
FRACTIONAL PROBLEMS IN THIN DOMAINS

MARCONE C. PEREIRA, JULIO D. ROSSI AND NICOLAS SAINTIER

Abstract. In this paper we consider nonlocal fractional problems in thin

domains. Given open bounded subsets U ⊂ Rn and V ⊂ Rm, we show that

the solution uε to

∆s
xuε(x, y) + ∆t

yuε(x, y) = f(x, ε−1y) in U × εV

with uε(x, y) = 0 if x 6∈ U and y ∈ εV , verifies that ũε(x, y) := uε(x, εy)→ u0

strongly in the natural fractional Sobolev space associated to this problem.

We also identify the limit problem that is satisfied by u0 and estimate the rate

of convergence in the uniform norm. Here ∆s
xu and ∆t

yu are the fractional

Laplacian in the 1st variable x (with a Dirichlet condition, u(x) = 0 if x 6∈ U)

and in the 2nd variable y (with a Neumann condition, integrating only inside

V ), respectively, that is,

∆s
xu(x, y) =

∫
Rn

u(x, y)− u(w, y)

|x− w|n+2s
dw

and

∆t
yu(x, y) =

∫
V

u(x, y)− u(x, z)

|y − z|m+2t
dz.

1. Introduction

In this paper our main goal is to show that there is a limit problem for fractional
type elliptic problems in thin domains, that is, when the thickness of the domain
in one direction goes to zero.

Given two smooth open bounded domains U ⊂ Rn and V ⊂ Rm, n and m ≥ 1,
real numbers s, t ∈ (0, 1) and f ∈ L2(U × V ), we consider the problem

(1.1) ∆s
xu(x, y) + ∆t

yu(x, y) = f(x, y) in U × V

with a Dirichlet condition in (Rn \ U) × V , u(x, y) = 0 for (x, y) ∈ (Rn \ U) × V .
Here ∆s

xu and ∆t
yu are the fractional Laplacian w.r.t. in the 1st variable x and the

2nd variable y, respectively, namely

∆s
xu(x, y) =

∫
Rn

u(x, y)− u(w, y)

|x− w|n+2s
dw

and

∆t
yu(x, y) =

∫
V

u(x, y)− u(x, z)

|y − z|m+2t
dz.

Key words and phrases. thin domains, nonlocal fractional equations, Neumann problem,
Dirichlet problem.

2010 Mathematics Subject Classification. 45A05, 45C05, 45M05.

1



2 M. C. PEREIRA, J. D. ROSSI AND N. SAINTIER

In order to simplify the notation we have dropped the usual normalization constant
that is usually in front of the integrals. Also, we note that we have a Neumann
boundary condition on U × (Rm \ V ) since we are integrating only in V .

The purpose of this note is first to prove the existence and uniqueness of a weak
solution to (1.1). Then we want to perturb the problem by replacing V by εV ,
ε > 0, and study the asymptotic behaviour of the corresponding solution uε as
ε→ 0.

We will work in the space Hs,t
0 (Rn × V ) of the functions u ∈ L2(Rn × V ) such

that u(x, y) = 0 if x 6∈ U and y ∈ V , and such that

‖u‖2 :=

∫
Rn×Rn×V

|u(x, y)− u(w, y)|2

|x− w|n+2s
dxdydw

+

∫
Rn×V×V

|u(x, y)− u(x, z)|2

|y − z|m+2t
dxdydz

(1.2)

is finite. Indeed, equipped with the norm ‖ · ‖, we have that Hs,t
0 := Hs,t

0 (Rn × V )
is a Hilbert space.

Now we are ready to state the main result of this note:

Theorem 1.1. For any f ∈ L2(U×V ), there exists a unique weak solution u ∈ Hs,t
0

to (1.1). This weak solution is characterized as being the unique minimizer of the
functional

v ∈ Hs,t
0 (Rn × V ) → 1

4
‖v‖2 − (f, v),

where (·, ·) denotes the duality pairing.

Moreover, if f ∈ La(U × V ) with a > n+m
2r and r = min{s, t}, then there exists

a constant K > 0 (depending only on n, m, r, and a) such that the solution u
satisfies

‖u‖L∞(Rn×V ) ≤ K‖f‖La(Rn×V ).

