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Abstract. We study the semilinear nonlocal equation ut = J∗u−
u− up in the whole RN . First, we prove the global well-posedness
for initial conditions u(x, 0) = u0(x) ∈ L1(RN ) ∩ L∞(RN ). Next,
we obtain the long time behavior of the solutions. We show that
different behaviours are possible depending on the exponent p and
the kernel J : finite time extinction for p < 1, faster than exponen-
tial decay for the linear case p = 1, a weakly nonlinear behaviour
for p large enough and a decay governed by the nonlinear term
when p is greater than one but not so large.

1. Introduction

Nonlocal evolution equations of the form vt(x, t) = J ∗ v − v(x, t)
and variations of it, have been recently widely used to model diffu-
sion processes, see, for instance, [1], [2], [3], [4], [6], [7], [8], [9], [14],
[16] and [17]. As stated in [8], if v(x, t) is thought of as the den-
sity of a single population at the point x at time t, and J(x − y)
is thought of as the probability distribution (and hence we assume
that

∫
RN J(r) dr = 1) of jumping from location y to location x, then

(J ∗ v)(x, t) =
∫
RN J(y − x)v(y, t) dy is the rate at which individu-

als are arriving to position x from all other places and −v(x, t) =
− ∫

RN J(y−x)v(x, t) dy is the rate at which they are leaving location x
to travel to all other sites. This consideration, in the absence of exter-
nal or internal sources, leads to the equation vt(x, t) = J ∗ v − v(x, t).
This equation shares many properties with the classical heat equation,
vt = ∆v, such as: a maximum principle holds for both of them, pertur-
bations propagate with infinite speed and both equations have the same
asymptotic behaviour ([5], [8], [13]). However, there is no regularizing
effect in general.
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The aim of this paper is to study the asymptotic behavior of solutions
to a semilinear nonlocal equation with absorption, namely,

(1.1)

ut(x, t) = J ∗ u− u(x, t)− up(x, t)

=

∫

RN

J(x− y)u(y, t) dy − u(x, t)− up(x, t),

u(x, 0) = u0(x).

We assume that J : RN → R is a nonnegative radial function with∫
RN J(r)dr = 1 and that the initial condition u0 is nonnegative and

belongs to L1(RN) ∩ L∞(RN).

Our main interest in this work is to see how the nonlinear term
affects the asymptotic behaviour of the solutions. Roughly speaking,
our result says that the behaviour of the solution depends on p and
the behaviour of the Fourier transform of J near the origin. In fact, if
p < 1 the absorption is so strong that there is finite time extinction,
when p = 1 we get a faster than exponential decay rate with a precise
asymptotic profile, while if p is very large we have a weakly nonlinear
behaviour, i.e., solutions have the same decay and the same profile as
the linear part of the equation. In the intermediate range, that is, for
p greater than one but not very large, we obtain that solutions decay
faster than the linear part.

More precisely, our main result reads as follows:

Theorem 1.1. Given u0 ∈ L1(RN) ∩ L∞(RN) there exists a unique
function u ∈ C0([0, +∞); L1(RN) ∩ L∞(RN)), global solution to (1.1).

Let J be such that its Fourier transform Ĵ verifies that there exist
A > 0 and 0 < α 6 2 with

Ĵ(ξ) = 1− A|ξ|α + o(|ξ|α), as ξ → 0.

The asymptotic behaviour of the solutions is described as follows: Let

GA(y) be determined by ĜA(ξ) = e−A|ξ|α, then

(1) If p < 1 there is extinction in finite time, that is, there exists
T < ∞ with u(x, T ) ≡ 0, for all x ∈ RN .

(2) If p = 1, the following holds

lim
t→+∞

max
y

∣∣∣tN
α et u(yt

1
α , t)− ‖u0‖L1(RN )GA(y)

∣∣∣ = 0.

