that p-harmonious functions are uniquely determined by their
boundary values and that they converge uniformly to the p-harmonic function
with the given boundary data. Furthermore, we show that p-harmonious
functions satisfy the strong maximum and comparison principles. Observe that
the validity of the strong comparison principle is an open problem for the
solutions of the p-Laplace equation in RN , N ≥ 3.

4.2. p-harmonious functions and Tug-of-War games

In this section, we describe the connection between p-harmonious functions
and tug-of-war games. Fix ε > 0 and consider the two-player zero-sum-game
described before. At the beginning, a token is placed at a point x0 ∈ Ω and the
players toss a biased coin with probabilities α and β, α + β = 1. If they get
heads (probability α), they play a tug-of-war, that is, a fair coin is tossed and
the winner of the toss is allowed to move the game position to any x1 ∈ Bε(x0).
On the other hand, if they get tails (probability β), the game state moves
according to the uniform probability to a random point in the ball Bε(x0).
Then they continue playing the same game from x1.

This procedure yields a possibly infinite sequence of game states x0, x1, . . .
where every xk is a random variable. We denote by xτ ∈ Γε the first point in Γε

in the sequence, where τ refers to the first time we hit Γε. The payoff is F (xτ ),
where F : Γε → R is a given payoff function. Player I earns F (xτ ) while Player
II earns −F (xτ ).

Note that, due to the fact that β > 0, or equivalently p < ∞, the game ends
almost surely Px0

SI,SII
({ω ∈ H∞ : τ(ω) < ∞}) = 1 for any choice of strategies.

The value of the game for Player I is given by

uε
I (x0) = sup

SI

ı́nf
SII
Ex0

SI,SII
[F (xτ )]

while the value of the game for Player II is given by

uε
II(x0) = ı́nf

SII
sup
SI

Ex0
SI,SII

[F (xτ )].

The values uε
I (x0) and uε

II(x0) are the best expected outcomes each player can
guarantee when the game starts at x0.

We start by the statement of the Dynamic Programming Principle (DPP)
applied to our game.
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Lema 1 (DPP) The value function for Player I satisfies

uε
I(x0) =

α

2

{
sup

Bε(x0)

uε
I + ı́nf

Bε(x0)
uε
I

}
+ β

∫

Bε(x0)

uε
I dy, x0 ∈ Ω,

uε
I(x0) = F (x0), x0 ∈ Γε.

(13)

The value function for Player II, uε
II, satisfies the same equation.

Formulas similar to (13) can be found in Chapter 7 of [22]. A detailed proof
adapted to our case can also be found in [25].

Let us explain intuitively why the DPP holds by considering the expectation
of the payoff at x0. Whenever the players get heads (probability α) in the first
coin toss, they toss a fair coin and play the tug-of-war. If Player I wins the fair
coin toss in the tug-of-war (probability 1/2), she steps to a point maximizing the
expectation and if Player II wins, he steps to a point minimizing the expectation.
Whenever they get tails (probability β) in the first coin toss, the game state
moves to a random point according to a uniform probability on Bε(x0). The
expectation at x0 can be obtained by summing up these different alternatives.

We warn the reader that, as happens for the tug-of-war game without noise
described previously, the value functions are discontinuous in general.

By adapting the martingale methods used in [31], we prove a comparison
principle. This also implies that uε

I and uε
II are respectively the smallest and the

largest p-harmonious function.

Theorem 4.1 Let Ω ⊂ RN be a bounded open set. If vε is a p-harmonious
function with boundary values Fv in Γε such that Fv ≥ Fuε

I
, then v ≥ uε

I .