For ε > 0 denote by uε the solution to the thin domain problem

(1.3) ∆s
xuε(x, y) + ∆t

yuε(x, y) = f̃ε(x, y) in U × εV

with uε(x, y) = 0 if x 6∈ U and y ∈ εV , where

f̃ε(x, y) = f(x, ε−1y)

for some fixed f ∈ L2(U × V ). Then, the rescaled function

ũε(x, y) := uε(x, εy) ∈ Hs,t
0 (Rn × V )

verifies

(1.4) ũε → u0, strongly in Hs,t
0 (Rn × V ),

where u0(x, y) depends only on the first variable x, that is, u0(x, y) = u0(x) for all
(x, y) ∈ Rn × V . Furthermore, u0 is the solution to the limit problem

(1.5) ∆s
xu0(x) =

1

|V |

∫
V

f(x, y)dy in U,

with u0 = 0 in Rn \ U .
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In addition, if

sup
x∈Rn

‖f(x, .)‖La(V ) + sup
x∈Rn

‖∆s
xf(x, .)‖La(V ) <∞

for some a > max{m2t , 1}, then we have a uniform convergence result with an upper
bound of order 2t, that is,

(1.6) ‖ũε(x, y)− u0(x)‖L∞(U×V ) ≤ Cε2t.

We end this introduction with a brief description of related references. It is not
difficult to see that thin structures occur naturally in many applications. For exam-
ple, in oceanic models, one is dealing with fluid regions which are thin compared to
the horizontal length scales. Other examples can include lubrication, nanotechnol-
ogy, blood circulation, material engineering, meteorology, etc. In fact, many tech-
niques and methods have been developed in order to understand the effect of the
geometry and thickness of the domain on the solutions of such singular problems.
From pioneering works to recent ones we mention [24, 11, 21, 13, 19, 6, 3, 23] con-
cerned with elliptic and parabolic equations, as well as [2, 12, 15, 4, 14, 5, 17] where
the authors considered Stokes and Navier-Stokes equations from fluid mechanics.
Concerning nonlocal equations in thin domains we mention the recent paper [20]
where equations with smooth and compactly supported kernels are considered. For
general references on fractional problems we refer to [10].

Finally, we want to mention that, when we look at the usual fractional Laplacian

∆su(x, y) =

∫
Rn×Rm

u(x, y)− u(z, w)

|(x, y)− (z, w)|n+m+2s
dz dw

and we localize it in εV (to deal with a thin domain) taking

∆su(x, y) =

∫
Rn×εV

u(x, y)− u(z, w)

|(x, y)− (z, w)|n+m+2s
dz dw

our results can not be extended to this model. In fact, when one changes variables
and considers the resulting kernel, one finds that it goes to zero as ε → 0 (this is
due to the fact that we take V bounded and therefore the effect of the tails of the
fractional Laplacian in y is suppressed when considering the previous operator).
We will comment more on this fact in the final section. Also remark that the usual
local Laplacian ∆u(x, y) has the property that

∆u(x, y) = ∆xu(x, y) + ∆yu(x, y)

even if we consider it in U×εV . In our problem (1.1) this property also holds, but it
does not hold when we deal with the usual fractional Laplacian that we previously
described.

The paper is organized as follows: in Section 2 we prove existence and uniqueness
of weak solutions to our nonlocal problem; in Section 3 we deal with the problem
in thin domains and compute the limit as ε → 0; in Section 4 we show that when
f is smooth we have a corrector and hence we can show uniform convergence and
obtain a bound for the rate of order 2t; finally, in Section 5 we collect some possible
extensions of our results.
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2. Existence and uniqueness

Notice that a reasonable weak formulation of (1.1) is the following one: u ∈ Hs,t
0

is a weak solution if for every φ ∈ Hs,t
0 it holds∫

Rn×V
f(x, y)φ(x, y) dxdy

=

∫
Rn×V

φ(x, y)
(∫

Rn

u(x, y)− u(w, y)

|x− w|n+2s
dw
)
dxdy

+

∫
Rn×V

φ(x, y)
(∫

V

u(x, y)− u(x, z)

|y − z|m+2t
dz
)
dxdy

=
1

2

∫
Rn×Rn×V

[u(x, y)− u(w, y)][φ(x, y)− φ(w, y)]

|x− w|n+2s
dxdwdy

+
1

2

∫
Rn×V×V

[u(x, y)− u(x, z)][φ(x, y)− φ(x, z)]

|y − z|m+2t
dxdydz.

(2.1)

In view of this expression, it is natural to introduce, as we did in the introduction,
the space Hs,t

0 (Rn × V ) of the functions u ∈ L2(Rn × V ) such that u(x, y) = 0 if
x 6∈ U and y ∈ V , and such that

‖u‖2 :=

∫
Rn×Rn×V

|u(x, y)− u(w, y)|2

|x− w|n+2s
dxdydw

+

∫
Rn×V×V

|u(x, y)− u(x, z)|2

|y − z|m+2t
dxdydz

=

∫
V

[u(·, y)]2Hs(Rn) dy +

∫
Rn

[u(x, ·)]2Ht(V ) dx < +∞.

(2.2)

Recall that, given any open subset Ω ⊂ RN , the expression

[w]2Hs(Ω) =

∫
Ω

∫
Ω

|w(ξ)− w(η)|2

|ξ − η|N+2s
dξdη

is the so-called Gagliardo semi-norm of w. Also, equipped with the norm ‖ · ‖, it is

clear that the space Hs,t
0 (Rn × V ) sets a Hilbert space.