(3) If p > (N + α)/N , then

lim
t→+∞

max
y

∣∣∣∣t
N
α u(yt

1
α , t)−

(
‖u0‖L1(RN ) −

∫ ∞

0

∫

RN

up

)
GA(y)

∣∣∣∣ = 0.
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(4) If 1 < p < (N + α)/N , then the solution satisfies

lim
t→+∞

max
x

t
N
α u(x, t) = 0.

Moreover,

lim
t→+∞

∫

RN

u(x, t) dx = 0.

Let us briefly comment on the ideas used to prove our results. The
global well-posedness is obtained combining a fixed point argument
and a priori estimates. In order to obtain finite time extinction, (1)
of Theorem 1.1, we use comparison arguments. For (2), (3) and (4)
we combine super and subsolution arguments and the variations of
constants formula with precise estimates on the semigroup governed
by the linear part obtained in [5]. As there is no conservation of mass,
due to the presence of the nonlinear term, we need to multiply the
profile by an adequate constant when p > (N + α)/N .

The critical case p = (N + α)/N remains open. We conjecture that
the conclusion of (4) also holds in this case.

Now, let us comment on related literature. For the analogous lo-
cal semilinear problem ut = ∆u − up, we refer to [10] and [11], [12],
where similar results are proved. To obtain the results in those papers
scaling techniques are used, taking advantage of the invariance of the
Laplace operator. As J is non necessarily homogeneous, these scaling
techniques are not appropriate to deal with (1.1).

On the other hand, the asymptotic behaviour of the linear part of
the problem vt = J ∗ v− v was recently addressed in [5] (see also [13]).
In these works, the main tool used to obtain the results is the explicit
formula for the solution obtained via the Fourier transform. However,
the use of Fourier variables seems not to be appropriate in our case due
to the presence of a nonlinear term.

As far as we are concerned the problem we address here has not
been treated in the literature yet and the existing results on nonlocal
problems do not give an immediate answer to it. In fact, this is the
first time that the influence of an absorption nonlinear term in the
asymptotic behaviour is considered.

Before closing this section we observe that we can also consider sign
changing initial conditions just taking −|u|p−1u as the absorption term.
Our results remain valid with this modification. However, we prefer to
deal with nonnegative solutions to simplify some formulas.
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The rest of the paper is organized as follows: in Section 2 we prove
existence and uniqueness of solutions and provide a comparison lemma;
in Section 3 we show finite time extinction for p < 1; Section 4 is
devoted to the linear case p = 1; in Section 5 we study the case p > (N+
α)/N and, finally, in Section 6 we treat the case 1 < p < (N + α)/N .

2. Existence and uniqueness

In this section we prove existence and uniqueness of solutions to (1.1).

Theorem 2.1. Let u0 ∈ L1(RN)∩L∞(RN). Then there exists a unique
solution u ∈ C0([0,∞); L1(RN))∩L∞(RN) to (1.1). Moreover, we have
the estimates,

(2.1) ‖u(t)‖L1(RN ) 6 ‖u0‖L1(RN ) and ‖u(t)‖L∞(RN ) 6 ‖u0‖L∞(RN ),

for every t > 0.

Proof. First, let us prove the existence and uniqueness of a local solu-
tion. To this end we use a fixed point argument.

Let us consider the space

X = C0([0, T ]; L1(RN) ∩ L∞(RN))

with the norm

‖u‖X = max
t∈[0,T ]

{‖u(t)‖L1(RN ) + ‖u(t)‖L∞(RN )

}

and the operator Φ

Φ(u)(x, t) = u0(x) +

∫ t

0

(J ∗ u− u− up)(x, s) ds.

Note that a fixed point of Φ is a solution to (1.1).
Let

R = 2(‖u0‖L1(RN ) + ‖u0‖L∞(RN ))

and take B(0, R) the ball of radius R in X.