Proof: We show that by choosing a strategy according to the minimal values
of v, Player II can make the process a supermartingale. The optional stopping
theorem then implies that the expectation of the process under this strategy is
bounded by v. Moreover, this process provides an upper bound for uε

I .
Player I follows any strategy and Player II follows a strategy S0

II such that
at xk−1 ∈ Ω he chooses to step to a point that almost minimizes v, that is, to
a point xk ∈ Bε(xk−1) such that

v(xk) ≤ ı́nf
Bε(xk−1)

v + η2−k

for some fixed η > 0. We start from the point x0. It follows that

Ex0
SI,S0

II
[v(xk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
ı́nf

Bε(xk−1)
v + η2−k + sup

Bε(xk−1)

v

}
+ β

∫

Bε(xk−1)

v dy + η2−k

≤ v(xk−1) + η2−(k−1),

where we have estimated the strategy of Player I by sup and used the fact that
v is p-harmonious. Thus

Mk = v(xk) + η2−k
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is a supermartingale. Since Fv ≥ Fuε
I

at Γε, we deduce

uε
I (x0) = sup

SI

ı́nf
SII
Ex0

SI,SII
[Fuε

I
(xτ )] ≤ sup

SI

Ex0
SI,S0

II
[Fv(xτ ) + η2−τ ]

≤ sup
SI

ĺım inf
k→∞

Ex0
SI,S0

II
[v(xτ∧k) + η2−(τ∧k)]

≤ sup
SI

ESI,S0
II
[M0] = v(x0) + η,

where τ ∧ k = mı́n(τ, k), and we used Fatou’s lemma as well as the optional
stopping theorem for Mk. Since η was arbitrary this proves the claim.

Similarly, we can prove that uε
II is the largest p-harmonious function: Player

II follows any strategy and Player I always chooses to step to the point where v
is almost maximized. This implies that v(xk)−η2−k is a submartingale. Fatou’s
lemma and the optional stopping theorem then prove the claim.

Next we show that the game has a value. This together with the previous
comparison principle proves the uniqueness of p-harmonious functions with
given boundary values.

Theorem 4.2 Let Ω ⊂ RN be a bounded open set, and F a given boundary
data in Γε. Then uε

I = uε
II, that is, the game has a value.

Proof: Clearly, uε
I ≤ uε

II always holds, so we are left with the task of showing
that uε

II ≤ uε
I . To see this we use the same method as in the proof of the

previous theorem: Player II follows a strategy S0
II such that at xk−1 ∈ Ω, he

always chooses to step to a point that almost minimizes uε
I , that is, to a point

xk such that
uε

I (xk) ≤ ı́nf
Bε(xk−1)

uε
I + η2−k,

for a fixed η > 0. We start from the point x0. It follows that from the choice of
strategies and the dynamic programming principle for uε

I that

Ex0
SI,S0

II
[uε

I (xk) + η2−k |x0, . . . , xk−1]

≤ α

2

{
sup

Bε(xk−1)

uε
I + ı́nf

Bε(xk−1)
uε

I + η2−k

}
+ β

∫

Bε(xk−1)

uε
I dy + η2−k

= uε
I (xk−1) + η2−(k−1).

Thus Mk = uε
I (xk) + η2−k is a supermartingale. We get by Fatou’s lemma and

the optional stopping theorem that

uε
II(x0) = ı́nf

SII
sup
SI

Ex0
SI,SII

[F (xτ )] ≤ sup
SI

Ex0
SI,S0

II
[F (xτ ) + η2−τ ]

≤ sup
SI

ĺım inf
k→∞

Ex0
SI,S0

II
[uε

I (xτ∧k) + η2−(τ∧k)]

≤ sup
SI

ESI,S0
II
[uε

I (x0) + η] = uε
I (x0) + η.
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Similarly to the previous theorem, we also used the fact that the game ends
almost surely. Since η > 0 is arbitrary, this completes the proof.

Theorems 4.1 and 4.2 imply that with a fixed boundary data there exists a
unique p-harmonious function.

Theorem 4.3 Let Ω ⊂ Rn be a bounded open set. Then there exists a unique
p-harmonious function in Ω with given boundary values F .

Proof: Due to the dynamic programming principle, the value functions of
the games are p-harmonious functions. This proves the existence part of
Theorem 4.3. Theorems 4.1 and 4.2 imply the uniqueness part of Theorem 4.3.

Corollary 4.1 The value of the game with pay-off function F coincides with
the p-harmonious function with boundary values F .

4.3. Maximum principles for p-harmonious functions

In this section, we show that the strong maximum and strong comparison
principles hold for p-harmonious functions. First, let us state that p-harmonious
functions satisfy the strong maximum principle.