It follows as an immediate consequence of Lax-Milgram’s theorem that when f
belongs to the dual space of Hs,t

0 , equation (1.1) has a unique weak solution.

Proposition 2.1. For any f ∈ (Hs,t
0 )′ there exists a unique weak solution u ∈ Hs,t

0

to (1.1). This weak solution is the unique minimizer of the functional

v ∈ Hs,t
0 (Rn × V )→ 1

4
‖v‖2 − (f, v).

We now verify that we can take for instance f ∈ L2(U × V ).

Proposition 2.2. Letting r = min{s, t}, there holds

(2.3) Hs,t
0 ↪→ Hr,r

0 ↪→ Hr
0 ,

where Hr
0 is the subspace of the usual fractional space Hr(Rn×V ) composed of the

functions u ∈ Hr(Rn × V ) such that u(x, y) = 0 for y ∈ V and x 6∈ U .
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Proof. Recall that Hr
0 is equipped with the norm

‖u‖2Hr
0

= ‖u‖22 + [u]2Hr

= ‖u‖22 +

∫
Rn×V

∫
Rn×V

|u(x, y)− u(w, z)|2

|(x, y)− (w, z)|n+m+2r
dx dy dw dz.

The first embedding follows from the two embeddings Hs ↪→ Hr, Ht ↪→ Hr and
the last line in (2.2).

Now, we prove the second embedding, Hr,r
0 ↪→ Hr

0 . To this end we first write

|u(x, y)− u(w, z)|2 = |u(x, y)− u(x, z) + u(x, z)− u(w, z)|2

≤ 2|u(x, y)− u(x, z)|2 + 2|u(x, z)− u(w, z)|2

and then we obtain

[u]2Hr =

∫
Rn×V

∫
Rn×V

|u(x, y)− u(w, z)|2

|(x, y)− (w, z)|n+m+2r
dx dy dw dz

≤ 2

∫
Rn×V

∫
Rn×V

|u(x, y)− u(x, z)|2

(|x− w|2 + |y − z|2)
n+m+2r

2

dx dw dy dz

+2

∫
Rn×V

∫
Rn×V

|u(x, z)− u(w, z)|2

(|x− w|2 + |y − z|2)
n+m+2r

2

dx dy dw dz

=: 2I1 + 2I2.

Letting a = |y − z|, we bound I1 writing first that

I1 =

∫
V×V

(∫
Rn×Rn

|u(ax, y)− u(ax, z)|2

[1 + |x− w|2]
n+m+2r

2

dx dw

)
dy dz

|y − z|m−n+2r

=

∫
V×V

(∫
Rn

|u(ax, y)− u(ax, z)|2

×

(∫
Rn

dw

[1 + |x− w|2]
n+m+2r

2

)
dx

)
dy dz

|y − z|m−n+2r
.

The integral in w is bounded,∫
Rn

dw

[1 + |w|2]
n+m+2r

2

≤ C.

Thus changing variables in x we obtain

I1 ≤ C

∫
V×V

(∫
Rn

|u(x, y)− u(x, z)|2
)
dx

)
dy dz

|y − z|m+2r

= C

∫
Rn

[u(x, ·)]2Hr(V ) dx.

We tackle I2 in a similar way. �

We need a result like the following one.

Proposition 2.3. The embedding

Hr
0 (Rn × V ) ↪→ L2(Rn × V )

is continuous and compact.
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Proof. Since U and V are smooth bounded domains, the result follows from [10,
Theorem 6.7 and Corollary 7.2]. �

As a consequence of this result and Proposition 2.2 we get

Corollary 2.1. The embedding

Hs,t
0 (Rn × V ) ↪→ L2(Rn × V )

is continuous and compact.

We thus obtain from Proposition 2.1 the existence and uniqueness part of The-
orem 1.1:

Proposition 2.4. For any f ∈ L2(U × V ) there exists a unique weak solution

u ∈ Hs,t
0 to (1.1). This weak solution is the unique minimizer of the functional

v ∈ Hs,t
0 (Rn × V )→ 1

4
‖v‖2 − (f, v).

Now let us introduce a condition on f in order to guarantee that the solutions
to (1.1) belong to L∞. We will need this result in Section 4.

Proposition 2.5. Let u ∈ Hs,t
0 (Rn × V ) be a weak solution of (1.1) for some

f ∈ La(U × V ) with a > n+m
2r where r = min{s, t}.

Then u ∈ L∞(Rn × V ) with

(2.4) ‖u‖L∞(Rn×V ) ≤ K‖f‖La(U×V )

where K > 0 depends only on n, m, r, and a.