We want to show that Φ : B(0, R) 7→ B(0, R) is a strict contraction.
To this end, given u, v ∈ B(0, R) we compute

‖Φ(u)− Φ(v)‖L∞(RN )(t) 6
∫ T

0

‖J ∗ (u− v)‖L∞(RN )

+‖u− v‖L∞(RN ) + ‖up − vp‖L∞(RN ) ds.

Since

‖J ∗ (u− v)‖L∞(RN )(t) 6 ‖J‖L1(RN )‖(u− v)‖L∞(RN )(t)
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and, by the mean value theorem,

|up − vp| = p|ξ|p−1|u− v| 6 pRp−1|u− v|,
we have,

‖Φ(u)− Φ(v)‖L∞(RN )(t) 6 (2T + pRp−1T )‖u− v‖X ,

for any t ∈ [0, T ].
In an analogous way, we obtain that there exists a positive constant

C = C(J) satisfying

‖Φ(u)− Φ(v)‖L1(RN )(t) 6 (C(J)T + pRp−1T )‖u− v‖X .

Choosing T small (depending on J and R) we obtain the local existence
result. In order to prove that the solution is global we need some a
priori estimates.

Integrating the equation in RN and using Fubini’s theorem we obtain

∂

∂t

∫

RN

u(x, t) dx =

∫

RN

u(y, t)

∫

RN

J(x− y) dx dy

−
∫

RN

u(x, t) dx−
∫

RN

up(x, t) dx 6 0,

from where it follows that

(2.2) ‖u(t)‖L1(RN ) 6 ‖u0‖L1(RN ).

Now, multiplying the equation by (u −M)+, where M = ‖u0‖L∞(RN ),

and integrating in RN we get

∂

∂t

∫

RN

(u(x, t)−M)2
+

2
dx =

∫

RN

∫

RN

J(x− y)(u(y, t)− u(x, t))(u(x, t)−M)+ dx dy

−
∫

RN

up(x, t)(u(x, t)−M)+ dx.

Using the formula below (which takes into account the symmetry of J)
∫

RN

∫

RN

J(x− y)(ϕ(y)− ϕ(x))ψ(x) dx dy =

−1

2

∫

RN

∫

RN

J(x− y)(ϕ(y)− ϕ(x))(ψ(y)− ψ(x)) dx dy
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it follows that

∂

∂t

∫

RN

(u(x, t)−M)2
+

2
dx 6

−1

2

∫

RN

∫

RN

J(x− y)|(u(y, t)−M)− (u(x, t)−M)|2 dx dy

−
∫

RN

up(x, t)(u(x, t)−M)+ dx 6 0.

Therefore, ∫

RN

(u(x, t)−M)2
+

2
dx = 0

and we obtain

(2.3) ‖u(t)‖L∞(RN ) 6 ‖u0‖L∞(RN ).

From (2.2) and (2.3), we conclude the result. ¤
We will also need the following comparison result. First, let us define

super and subsolutions.

Definition 2.1. A function u ∈ C([0, +∞); L1(RN) ∩ L∞(RN)) is a
supersolution of

ut = J ∗ u− u− up

if

ut(x, t) >
∫

RN

J(x− y)u(y, t) dy − u(x, t)− up(x, t).

Subsolutions are defined analogously by reversing the inequalities.

Lemma 2.1. Let u be a supersolution and u be a subsolution to (1.1).
If u(x, 0) 6 u(x, 0), then

u(x, t) 6 u(x, t) ∀(x, t) ∈ RN × [0, +∞).

Proof. The argument is similar to the one used to obtain the L∞(RN)
bound. Indeed, we have

(u− u)t 6 J ∗ (u− u)− (u− u)− (up − up).

We multiply the above inequality by (u − u)+ and use the properties
of the convolution operator and the monotonicity of the nonlinearity
to obtain that

∂

∂t

∫

RN

(u(x, t)− u(x, t))2
+

2
dx 6 0,

from which we conclude the result. ¤
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Let us close this section with some estimates of the semigroup asso-
ciated to the linear part (see [5] for complete proofs).