Theorem 4.4 Let Ω ⊂ RN be a bounded, open, and connected set. If uε is
p-harmonious in Ω with boundary values F , then supΓε

F ≥ supΩ uε. Moreover,
if there is a point x0 ∈ Ω such that uε(x0) = supΓε

F , then uε is constant in Ω.

Proof: The proof uses the fact that if the maximum is attained inside the
domain then all the quantities in the definition of a p-harmonious function
must be equal to the maximum. This is possible in a connected domain only if
the function is constant.

We begin by observing that a p-harmonious function uε with a boundary
data F satisfies

sup
Ω
|uε| ≤ sup

Γε

|F | .

Assume then that there exists a point x0 ∈ Ω such that

uε(x0) = sup
Ω

uε = sup
Γε

F.

Then we employ the definition of a p-harmonious function, Definition 4.1, and
obtain

uε(x0) =
α

2

{
sup

Bε(x0)

uε + ı́nf
Bε(x0)

uε

}
+ β

∫

Bε(x0)

uε dy.

Since uε(x0) is the maximum, the terms

sup
Bε(x0)

uε, ı́nf
Bε(x0)

uε, and
∫

Bε(x0)

uε dy
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on the right hand side must be smaller than or equal to uε(x0). On the other
hand, when p > 2, it follows that α, β > 0 and thus the terms must equal to
uε(x0). Therefore,

uε(x) = uε(x0) = sup
Ω

uε (14)

for every x ∈ Bε(x0) when p > 2. Now we can repeat the argument for each
x ∈ Bε(x0) and by continuing in this way, we can extend the result to the whole
domain because Ω is connected. This implies that u is constant everywhere
when p > 2.

Finally, if p = 2, then (14) holds for almost every x ∈ Bε(x0) and
consequently for almost every x in the whole domain. Then since

u(x) =
∫

Bε(x)

u dy

holds at every point in Ω and u is constant almost everywhere, it follows that
u is constant everywhere.

In addition, p-harmonious functions with continuous boundary values satisfy
the strong comparison principle. Note that the validity of the strong comparison
principle is not known for the p-harmonic functions in RN , N ≥ 3.

Theorem 4.5 Let Ω ⊂ RN be a bounded, open and connected set, and let uε

and vε be p-harmonious functions with continuous boundary values Fu ≥ Fv in
Γε. Then if there exists a point x0 ∈ Ω such that uε(x0) = vε(x0), it follows that
uε = vε in Ω, and, moreover, the boundary values satisfy Fu = Fv in Γε.

Proof: The proof heavily uses the fact that p < ∞. Note that it is known that
the strong comparison principle does not hold for infinity harmonic functions.

According to Corollary 4.1 and Theorem 4.1, Fu ≥ Fv implies uε ≥ vε. By
the definition of a p-harmonious function, we have

uε(x0) =
α

2

{
sup

Bε(x0)

uε + ı́nf
Bε(x0)

uε

}
+ β

∫

Bε(x0)

uε dy

and

vε(x0) =
α

2

{
sup

Bε(x0)

vε + ı́nf
Bε(x0)

vε

}
+ β

∫

Bε(x0)

vε dy.

Next we compare the right hand sides. Because uε ≥ vε, it follows that

sup
Bε(x0)

uε ≤ sup
Bε(x0)

vε,

ı́nf
Bε(x0)

uε ≤ ı́nf
Bε(x0)

vε, and
∫

Bε(x0)

uε dy ≤
∫

Bε(x0)

vε dy.

(15)
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Since uε(x0) = vε(x0), we must have equalities in (15). In particular, we have
equality in the third inequality in (15), and thus uε = vε almost everywhere in
Bε(x0). Again, the connectedness of Ω immediately implies that uε = vε almost
everywhere in Ω∪Γε. In particular, Fu = Fv everywhere in Γε since Fu and Fv

are continuous. Because the boundary values coincide, the uniqueness result,
Theorem 4.3, shows that uε = vε everywhere in Ω.

4.4. Convergence as ε → 0

In this section, we just state that p-harmonious functions with a fixed
boundary datum converge to the unique p-harmonic function. The proof of
this fact is rather technical and we refer to [26] for details.