Proof. Let Ak = {(x, y) ∈ Rn×V : u(x, y) > k} for k ∈ N. According to Prop. 2.2,

we have Hs,t
0 (Ak) ↪→ Hr

0 (Ak) where r = min{s, t}. By Sobolev embeddings (see for
instance [10, Theorem 6.7 and Remark 6.8]), we deduce that

Hs,t
0 (Ak) ↪→ L

2(n+m)
n+m−2r (Ak).

Then ∫
Ak

(u(x, y)− k) dxdy =

∫
Ak

(u(x, y)− k)+ dxdy

≤ ‖1‖
L

2(n+m)
n+m+2r (Ak)

‖(u− k)+‖
L

2(n+m)
n+m−2r (Ak)

(2.5)

≤ C|Ak|
1
2 + r

n+m ‖(u− k)+‖.
Here φ± denote the positive and negative part of a function φ defined as φ+ =
max {φ, 0} and φ− = max {−φ, 0}. Notice that φ = φ+ − φ−.

To estimate ‖(u−k)+‖, we take ϕ = (u−k)+ in the weak formulation (2.1). We
obtain∫

Rn×V
f(x, y)(u(x, y)− k)+ dx dy =∫
Rn×V

∫
Rn

(u(x, y)− k)2
+ − (u(x, y)− k)+(u(w, y)− k)

|x− w|n+2s
dw dx dy

+

∫
Rn×V

∫
V

(u(x, y)− k)2
+ − (u(x, y)− k)+(u(x, z)− k)

|y − z|m+2t
dz dx dy.
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Notice that

(u(x, y)− k)+(u(w, y)− k)

= (u(x, y)− k)+(u(w, y)− k)+ − (u(x, y)− k)+(u(w, y)− k)−

≤ (u(x, y)− k)+(u(w, y)− k)+,

and, analogously that

(u(x, y)− k)+(u(x, z)− k) ≤ (u(x, y)− k)+(u(x, z)− k)+.

We thus get∫
Rn×V

f(x, y)(u(x, y)− k)+ dx dy

≥
∫
Rn×V

∫
Rn

(u(x, y)− k)2
+ − (u(x, y)− k)+(u(w, y)− k)+

|x− w|n+2s
dw dx dy

+

∫
Rn×V

∫
V

(u(x, y)− k)2
+ − (u(x, y)− k)+(u(x, z)− k)+

|y − z|m+2t
dz dx dy

=
1

2

∫
Rn×V×Rn

[(u(x, y)− k)+ − (u(w, y)− k)+]
2

|x− w|n+2s
dw dx dy

+
1

2

∫
Rn×V×V

[(u(x, y)− k)+ − (u(x, z)− k)+]
2

|y − z|m+2t
dz dx dy

=
1

2
‖(u− k)+‖2.

Hence

‖(u− k)+‖2 ≤ 2

∫
Rn×V

f(x, y)(u(x, y)− k)+ dx dy.

We now take a, b ∈ (1,∞) such that

(2.6)
1

a
+

1

b
+
n+m− 2r

2(n+m)
= 1,

and apply Hölder inequality to get

‖(u− k)+‖2 ≤ 2‖f‖La(Rn×V )‖1‖Lb(Ak)‖(u− k)+‖
L

2(n+m)
n+m−2r (Rn×V )

≤ C|Ak|1/b‖f‖La(Rn×V )||(u− k)+||.

We thus conclude that

‖(u− k)+‖ ≤ C|Ak|1/b‖f‖La(Rn×V ).

Plugging this estimate in (2.5) yields

(2.7)

∫
Ak

(u(x, y)− k) dxdy ≤ C|Ak|
1
2 + 1

b + r
n+m ‖f‖La(Rn×V ).

We now choose a, b ∈ (1,+∞) in such a way that

1

2
+

1

b
+

r

n+m
> 1.
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Since a, b must verify (2.6), this is possible if we assume a > n+m
2r . It then follows

from (2.7) and [16, Chap. 2, Lemma 5.1] that u ∈ L∞(Rn × V ) with

(2.8) ‖u‖L∞(Rn×V ) ≤
1 + ε

ε
γ

1
1+ε ‖u‖L1(Rn×V )

where

γ = C‖f‖La(U×V ), 1 + ε =
1

2
+

1

b
+

r

n+m
.

Moreover notice that since u is a weak solution of (1.1),

‖u‖2 ≤ 2‖f‖La(U×V )‖u‖La′ (Rn×V )

≤ C‖f‖La(U×V )‖u‖.
In the last equality we used the embeddings

Hs,t
0 (Rn × V ) ↪→ Hr

0 (Rn × V ) ↪→ La
′
(U × V )

which hold since a′ ≤ 2(n+m)
n+m−2r . We deduce that

‖u‖L1(Rn×V ) ≤ ‖u‖ ≤ C‖f‖La(U×V ).