Let v be the solution to

(2.4)
vt(x, t) = J ∗ v − v(x, t),

v(x, 0) = v0(x).

We have an explicit form for the solution in Fourier variables,

v̂(ξ, t) = e( bJ(ξ)−1)tv̂0(ξ).

From this explicit formula the following result is obtained. Recall that
we assume that the Fourier transform of J has an asymptotic expansion

of the form Ĵ(ξ) = 1 − A|ξ|α + o(|ξ|α) for ξ → 0 (with A > 0 and
0 < α 6 2).

Theorem I (See [5]). For every 1 6 q 6 ∞, we have

‖v(·, t)‖Lq(RN ) 6 C t−
N
α

(1− 1
q
),

and the asymptotic profile is given by

lim
t→+∞

max
y

∣∣∣tN
α v(yt

1
α , t)− ‖v0‖L1(RN )GA(y)

∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−A|ξ|α.

In the special case α = 2, the decay rate is t−
N
2 and the asymptotic

profile is a gaussian GA(y) = (4πA)
N
2 exp(−A|y|2/4) with A · Id =

−(1/2)D2Ĵ(0). Note that in this case (that occurs, for example, when
J is compactly supported) the asymptotic behavior is the same as the
one for solutions of the heat equation and, as happens for the heat
equation, the asymptotic profile is a gaussian.

3. Finite time extintion for p < 1

In this section we prove item (1) of Theorem 1.1, that is, that solu-
tions to (1.1) vanish in finite time when p < 1.

Lemma 3.1. Let p < 1 and u a solution to (1.1), then there exists a
finite time T such that

u(x, T ) ≡ 0.

Moreover, the exitinction time T verifies

T 6
‖u0‖1−p

L∞(RN )

1− p
.
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Proof. Let z(t) be the solution to the following ODE,

(3.1)
zt(t) = −zp(t)

z(0) = ‖u0‖L∞(RN ).

A comparison argument using Lemma 2.1 shows that

u(x, t) 6 z(t),

and an explicit integration of (3.1) gives

z(t) =
(
(z(0))1−p − (1− p)t

) 1
1−p .

Since z vanishes at the finite time

t0 =
z(0)1−p

1− p
,

the result follows. ¤

4. The linear case p = 1

In this section we consider the linear case p = 1, that is,

ut = J ∗ u− u− u.

Proof of (2). If we consider

v(x, t) = etu(x, t)

we get a solution to the nonlocal diffusion equation

vt = J ∗ v − v,

that was studied in [5] (see Theorem I).
As we have mentioned, the asymptotic behaviour of such v is given

by

lim
t→+∞

max
y

∣∣∣tN
α v(yt

1
α , t)− ‖u0‖L1(RN )GA(y)

∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−A|ξ|α . Therefore, we conclude that

lim
t→+∞

max
y

∣∣∣tN
α etu(yt

1
α , t)− ‖u0‖L1(RN )GA(y)

∣∣∣ = 0.

This ends the proof. ¤
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5. Asymptotic behaviour for p > (N + α)/N

In this section we obtain the asymptotic bahaviour for p > (N+α)/N
which is governed by the linear part.

First, let us state two simple lemmas that provide us with upper
bounds for the solutions.

Lemma 5.1. Let u be the solution to (1.1), then

u(x, t) 6 1
(
‖u0‖1−p

L∞(RN )
+ (p− 1)t

) 1
p−1

.

Proof. Just use a comparison argument with the explicit solution

z(t) =
1

(
‖u0‖1−p

L∞(RN )
+ (p− 1)t

) 1
p−1

,

recalling that this is the solution to the ODE zt = −zp with initial
datum z(0) = ‖u0‖L∞(RN ). ¤
Lemma 5.2. Let u be the solution to (1.1) and v the solution to

vt = J ∗ v − v

with the same initial condition v(x, 0) = u0(x). Then,

u(x, t) 6 v(x, t).