Theorem 4.6 Let Ω be a bounded smooth domain and F be a continuous
function. Consider the unique viscosity solution u to

{
div(|∇u|p−2∇u)(x) = 0, x ∈ Ω
u(x) = F (x), x ∈ ∂Ω,

(16)

and let uε be the unique p-harmonious function with boundary values F . Then
uε → u uniformly in Ω as ε → 0.

The above limit only depends on the values of F on ∂Ω, and therefore any
continuous extension of F |∂Ω to Γε0 gives the same limit.

The proof of this result is based on a variant of the classical Arzela-Ascoli’s
compactness lemma, see below, Lemma 4.1. The functions uε are not continuous,
in general, nonetheless, the jumps can be controlled and it can be show that the
p-harmonious functions are asymptotically uniformly continuous in the precise
sense stated below.

Lemma 4.1 Let {uε : Ω → R, ε > 0} be a set of functions such that

1. there exists C > 0 so that |uε(x)| < C for every ε > 0 and every x ∈ Ω,

2. given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and
any x, y ∈ Ω with |x− y| < r0 it holds |uε(x)− uε(y)| < η.

Then, there exists a uniformly continuous function u : Ω → R and a subsequence
still denoted by {uε} such that uε → u uniformly in Ω, as ε → 0.

Next we include a proof of the fact that the limit u is a solution to (16).
The idea is to work in the viscosity setting and to show that the limit is a
viscosity sub- and supersolution. To accomplish this, we utilize some ideas from
[24], where p-harmonic functions were characterized in terms of asymptotic
expansions. We start by recalling the viscosity characterization of p-harmonic
functions, see [20].

Definition 4.2 For 1 < p < ∞ consider the equation −div
(|∇u|p−2∇u

)
= 0.



Mean Value Properties 19

1. A lower semi-continuous function u is a viscosity supersolution if for every
φ ∈ C2 such that φ touches u at x ∈ Ω strictly from below with ∇φ(x) 6= 0,
we have −(p− 2)∆∞φ(x)−∆φ(x) ≥ 0.

2. An upper semi-continuous function u is a subsolution if for every φ ∈ C2

such that φ touches u at x ∈ Ω strictly from above with ∇φ(x) 6= 0, we
have −(p− 2)∆∞φ(x)−∆φ(x) ≤ 0.

3. Finally, u is a viscosity solution if it is both a sub- and supersolution.

Theorem 4.7 Let F and Ω be as in Theorem 4.6. Then the uniform limit u of
p-harmonious functions {uε} is a viscosity solution to (16).

Proof: First, note that u = F on ∂Ω, and hence we can focus attention on
showing that u is p-harmonic in Ω in the viscosity sense. To this end, we
recall from [24] an estimate that involves the regular Laplacian (p = 2) and
an approximation for the infinity Laplacian (p = ∞). Choose a point x ∈ Ω and
a C2-function φ defined in a neighborhood of x. Let xε

1 be the point at which
φ attains its minimum in Bε(x), φ(xε

1) = mı́ny∈Bε(x) φ(y). It follows from the
Taylor expansions in [24] that

α

2

{
máx

y∈Bε(x)
φ(y) + mı́n

y∈Bε(x)
φ(y)

}
+ β

∫

Bε(x)

φ(y) dy − φ(x)

≥ βε2

2(n + 2)

(
(p− 2)

〈
D2φ(x)

(
xε

1 − x

ε

)
,

(
xε

1 − x

ε

) 〉
+ ∆φ(x)

)

+ o(ε2).

(17)

Suppose that φ touches u at x strictly from below and that ∇φ(x) 6= 0.
Observe that according to Definition 4.2, it is enough to test with such functions.
By the uniform convergence, there exists sequence {xε} converging to x such
that uε − φ has an approximate minimum at xε, that is, for ηε > 0, there
exists xε such that uε(x) − φ(x) ≥ uε(xε) − φ(xε) − ηε. Moreover, considering
φ̃ = φ− uε(xε)− φ(xε), we can assume that φ(xε) = uε(xε). Thus, by recalling
the fact that uε is p-harmonious, we obtain

ηε ≥ −φ(xε) +
α

2

{
máx

Bε(xε)
φ + mı́n

Bε(xε)
φ

}
+ β

∫

Bε(xε)

φ(y) dy,

and thus, by (17), and choosing ηε = o(ε2), we have

0 ≥ βε2

2(n + 2)
((p− 2)

〈
D2φ(xε)

(
xε

1 − xε

ε

)
,

(
xε

1 − xε

ε

) 〉
+ ∆φ(xε))

+o(ε2).