Combining with (2.8), we obtain

‖u‖L∞(Rn×V ) ≤ C‖f‖
1+ 1

1+ε

La(U×V ),

where the constant C depends only on b, r, n and m. We deduce in particular that
the lineal operator L : f → u is continuous from La(U ×V ) into L∞(Rn×V ). This
proves (2.4). �

Remark 2.1. Notice that Proposition 2.5 also gives us boundeness results to the
solutions for the usual fractional Laplacian operator: the Dirichlet problem∫

Rn

u(x)− u(w)

|x− w|n+2s
dw = f(x), x ∈ U

u(x) = 0 x ∈ Rn \ U,

and the regional fractional Laplacian (Neumann conditions)∫
V

u(y)− u(z)

|y − z|m+2t
dz = f(y), y ∈ V∫

V

u(y) dy = 0.

Indeed, such solutions are unique and satisfy the non local equation (1.1) in a trivial
way.

3. Thin domains

We now perturb V by replacing it by εV , ε > 0. Given some f ∈ L2(U × V ),
there exists, according to the previous Proposition 2.4, a unique function uε ∈
Hs,t

0 (Rn × εV ) solution of

(3.1) ∆s
xuε(x, y) + ∆t

yuε(x, y) = f̃ε(x, y) in U × εV

with uε(x, y) = 0 if x 6∈ U and y ∈ εV , and where

f̃ε(x, y) := f(x, ε−1y).
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Let us study the asymptotic behaviour of uε as ε → 0 proving the second part
of Theorem 1.1. We first rescale uε considering the function ũε ∈ Hs,t

0 (Rn × V )
defined as

(3.2) ũε(x, y) := uε(x, εy).

Note that the whole family ũε belongs to the same space Hs,t
0 (Rn × V ) (that is

independent of ε > 0). Using this approach we obtain the limit problem for (3.1).

Theorem 3.1. There holds

(3.3) ũε → u0 strongly in Hs,t
0 (Rn × V ),

where u0 depends only on variable x, belongs to the usual fractional Sobolev space
Hs(Rn) and is the solution to

∆s
xu0(x) =

1

|V |

∫
V

f(x, y)dy in U,

u0 = 0 in Rn\U .

(3.4)

Proof. A change of variable in the weak formulation of (3.1) shows that ũε defined
in (3.2) satisfies

1

2

∫
Rn×Rn×V

[ũε(x, y)− ũε(w, y)][φ(x, y)− φ(w, y)]

|x− w|n+2s
dx dw dy

+
1

2ε2t

∫
Rn×V×V

[ũε(x, y)− ũε(x, z)][φ(x, y)− φ(x, z)]

|y − z|m+2t
dx dy dz

=

∫
Rn×V

f(x, y)φ(x, y) dxdy

(3.5)

for any φ ∈ Hs,t
0 (Rn × V ). Thus ũε ∈ Hs,t

0 (Rn × V ) is the weak solution to

∆s
xũε(x, y) + ε−2t∆t

yũε(x, y) = f(x, y) in U × V .

It follows in particular that ũε is the unique minimum point of the convex functional

Jε(u) =
1

4
‖u‖2ε − (f, u)

defined for any u ∈ Hs,t
0 (Rn × V ) with

‖u‖2ε =

∫
V

[u(·, y)]2Hs dy +
1

ε2t

∫
Rn

[u(x, ·)]2Ht(V ) dx.

Note that ‖ · ‖ ≤ ‖ · ‖ε for all ε ∈ (0, 1).

Taking φ = ũε in (3.5), we obtain

‖ũε‖2ε ≤ 2‖f‖L2(Rn×V )‖ũε‖L2(U×V ).

Hence, using Corollary 2.1, we get that

‖ũε‖2ε ≤ C‖ũε‖L2(U×V ) ≤ C‖ũε‖.

It follows that for any ε ∈ (0, 1),

‖ũε‖ ≤ ‖ũε‖ε ≤ C
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for some C > 0 independent of ε. As a consequence there exists ũ ∈ Hs,t
0 (Rn × V )

such that, up to a subsequence, ũε ⇀ ũ weakly in Hs,t
0 (R2 × V ) and also strongly

in L2(Rn × V ) in view of Proposition 2.3, that is,

(3.6) ũε → u0 strongly in L2(Rn × V ) and weakly in Hs,t
0 (Rn × V ).

We obtain in particular that

(3.7) ‖u0‖ ≤ lim inf
ε→0

‖ũε‖.

Let us check that u0 does not depend on y. Notice that

Hs,t
0 (Rn × V ) = L2(Rn, Ht(V )) ∩ L2(V,Hs

0(Rn)).

In particular

(L2(Rn, Ht(V )))′ ⊂ (Hs,t
0 (Rn × V ))′.

Hence, it follows that

(3.8) ũε → u0 weakly in L2(Rn, Ht(V )).

In the same way,

(3.9) ũε → u0 weakly in L2(V,Hs
0(Rn)).

So,

‖u0‖L2(Rn,Ht(V )) ≤ lim inf
ε→0

‖ũε‖L2(Rn,Ht(V )).