Proof. Again it is just a comparison argument, since v is a supersolution
to (1.1), see Lemma 2.1. ¤

It is important to observe that from these two lemmas we get the
decay estimate

‖u(t)‖L∞(RN ) 6 C min

{
1

t
1

p−1

,
1

t
N
α

}
.

Then, when p > (N + α)/N , we have that

1

p− 1
<

N

α
.

Therefore, we expect that the decay rate will be given by the linear
part of the equation.

Proof of (3). We use the variation of constants formula to rewrite (1.1)
as

u(x, t) = S(t)u0 −
∫ t

0

S(t− s)up(s) ds,
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where by S(·) we have denoted the semigroup associated with the linear
part of the equation.

First, let us prove that the integral

C0 =

∫ ∞

0

∫

RN

up(x, s) dx ds

is finite. In fact, by Lemma 5.2 and the decay estimates obtained for
the linear part (see Theorem I) we have

∫ ∞

0

∫

RN

up(x, s) dx ds 6
∫ ∞

0

∫

RN

vp(x, s) dx ds

=

∫ ∞

0

∫

RN

|S(s)u0|p(x, s) dx ds

=

∫ ∞

0

‖S(s)u0‖p
Lp(RN )

ds

6 C

∫ ∞

0

1

(1 + s)
N(p−1)

α

ds < ∞

since −N(p−1)
α

+ 1 < 0.
Take t0 large such that

(5.1)

∣∣∣∣
∫ ∞

0

∫

RN

up(x, s) dx ds−
∫ t

0

∫

RN

up(x, s) dx ds

∣∣∣∣ < ε,

for every t > t0.
For this t0 introduced above we take the solution to the linear part

of the equation with initial datum (at t = t0) v(x, t0) = u(x, t0), that
is,

vt(x, t) = J ∗ v − v(x, t),

v(x, t0) = u(x, t0).

Now, our next task is to estimate the difference u − v in L∞(RN)-
norm. We have,

(u− v)(t) = −
∫ t

t0

S(t− s)up(s) ds.
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Therefore, using the properties of the linear semigroup (recall that we
have the uniform a priori bound (2.1)),

t
N
α ‖u− v‖L∞(RN )(t) 6 t

N
α

∫ t

t0

‖S(t− s)up(s)‖L∞(RN ) ds

6 Ct
N
α

∫ t

t0

1

(1 + (t− s))
N
α

‖u(s)‖p
Lp(RN )

ds

6 Ct
N
α

∫ t

t0

1

(1 + (t− s))
N
α

1

(1 + s)
N(p−1)

α

ds.

Letting s = Az+t0, with A = 1+t0, and using a lemma due to Strauss,
[15], we get

t
N
α ‖u− v‖L∞(RN )(t) 6 Ct

N
α

A
Np
α
−1

∫ t
A

0

1

(1 + t
A
− z)

N
α

1

(1 + z)
N(p−1)

α

dz

6 Ct
N
α

A
Np
α
−1

1

(1 + t
A
)

N
α

.

This estimate allows to conclude that

t
N
α ‖u− v‖L∞(RN )(t) < ε

for t large enough.

Let ṽ be the solution to

ṽt(x, t) = J ∗ ṽ − ṽ(x, t),

ṽ(x, 0) = ṽ0(x),

where the initial condition ṽ0(x) has total mass
∫
RN u0 − C0. Remark

that, by Theorem I, two solutions of ṽt = J ∗ ṽ− ṽ with the same total
mass have the same asymptotic behaviour.

