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Abstract. This paper deals with the problem,{
−∆u = λuq(x) x ∈ Ω
u = 0 x ∈ ∂Ω,

(P )

where Ω ⊂ RN is a bounded smooth domain, λ > 0 is a parameter and
the reaction order q(x) is a Hölder continuous positive function satisfying
q(x) > 1 for all x ∈ Ω. The relevant feature here is that q is assumed to
achieve the value one on ∂Ω. Assuming that q is subcritical our main
result states the existence of a positive solution for all λ > 0. We also
study its asymptotic behavior as λ → 0 and as λ → ∞. It should be
noticed that the fact that q = 1 somewhere in ∂Ω gives rise to serious
difficulties when looking for critical points of the functional associated
with (P ). This work is a continuation of [13] where q is assumed to
take values both greater and smaller than one in Ω but is constrained
to satisfy q(x) > 1 on ∂Ω.

1. Introduction

This work is devoted to the analysis of positive solutions to the semilinear
boundary value problem:{

−∆u = λuq(x) x ∈ Ω

u = 0 x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain and λ > 0 is a bifurcation
parameter. The exponent q(x) is assumed to be a positive function q ∈
Cα(Ω), 0 < α < 1, such that

q(x) > 1 x ∈ Ω. (1.2)

Thus, the reaction term in problem (1.2) exhibits a variable order and a con-
vex profile (since q is greater than one in Ω). However, we are also assuming
that q achieves the value one somewhere on the boundary. Specifically, and
to simplify the exposition we will assume that

q(x) = 1 x ∈ ∂Ω. (1.3)

As will be seen later, this behavior of q turns out to be critical with respect
to several technical points (for instance, the applicability of the method of
sub and supersolutions, checking Palais–Smale type conditions, the moving
planes method or Pohozaev-type relations). More importantly, the standard
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rescaling technique in [14] can not be employed to obtain a priori estimates
for (1.1). Indeed, a critical case arises when the points where a possible
blowing-up sequence of solutions attain their maxima, accumulates at a
point x0 of the boundary ∂Ω where q(x0) = 1 (see [13]).

The study of problem (1.1) under the limiting case (1.3) of the exponent
q remained open in [13] where q was allowed to take values both greater and
smaller than one, but q was restricted to satisfy q(x) > 1 in those common
components (if any) of ∂Ω and ∂Ω+, where Ω+ = {x ∈ Ω : q(x) > 1}. In

addition, the growth of q was constrained in [13] to fulfill q(x) <
N

N − 2
. We

are also relaxing this seemingly “technical” restriction to permit the more
natural subcritical growth

q(x) <
N + 2

N − 2
. (1.4)

In fact we are assuming henceforth that N ≥ 3. An analysis similar as the
one developed here can be used to handle the case N = 2 without further
restriction in the size of q.

The subject of reaction–diffusion equations with constant order reactions
has been widely studied (see [9], [17], [26], [22] and [21], to quote some
few standards in the topic). However, the variable exponent case is not
yet completely understood. We refer to [10], [11] on large solutions, [12],
[18] dealing with population dynamics models, [7], [19] on diffusion through
a porous medium and the already mentioned [13] on a variable exponent
problem of concave–convex nature. Problem (1.1) under the more restrictive
assumption q(x) ≥ q0 > 1 in Ω was analyzed in [19] (see further comments
in Section 2). Finally, see [25] for an updated review on problems in the
spirit of [13]. This is just a minimal sample of references rather than an
exhaustive account on the subject.