Since ũε → u0 in L2(Rn × V ), we deduce that∫
Rn

[u0(x, ·)]2Ht(V ) dx ≤ lim inf
ε→0

∫
Rn

[ũε(x, ·)]2Ht(V ) dx.

On the other hand, it follows from ‖ũε‖ε ≤ C, 0 < ε < 1, that∫
Rn

[ũε(x, ·)]2Ht(V ) dx ≤ Cε
2t,

and then we get ∫
Rn

[u0(x, ·)]2Ht(V ) dx = 0.

Therefore, the limit function u0 does not depend on y.

Now, we take a test function φ(x) independent of y in (3.5). We get

1

2

∫
Rn×Rn×V

[ũε(x, y)− ũε(w, y)][φ(x)− φ(w)]

|x− w|n+2s
dx dw dy

=

∫
Rn×V

f(x, y)φ(x) dx dy.

(3.10)

Thus, passing to the limit in (3.10) as ε→ 0 using (3.9) and recalling that u0 does
not depend on y, we arrive at

|V |
2

∫
Rn×Rn

[u0(x)− u0(w)][φ(x)− φ(w)]

|x− w|n+2s
dx dw

=

∫
Rn×V

f(x, y)φ(x) dx dy.

(3.11)
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Hence u0 ∈ Hs
0(Rn) is a weak solution to

∆s
xu0(x) =

1

|V |

∫
V

f(x, y)dy in U,

with

u0 = 0 in Rn \ U,

as we wanted to show.

Finally, let us prove the strong convergence in Hs,t
0 (Rn × V ) of ũε to u0. Since

we already have the weak convergence, it suffices to prove the convergence of the
norms. Notice that ‖u0‖2 = |V |[u0]2Hs because u0 does not depend on y. In view
of (3.7), we have

|V |[u0]2Hs = ‖u0‖2 ≤ lim inf
ε→0

‖ũε‖2 ≤ lim sup
ε→0

‖ũε‖2 ≤ lim sup
ε→0

‖ũε‖2ε.

Now let us take φ = ũε in the weak formulation (3.5) and we obtain

lim sup
ε→0

‖ũε‖2ε = lim
ε→0

2

∫
Rn×V

f(x, y)ũε(x, y) dx dy

= 2

∫
Rn×V

f(x, y)u0(x) dx dy,

where we used the strong convergence of ũε → u0 in L2(Rn×V ). Eventually taking
φ = u0 in the weak formulation (3.11) shows that the r.h.s. is equal to |V |[u0]2Hs .
We thus deduce that

|V |[u0]2Hs = ‖u0‖2 ≤ lim inf
ε→0

‖ũε‖2 ≤ lim sup
ε→0

‖ũε‖2 = |V |[u0]2Hs .

We conclude that all the inequalities are in fact equalities. The claim follows. �

4. Correctors

In this section we need that fractional laplacians in different variables commute,
that is,

∆t
y(∆s

xb)(x, y) = ∆s
x(∆t

yb)(x, y)

=

∫ ∫
b(x, y)− b(x, y′)− b(x′, y) + b(x′, y′)

|x− x′|n+2s|y − y′|m+2t
dx′dy′.

Note that here, to simplify the notation, we will neglect the integration domain.

Proposition 4.1. If ∆t
yb(x, y) = g(x, y) weakly, then ∆t

y(∆s
xb)(x, y) = ∆s

xg(x, y)
weakly.
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Proof. Using a density argument we can assume that all the involved functions are
smooth. For any φ smooth, we have for any x that∫∫

(∆s
xb(x, y)−∆s

xb(x, y
′))(φ(y)− φ(y′))

|y − y′|m+2t
dydy′

=

∫∫
φ(y)− φ(y′)

|y − y′|m+2t

{∫
b(x, y)− b(x′, y)

|x− x′|n+2s
dx′ −

∫
b(x, y′)− b(x′, y′)
|x− x′|n+2s

dx′
}
dydy′

=

∫ (∫∫
(b(x, y)− b(x, y′))(φ(y)− φ(y′))

|y − y′|m+2t
dy dy′

−
∫∫

(b(x′, y)− b(x′, y′))(φ(y)− φ(y′))

|y − y′|m+2t
dy dy′

)
dx′

|x− x′|n+2s

= 2

∫ (∫
g(x, y)φ(y) dy −

∫
g(x′, y)φ(y) dy

)
dx′

|x− x′|n+2s

= 2

∫
φ(y)

∫
g(x, y)− g(x′, y)

|x− x′|n+2s
dx′ dy

= 2

∫
φ(y)∆s

xg(x, y) dy.

Then, we get

1

2

∫∫
(∆s

xb(x, y)−∆s
xb(x, y

′))(φ(y)− φ(y′))

|y − y′|m+2t
dydy′ =

∫
φ(y)∆s

xg(x, y) dy

for any point x and smooth function φ, concluding the proof. �

We will also use a maximum principle.