Since ∇φ(x) 6= 0, letting ε → 0, we get

0 ≥ β

2(n + 2)
((p− 2)∆∞φ(x) + ∆φ(x)) .
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Therefore u is a viscosity supersolution.
To prove that u is a viscosity subsolution, we use a reverse inequality to (17)

by considering the maximum point of the test function and choose a function φ
that touches u from above.

5. A mean value property that characterizes p−harmonic
functions

Inspired by the analysis performed in the previous section we can guess a
mean value formula for p−harmonic functions. In fact, we have proved that
p−harmonious functions (that can be viewed as solutions to a mean value
property) approximate p−harmonic functions (solutions to ∆pu = 0 as ε → 0,
hence one may expect that p−harmonic functions verify the mean value formula
given by the DPP but for a small error. It turns out that this intuitive fact can
be proved rigorously, and moreover, it characterizes the fact of being a solution
to ∆pu = 0.

A well known fact that one can find in any elementary PDE textbook states
that u is harmonic in a domain Ω ⊂ RN (that is u satisfies ∆u = 0 in Ω) if and
only if it satisfies the mean value property

u(x) =
1

|Bε(x)|
∫

Bε(x)

u(y) dy,

whenever Bε(x) ⊂ Ω. In fact, we can relax this condition by requiring that it
holds asymptotically

u(x) =
1

|Bε(x)|
∫

Bε(x)

u(y) dy + o(ε2),

as ε → 0. This follows easily for C2 functions by using the Taylor expansion and
for continuous functions by using the theory of viscosity solutions. Interestingly,
a weak asymptotic mean value formula holds in some nonlinear cases as well.
Our goal in this paper is to characterize p-harmonic functions, 1 < p ≤ ∞, by
means of this type of asymptotic mean value properties.

We begin by stating what we mean by weak asymptotic expansions and
why is it reasonable to say that our asymptotic expansions hold in “a viscosity
sense”. As is the case in the theory of viscosity solutions, we test the expansions
of a function u against test functions φ that touch u from below or above at a
particular point.

Select α and β determined by the conditions α + β = 1 and α/β =
(p− 2)/(N + 2). That is, we have

α =
p− 2
p + N

, and β =
2 + N

p + N
. (18)

Observe that if p = 2 above, then α = 0 and β = 1, and if p = ∞, then α = 1
and β = 0.
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As before we follow the usual convention to denote the mean value of a
function ∫

B

f(y) dy =
1
|B|

∫

B

f(y) dy.

Definition 5.1 A continuous function u satisfies

u(x) =
α

2

{
máx
Bε(x)

u + mı́n
Bε(x)

u

}
+ β

∫

Bε(x)

u(y) dy + o(ε2), as ε → 0, (19)

in the viscosity sense if

1. for every φ ∈ C2 such that u−φ has a strict minimum at the point x ∈ Ω
with u(x) = φ(x), we have

0 ≥ −φ(x) +
α

2

{
máx
Bε(x)

φ + mı́n
Bε(x)

φ

}
+ β

∫

Bε(x)

φ(y) dy + o(ε2).

2. for every φ ∈ C2 such that u−φ has a strict maximum at the point x ∈ Ω
with u(x) = φ(x), we have

0 ≤ −φ(x) +
α

2

{
máx
Bε(x)

φ + mı́n
Bε(x)

φ

}
+ β

∫

Bε(x)

φ(y) dy + o(ε2).

The following theorem states our main result and provides a characterization
to the p-harmonic functions.