Collecting our previous bounds, we get

t
N
α ‖u− ṽ‖L∞(RN )(t) 6 t

N
α ‖u− v‖L∞(RN )(t) + t

N
α ‖v − ṽ‖L∞(RN )(t) < Cε

if t is large enough. Indeed, by (5.1), the total mass of v and ṽ satisfy

∣∣∣∣
∫

RN

v −
∫

RN

ṽ

∣∣∣∣ < ε,
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and the results in [5] imply

t
N
α ‖v − ṽ‖L∞(RN )(t) 6 t

N
α ‖v − t−

N
α ‖v0‖L1(RN )GA‖L∞(RN )(t)

+t
N
α ‖ṽ − t−

N
α ‖ṽ0‖L1(RN )GA‖L∞(RN )(t)

+
∣∣‖v0‖L1(RN ) − ‖ṽ0‖L1(RN )

∣∣‖GA‖L∞(RN )(t)

< Cε

for t large enough. Therefore,

lim
t→∞

t
N
α ‖u− ṽ‖L∞(RN )(t) = 0

and from Theorem I the result follows. ¤

Remark 5.1. It is important to point out that the above result says that
the asymptotic behaviour of solutions to (1.1) is governed by the linear

part of the equation. Indeed, the decay rate is t−
N
α and the asymptotic

profile is the same GA. However, since the problem (1.1) does not
conserve the total mass due to the presence of the nonlinear term, we
have to introduce the constant C0 =

∫∞
0

∫
RN up.

Remark 5.2. In [10] the authors use the scaling invariance of the
Laplacian to study the asymptotic behaviour of the solutions to ut =
∆u + up. In our case we can not use that kind of approach since the
kernel J is not necessarily homogeneous.

Remark 5.3. In the critical case p = (N + α)/N the lemma due to
Strauss is not applicable and hence the integral estimated above is not
necessarily small.

We end this section obtaining the decay rate of the solutions in
Lq(RN).

Proposition 5.1. Let p > (N + α)/N , then for every 1 6 q 6 ∞, we
have

‖u(·, t)‖Lq(RN ) 6 C t−
N
α

(1− 1
q
).

Proof. By Lemma 5.2 and Theorem I we get

‖u(t)‖Lq(RN ) 6 ‖v(t)‖Lq(RN ) 6 C t−
N
α

(1− 1
q
),

as we wanted to prove. ¤
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6. Nonlinear behaviour for 1 < p < (N + α)/N

In this section we prove that if 1 < p < (N + α)/N the solutions

decay faster than t−
N
α , i.e., the decay of the linear part. Hence the

nonlinear term strongly influences the asymptotic behaviour.

Proof of (4). From Lemma 5.1 we have

t
N
α u(x, t) 6 t

N
α

(
‖u0‖1−p

L∞(RN )
+ (p− 1)t

) 1
p−1

→ 0,

as t →∞ since N
α

< 1
p−1

.

Now, let us prove that

lim
t→+∞

∫

RN

u(x, t) dx = 0.

Indeed, using Lemmas 5.1 and 5.2, we have∫

RN

u(x, t) dx =

∫

|x|>Kt
1
α

u(x, t) dx +

∫

|x|6Kt
1
α

u(x, t) dx

6 t
N
α

∫

|y|>K

v(t
1
α y, t) dy + t

N
α

∫

|y|6K

u(t
1
α y, t) dy

6 t
N
α

∫

|y|>K

v(t
1
α y, t) dy + C(K) t

N
α
− 1

p−1 .

On the other hand, from [13], we have the convergence, as t → +∞,

of t
N
α v(t

1
α y, t) to ‖u0‖L1(RN )GA(y) in Lq(RN)-norm. Therefore,

lim
t→+∞

t
N
α

∫

|y|>K0

v(t
1
α y, t) dx < ε

for some K0 large. Once K0 is fixed we only have to observe that

lim
t→+∞

C(K0) t
N
α
− 1

p−1 = 0

since N
α
− 1

p−1
< 0. ¤

Remark 6.1. In the critical case p = (N + α)/N the previous compu-

tation only shows that t
N
α u(x, t) is bounded.
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