Our main result is the following:

Theorem 1. Let Ω ⊂ RN be a bounded smooth domain, q ∈ Cα(Ω) satis-
fying q(x) > 1 in Ω, q ≡ 1 on ∂Ω and the growth condition (1.4). Assume
moreover that there exist a small η > 0 and a constant C0 > 0 such that

q(x) ≥ 1 + C0d(x) if d(x) < η, (1.5)

where d(x) = dist(x, ∂Ω). Then the boundary value problem{
−∆u = λ|u|q(x)−1u x ∈ Ω

u = 0 x ∈ ∂Ω,
(1.6)

exhibits the following features:

i) For each λ > 0, (1.6) possesses a positive solution uλ ∈ C2,β(Ω).
ii) If Ω = B is an open ball and q is a radially symmetric function then

for every λ > 0 the positive solution given by i) can be chosen to be
radially symmetric.
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iii) Any family uλ of positive solutions satisfies ‖uλ‖∞ →∞ as λ→ 0+.
Moreover,

lim
λ→0+

λ
1

q+−1 ‖uλ‖∞ > 0, (1.7)

where q+ = maxΩ q.
iv) Let uλ be either of the families of positive solutions to (1.6) intro-

duced in i) and ii). Then,

lim
λ→∞

‖uλ‖C2,β(Ω) = 0. (1.8)

Moreover, ‖uλ‖C2,β(Ω) decays exponentially to zero as λ→∞. More

precisely, there exist C1, C2, λ0 > 0 such that

‖uλ‖C2,β(Ω) ≤ C1e
−C2

3√
λ, for λ ≥ λ0.

Remarks 1.

a) When q(x) = q+ > 1 is a constant, a scaling argument shows that any
family uλ of nontrivial solutions can be written as

uλ = λ
− 1
q+−1u1, (1.9)

u1 being a solution corresponding to λ = 1. Thus the limit in (1.7) achieves
a finite value in this case. This may be false when dealing with variable
exponents (see Remark 2).

b) Relation (1.9) shows that in the case q(x) = q+, all families of positive
solutions uλ to (1.6) decay to zero as a negative power of λ as λ→∞. This
has to be contrasted with the variable exponent case where the convergence
to zero is exponential, as shown in part iv) of Theorem 1 (see Section 4 for
details).

The rest of the paper is organized as follows: Section 2 introduces the
proper variational tools required to handle our problem, i. e. in the critical
framework where q = 1 on ∂Ω (here the results in [16] deserve a special
mention). The proof of Theorem 1 is contained in Section 3 while some key
uniform estimates are postponed to Section 4.

2. Background results

By a solution to problem (1.6) it will be understood a function u ∈ H1
0 (Ω)

solving (1.6) in the weak sense. Since the growth condition (1.4) leads to
the estimate

|u|q(x) ≤ C(1 + |u|q+), (2.1)

which holds for every u ∈ R, x ∈ Ω, with q+ = maxΩ q satisfying

q+ <
N + 2

N − 2
,

then, every weak solution u ∈ H1
0 (Ω) is indeed a classical solution (see [13]

and [27]). Moreover, since q ∈ Cα(Ω) then such solution lies in C2,β(Ω) for
some β ∈ (0, 1).
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Solutions u ∈ H1
0 (Ω) to (1.6) are characterized as the critical points of

the functional

Jλ(u) =
1

2

∫
Ω
|∇u|2 dx− λP(u) =

1

2
‖u‖2H1

0 (Ω) − λP(u), (2.2)

with

P(u) =

∫
Ω

|u|q(x)+1

q(x) + 1
dx, (2.3)

P referring to “potential”. Here we are following a variational approach to
get the existence of nontrivial solutions to (1.6).

At this point, it is worth to mention that it is not possible to find a
positive solution u to (1.6) by the method of sub and supersolutions (as in
the case where q is constant). Otherwise this approach would imply the
existence of a minimal positive solution u+ ∈ H1

0 (Ω) satisfying

0 < u+ ≤ u.

However, if σ = σ1(−∆ − λqu+
q−1) stands for the first eigenvalue of the

linearization of problem (1.6) at u+, i. e.,{
−∆u− λqu+

q−1u = σu x ∈ Ω

u = 0 x ∈ ∂Ω,
(2.4)

then it is well–known that σ1(−∆ − λqu+
q−1) ≥ 0. We refer to [13] and

[1] for a proof of this fact and further properties of the eigenvalue problem
(2.4).