Theorem 5.1 Let 1 < p ≤ ∞ and let u be a continuous function in a domain
Ω ⊂ RN . The asymptotic expansion

u(x) =
α

2

{
máx
Bε(x)

u + mı́n
Bε(x)

u

}
+ β

∫

Bε(x)

u(y) dy + o(ε2), as ε → 0,

holds for all x ∈ Ω in the viscosity sense if and only if ∆pu(x) = 0 in the
viscosity sense. Here α and β are determined by (18).

We use the notation ∆∞u = |∇u|−2 〈D2u∇u,∇u〉 for the 1-homogeneous
infinity Laplacian.

We observe that the notions of a viscosity solution and a Sobolev weak
solution for the p-Laplace equation agree for 1 < p < ∞, see Juutinen-
Lindqvist-Manfredi [20]. Therefore, Theorem 5.1 characterizes weak solutions
when 1 < p < ∞.
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5.1. A heuristic argument

We have that u is a solution to ∆pu = 0 if and only if

(p− 2)∆∞u + ∆u = 0, (20)

because this equivalence can be justified in the viscosity sense even when∇u = 0
as shown in [20]. Averaging the classical Taylor expansion

u(y) = u(x) +∇u(x) · (y − x) +
1
2
〈D2u(x)(y − x), (y − x)〉+ O(|y − x|3),

over Bε(x), we obtain

u(x)−
∫

Bε(x)

u dy = − ε2

2(n + 2)
∆u(x) + O(ε3), (21)

when u is smooth. Here we used the shorthand notation∫

Bε(x)

u dy =
1

|Bε(x)|
∫

Bε(x)

u dy.

Then observe that gradient direction is almost the maximizing direction.
Thus, summing up the two Taylor expansions roughly gives us

u(x)− 1
2

{
sup

Bε(x)

u + ı́nf
Bε(x)

u

}

≈ u(x)− 1
2

{
u

(
x + ε

∇u(x)
|∇u(x)|

)
+ u

(
x− ε

∇u(x)
|∇u(x)|

)}

= −ε2

2
∆∞u(x) + O(ε3).

(22)

Next we multiply (21) and (22) by suitable constants α and β, α + β = 1, and
add up the formulas to obtain

u(x)− α

2

{
sup

Bε(x)

u− ı́nf
Bε(x)

u

}
+ β

∫

Bε(x)

u dy

= −α
ε2

2
∆∞u(x)− β

ε2

2(n + 2)
∆u(x) + O(ε3)

Next, we choose α and β so that we have the operator in (20) on the right
hand side. This process gives us the choices of the constants

α =
p− 2
p + N

, and β =
2 + N

p + N
. (23)

and we deduce

u(x) =
α

2

{
sup

Bε(x)

u + ı́nf
Bε(x)

u

}
+ β

∫

Bε(x)

u dy + O(ε3)

as ε → 0.
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5.2. Proof of Theorem 5.1

The main idea of the proof of Theorem 5.1 is just to work in the viscosity
setting. We start by recalling the viscosity characterization of p-harmonic
functions for p < ∞, see [20].

Definition 5.2 For 1 < p < ∞ consider the equation −div
(|∇u|p−2∇u

)
= 0.

1. A lower semi-continuous function u is a viscosity supersolution if for every
φ ∈ C2 such that u − φ has a strict minimum at the point x ∈ Ω with
∇φ(x) 6= 0 we have

−(p− 2)∆∞φ(x)−∆φ(x) ≥ 0.

2. An upper semi-continuous function u is a subsolution if for every φ ∈ C2

such that u− φ has a strict maximum at the point x ∈ Ω with ∇φ(x) 6= 0
we have

−(p− 2)∆∞φ(x)−∆φ(x) ≤ 0.

3. Finally, u is a viscosity solution if it is both a supersolution and a
subsolution.

For the case p = ∞ we must restrict the class of test functions as in [31]. Let
S(x) denote the class of C2 functions φ such that either∇φ(x) 6= 0 or∇φ(x) = 0
and the limit

ĺım
y→x

2(φ(y)− φ(x))
|y − x|2 = ∆∞φ(x)

exists.

Definition 5.3 Consider the equation −∆∞u = 0.

1. A lower semi-continuous function u is a viscosity supersolution if for every
φ ∈ S(x) such that u−φ has a strict minimum at the point x ∈ Ω we have
−∆∞φ(x) ≥ 0.