Lemma 4.1. Let u ∈ Hs,t
0 (Rn × V ), u ≤ 0 in (Rn\U)× V , be a weak solution to

∆s
xu+ ∆t

yu ≤ 0 in Rn × V .

Then u ≤ 0 in Rn × V .

Proof. The proof is the same as in [7, Lemma 4.6]. We include a brief sketch for
completeness.

Since u+ ∈ Hs,t
0 (Rn × V ), u+ ≥ 0, we can use it as a test-function:

0 ≥
∫
Rn×Rn×V

(u(x, y)− u(x′, y))(u+(x, y)− u+(x′, y))

|x− x′|n+2s
dx dx′ dy

+

∫
V×V×Rn

(u(x, y)− u(x, y′))(u+(x, y)− u+(x, y′))

|y − y′|m+2t
dx dy dy′.

Both integrals are non-negative. Indeed, let us show that for the first term. Writing
u = u+ − u− and using that u+(x, y)u−(x, y) = 0 for any (x, y), the numerator of
the integrand of the first integral verifies

(u(x, y)− u(x′, y))(u+(x, y)− u+(x′, y))

= (u+(x, y)− u+(x′, y))2 + u−(x, y)u+(x′, y) + u−(x′, y)u(x′, y)

≥ (u+(x, y)− u+(x′, y))2.
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We thus obtain

0 ≥
∫
Rn×Rn×V

(u+(x, y)− u+(x′, y))2

|x− x′|n+2s
dx dx′ dy

+

∫
V×V×Rn

(u+(x, y)− u+(x, y′))2

|y − y′|m+2t
dx dy dy′ ≥ 0.

It thus follows from the first integral that for any y ∈ V , the function u+(·, y) is
constant. Since u+ = 0 in (Rn\U)× V , we obtain that u+ = 0. �

Now we are ready to prove the last part of Theorem 1.1. Recall that for each
ε > 0 we consider the problem

(4.1)
∆s
xu(x, y) + ∆t

yu(x, y) = f(x, ε−1y) in U × εV ,

u = 0 in (Rn \ U)× εV.
If we change variables as we did in the previous section in (4.1) we get the following
problem

(4.2)
∆s
xu(x, y) +

1

ε2t
∆t
yu(x, y) = f(x, y) in U × V ,

u = 0 in (Rn \ U)× V.

For any x ∈ U consider

θ(x) =
1

|V |

∫
V

f(x, y) dy.

Since f ∈ L2(U × V ), we have that θ ∈ L2(U) and so, there exists u0 ∈ Hs
0(Rn)

solution to
∆s
xu0(x) = θ(x) in U,

u0 = 0 in Rn \ U.
Moreover, we have the following result.

Proposition 4.2. For any x ∈ U , there exists a unique weak solution b(x, ·) ∈
Ht(V ) to

∆t
yb(x, y) = f(x, y)− θ(x) in V,

1

|V |

∫
V

b(x, y) dy = 0.

Moreover, if f satisfies

(4.3) sup
x∈U
‖f(x, ·)‖La(V ) <∞

with a > max{m2t , 1}, then b ∈ L∞(U × V ) with

‖b‖L∞(U×V ) ≤ C
where C > 0 depends only on V , r, t.

In addition, if

(4.4) sup
x∈Rn

‖∆s
xf(x, ·)‖La(V ) <∞ for some a > max

{m
2t
, 1
}

,

then ∆s
xb ∈ L∞(Rn × V ).
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Proof. Note that such a function b is well defined since we have

1

|V |

∫
V

[f(x, y)− θ(x)] dy = 0.

Moreover the existence of b(x, ·) follows by direct minimization of the associated
functional using the Poincaré inequality [u]Ht(V ) ≥ C‖u‖L2(V ) which holds for any

u ∈ Ht(V ) such that
∫
V
u = 0.

In view of Proposition 2.5 and Remark 2.1, we have for any x ∈ U that

‖b(x, ·)‖L∞(V ) ≤ K
with a > m

2t and K > 0 depends only on V , a, t and f(x, ·). Assumption (4.3) then
shows that the r.h.s. is bounded uniformly for x ∈ U .

Now notice that ∆s
xb is the solution of

∆t
y∆s

xb(x, y) = ∆s
xf(x, y)−∆s

xθ(x).

Here we are using that ∆t
y and ∆s

x commute (this fact can be easily obtained from
a density argument since it holds for smooth functions using Fubini’s theorem, see
Proposition 4.1). We then have from Proposition 2.5 and Remark 2.1 that for any
x ∈ Rn, ∆s

xb(x, ·) ∈ L∞(V ) with

‖∆s
xb(x, ·)‖L∞(V ) ≤ C.