2. An upper semi-continuous function u is a subsolution if for every φ ∈ S(x)
such that u − φ has a strict maximum at the point x ∈ Ω we have
−∆∞φ(x) ≤ 0.

3. Finally, u is a viscosity solution if it is both a supersolution and a
subsolution.

Proof: We first consider asymptotic expansions for smooth functions that
involve the infinity Laplacian (p = ∞) and the regular Laplacian (p = 2).

Choose a point x ∈ Ω and a C2-function φ defined in a neighborhood of x.
Let xε

1 and xε
2 be the point at which φ attains its minimum and maximum in

Bε(x) respectively; that is,

φ(xε
1) = mı́n

y∈Bε(x)
φ(y) and φ(xε

2) = máx
y∈Bε(x)

φ(y).
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Next, we use some ideas from [9]. Consider the Taylor expansion of the
second order of φ

φ(y) = φ(x) +∇φ(x) · (y − x) +
1
2
〈D2φ(x)(y − x), (y − x)〉+ o(|y − x|2)

as |y−x| → 0. Evaluating this Taylor expansion of φ at the point x with y = xε
1

and y = 2x− xε
1 = x̃ε

1 , we get

φ(xε
1) = φ(x) +∇φ(x)(xε

1 − x) +
1
2
〈D2φ(x)(xε

1 − x), (xε
1 − x)〉+ o(ε2)

and

φ(x̃ε
1) = φ(x)−∇φ(x)(xε

1 − x) +
1
2
〈D2φ(x)(xε

1 − x), (xε
1 − x)〉+ o(ε2)

as ε → 0. Adding the expressions, we obtain

φ(x̃ε
1) + φ(xε

1)− 2φ(x) = 〈D2φ(x)(xε
1 − x), (xε

1 − x)〉+ o(ε2).

Since xε
1 is the point where the minimum of φ is attained, it follows that

φ(x̃ε
1) + φ(xε

1)− 2φ(x) ≤ máx
y∈Bε(x)

φ(y) + mı́n
y∈Bε(x)

φ(y)− 2φ(x),

and thus

1
2

{
máx

y∈Bε(x)
φ(y) + mı́n

y∈Bε(x)
φ(y)

}
− φ(x) ≥ 1

2
〈D2φ(x)(xε

1 − x), (xε
1 − x)〉+ o(ε2).

(24)
Repeating the same process at the point xε

2 we get instead

1
2

{
máx

y∈Bε(x)
φ(y) + mı́n

y∈Bε(x)
φ(y)

}
− φ(x) ≤ 1

2
〈D2φ(x)(xε

2 − x), (xε
2 − x)〉+ o(ε2).

(25)
Next we derive a counterpart for the expansion with the usual Laplacian

(p = 2). Averaging both sides of the classical Taylor expansion of φ at x we get

∫

Bε(x)

φ(y) dy = φ(x) +
N∑

i,j=1

∂2φ

∂x2
i

(x)
∫

Bε(0)

1
2
zizj dz + o(ε2).

The values of the integrals in the sum above are zero when i 6= j. Using
symmetry, we compute

∫

Bε(0)

z2
i dz =

1
N

∫

Bε(0)

|z|2 dz

=
1

NωNεN

∫ ε

0

∫

∂Bρ

ρ2 dS dρ =
σN−1ε

2

N(N + 2)ωN
=

ε2

(N + 2)
.
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We end up with
∫

Bε(x)

φ(y) dy − φ(x) =
ε2

2(N + 2)
∆φ(x) + o(ε2). (26)

Assume for the moment that p ≥ 2 so that α ≥ 0. Multiply (24) by α and
(26) by β and add. We arrive at the expansion valid for any smooth function φ:

α

2

{
máx

y∈Bε(x)
φ(y) + mı́n

y∈Bε(x)
φ(y)

}
+ β

∫

Bε(x)

φ(y) dy − φ(x)

≥ βε2

2(N + 2)

(
(p− 2)

〈
D2φ(x)

(
xε

1 − x

ε

)
,

(
xε

1 − x

ε

) 〉
+ ∆φ(x)

)

+ o(ε2).