Notice that ∆s
xθ(x) =

∫
V

∆s
xf(x, y) dy

|V | so that |∆s
xθ(x)| ≤ C‖∆s

xf(x, ·)‖La(V ). The

result follows. �

Assuming (4.3) and (4.4), we know from the previous result that there exist
constants k,K > 0 such that for any (x, y) ∈ Rn × V ,

(4.5) |b(x, y)| ≤ k and |∆s
xb(x, y)| ≤ K.

We also need h ∈ Hs
0(Rn) the solution to

∆s
xh(x) = 1 in U,

h = 0 in Rn \ U.
Notice that h ∈ L∞(U) in view of Remark 2.1. We then consider the functions v
and v defined in Rn × V by

v(x, y) = u0(x) + ε2t(b(x, y) +K h(x) + k),

and
v(x, y) = u0(x) + ε2t(b(x, y)−K h(x)− k).

We claim that v and v are super-solution and sub-solution respectively of (4.2).
Let us see, for instance, that v is a supersolution to (4.2). In fact, in Rn × V ,

∆s
xv(x, y) +

1

ε2t
∆t
yv(x, y) = ∆s

xu0(x) + ε2t(∆s
xb(x, y) +K) + ∆t

yb(x, y)

= f(x, y) + ε2t(∆s
xb(x, y) +K)

≥ f(x, t),

by the definition of K. Moreover in (Rn\U)× V ,

v(x, y) = ε2t(b(x, y) + k) ≥ 0

by the definition of k (we used here that u0 = h = 0 in Rn\U).
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It then follows from the weak maximum principle Lemma 4.1 that

v ≤ ũε ≤ v in Rn × V

which implies exactly (1.6). This ends the proof of Theorem 1.1.

Remark 4.1. Note that we needed that ∆s
xb is bounded. This fact is obtained from

smoothness assumptions on f , in fact we assumed that ∆s
xf ∈ La(Rn × V ) with

a > n+m
2s . This assumption is quite restrictive and is not needed when one looks at

this problem using a variational approach like we did in the previous section using
only that f ∈ L2(U × V )..

5. Possible extensions of our results

In this final section we comment briefly on possible extensions of our results. We
can consider different problems.

1. The Neumann problem I. We consider the equation

f = ∆s
xuε + ε−2t∆t

yuε,

given by,

(5.1) f(x, y) =

∫
U

uε(z, y)− uε(x, y)

|z − x|n+2s
dz +

∫
V

uε(x,w)− uε(x, y)

ε2t|w − y|m+2t
dw.

In this case we are taking Neumann boundary conditions both in x and y variables
and we need to impose that ∫

U

∫
V

uε(x, y) dxdy = 0

in order to obtain uniqueness of a solution.

The computations that we made in the previous sections can be used to pass to
the limit as ε→ 0 in this problem.

2. The Neumann problem II. We can also deal with the following version
of the previous Neumann problem

(5.2) f(x, y) =

∫
U×V

uε(z, y)− uε(x, y)

|z − x|n+2s
dz dy +

∫
U×V

uε(x,w)− uε(x, y)

ε2t|w − y|m+2t
dw dy,

assuming again that ∫
U

∫
V

uε(x, y) dx dy = 0.

3. The regional fractional Laplacian. However, when we look at the frac-
tional Laplacian

∆su(x, y) =

∫
Rn×Rm

u(x, y)− u(z, w)

|(x, y)− (z, w)|n+m+2s
dz dw

and we localize it in εV (to deal with a thin domain) taking

∆su(x, y) =

∫
Rn×εV

u(x, y)− u(z, w)

|(x, y)− (z, w)|n+m+2s
dz dw

it seems that our results can not be extended to this model.
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In fact, if we assume that u(x, y) does not depend on y (this is the expected limit
situation in which the limit is independent of the y variable) we get

∆su(x, y) = ∆su(x) =

∫
Rn

(u(x)− u(z))

(∫
εV

dw

|(x, y)− (z, w)|n+m+2s

)
dz.

Then, we have to look at the limit of the kernel∫
εV

1

(|x− z|2 + |y − w|2)
1
2 (n+m+2s)

dw.

Changing variables we obtain

εm
∫
V

1

(|x− z|2 + ε2|y − w|2)
1
2 (n+m+2s)

dw.

Now if we use that V is bounded and we take polar coordinates we get that the
last integral is bounded above by

Cεm
∫ R

0

rm−1

(|x− z|2 + ε2r2)
1
2 (n+m+2s)

dr.

Now, we change variables again, taking ε
|x−z|r = s, and we arrive to

C

|x− z|n+2s

∫ ε R
|x−z|

0

sm−1

(1 + s2)
1
2 (n+m+2s)

ds

that goes to zero as ε→ 0. Consequently, if the function u does not depend on the
y variable, we have ∆su→ 0 as ε→ 0.

Therefore our ideas are not applicable to handle this situation.
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