(27)

We remark that xε
1 ∈ ∂Bε(x) for ε > 0 small enough whenever ∇φ(x) 6= 0.

In fact, suppose, on the contrary, that there exists a subsequence x
εj

1 ∈ Bεj (x)
of minimum points of φ. Then, ∇φ(xεj

1 ) = 0 and, since x
εj

1 → x as εj → 0,
we have by continuity that ∇φ(x) = 0. A simple argument based on Lagrange
multipliers then shows that

ĺım
ε→0

xε
1 − x

ε
= − ∇φ

|∇φ| (x). (28)

We are ready to prove that if the asymptotic mean value formula holds for u,
then u is a viscosity solution. Suppose that function u satisfies the asymptotic
expansion in the viscosity sense according to Definition 5.1. Consider a smooth
φ such that u−φ has a strict minimum at x and φ ∈ S(x) if p = ∞. We obtain

0 ≥ −φ(x) +
α

2

{
máx
Bε(x)

φ + mı́n
Bε(x)

φ

}
+ β

∫

Bε(x)

φ(y) dy + o(ε2),

and thus, by (27),

0 ≥ βε2

2(N + 2)

(
(p− 2)

〈
D2φ(x)

(
xε

1 − x

ε

)
,

(
xε

1 − x

ε

) 〉
+ ∆φ(x)

)
+ o(ε2).

If ∇φ(x) 6= 0 we take limits as ε → 0. Taking into consideration (28) we get

0 ≥ β

2(N + 2)
((p− 2)∆∞φ(x) + ∆φ(x)) .

Suppose now that p = ∞ and that the limit

ĺım
y→x

φ(y)− φ(x)
|y − x|2 = L

exists. We need to deduce that L ≤ 0 from

0 ≥ 1
2

{
máx
Bε(x)

φ + mı́n
Bε(x)

φ

}
− φ(x).
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Let us argue by contradiction. Suppose that L > 0 and choose η > 0 small
enough so that L− η > 0. Use the limit condition to obtain the inequalities

(L− η)|x− y|2 ≤ φ(x)− φ(y) ≤ (L + η)|x− y|2,

for small |x− y|. Therefore, we get

0 ≥ 1
2

máx
Bε(x)

(φ− φ(x)) +
1
2

mı́n
Bε(x)

(φ− φ(x))

≥ 1
2

máx
Bε(x)

(φ− φ(x)) ≥ (
L− η

2
)ε2,

which is a contradiction. Thus, we have proved that L ≥ 0.
To prove that u is a viscosity subsolution, we first derive a reverse inequality

to (27) by considering the maximum point of the test function, that is, using
(25) and (26), and then choose a function φ that touches u from above. We omit
the details.

To prove the converse implication, assume that u is a viscosity solution. In
particular u is a subsolution. Let φ be a smooth test function such that u − φ
has a strict local maximum at x ∈ Ω. If p = ∞, we also assume φ ∈ S(x). If
∇φ(x) 6= 0, we get

−(p− 2)∆∞φ(x)−∆φ(x) ≤ 0. (29)

The statement to be proven is

ĺım inf
ε→0+

1
ε2

(
−φ(x) +

α

2

{
máx
Bε(x)

φ + mı́n
Bε(x)

φ

}
+ β

∫

Bε(x)

φ(y) dy

)
≥ 0.

This again follows from (27). Indeed, divide (27) by ε2, use (28), and deduce
from (29) that the limit on the right hand side is bounded from below by zero.

For the case p = ∞ with ∇φ(x) = 0 we assume the existence of the limit

ĺım
y→x

φ(y)− φ(x)
|y − x|2 = L ≥ 0

and observe that

ĺım inf
ε→0+

1
ε2

(
−φ(x) +

1
2

{
máx
Bε(x)

φ + mı́n
Bε(x)

φ

})
≥ 0.

The argument for the case of supersolutions is analogous.
Finally, we need to address the case 1 < p < 2. Since α ≤ 0 we use (25)

instead of (24) to get a version of (27) with xε
2 in place of xε

1. The argument
then continues in the same way as before.
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