On the other hand, that u+ solves (1.6) means that the principal eigen-
value σ1(−∆− λu+

q−1) = 0 (here and above σ1(−∆ + V (x)) stands for the
first eigenvalue of the operator −∆ + V (x) in H1

0 (Ω)). Since

σ1(−∆− λqu+
q−1) < σ1(−∆− λu+

q−1) = 0,

we get a contradiction. So, the sub and supersolutions method does not
provide positive solutions to (1.6).

Let us check now some variational properties of Jλ. First, Jλ : H1
0 (Ω)→ R

is a C1 functional. Moreover, P : H1
0 (Ω)→ R is C1 and its derivative

DP : H1
0 (Ω)→ H−1(Ω),

(H−1(Ω) stands for the dual space of H1
0 (Ω)) defines a completely continuous

operator. In fact, for η > 0 satisfying

q+ ≤
2∗ − η

2∗
(2∗ − 1) 2∗ =

2N

N − 2
,

the Nemytskii operator N : H1
0 (Ω)→ L

2∗−η
q++1 (Ω), given by

N (u) =
|u|q(x)+1

q(x) + 1
,
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and its derivative DN (u) : H1
0 (Ω) → L

2∗−η
q+ (Ω), DN (u)v = |u|q(x)−1uv, are

completely continuous operators. Finally,

DP(u)v =

∫
Ω
DN (u)v dx.

To deal with the existence of nontrivial solutions of (1.6) some further in-
gredients of critical point theory are necessary. Let X be a Banach space
and J : X → R a C1 functional. It is said that J exhibits a Mountain Pass
(MP for short) geometry near u = 0 if there exist R, η > 0, ψ ∈ X \ {0}
with ‖ψ‖X > R satisfying

J(u) ≥ η > max{J(0), J(ψ)}, (2.5)

for all u ∈ X, ‖u‖X = R. In that case the number

c = inf
Γ

max
t∈[0,1]

J ◦ γ(t),

with Γ = {γ ∈ C[0, 1] : γ(0) = 0, γ(1) = ψ}, is called a MP level. On the
other hand, a sequence {un} ⊂ X is a Palais–Smale (PS) sequence at level
c0 if J(un) → c0 and the sequence of derivatives DJ(un) → 0 in X∗ (the
dual space of X). Finally, J is said to verify the PS condition at level c0 if
it is possible to extract a convergent subsequence from every PS sequence
{un} at level c0. If such condition is satisfied regardless the value of c0 we
say that J satisfies the PS condition.

The MP theorem ([2],[24],[27]), asserts that every C1 functional J having
a MP geometry near u = 0 and satisfying the PS condition possesses a
critical point u at the MP level c given by (2.5).

However, MP theorem can not be directly applied to problem (1.6) due to
the behavior (1.3) of q on the boundary. While it will be shown in Section
3 that the functional Jλ defined in (2.2) has a MP geometry near u = 0,
to check the PS condition is not an easy task. A weaker statement, whose
proof is standard, and therefore omitted (we refer to [24] and [27]), is the
following:

Lemma 2. Every bounded PS sequence {un} ⊂ H1
0 (Ω) of Jλ admits a

convergent subsequence in H1
0 (Ω).

In the case where

q(x) ≥ q0 > 1 x ∈ Ω, (2.6)

the so-called Ambrosetti-Rabinowitz relation ([2]):

1

q(x) + 1
|u|q(x)+1 ≤ θ|u|q(x)+1 u ∈ R, (2.7)

holds for a certain θ ∈ [0,
1

2
). Based upon (2.7) it can be shown that every PS

sequence is indeed a bounded PS sequence (BPS in the sequel). See Lemma
3.6 in [2] and [24], [27]. Therefore, Jλ verifies the PS condition provided
(2.6) is satisfied and problem (1.1) admits, for each λ > 0, a positive solution
under this restrictive condition on q. This argument provides an alternative
proof of Theorem 2.1 in [19].
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However, (2.7) fails near ∂Ω in our case. To circumvent the problem
we are employing an alternative approach using ideas from [16]. To this
purpose consider a family Jλ : X → R, λ ∈ I (where I is a real interval)
of C1 functionals. We say that Jλ has a MP geometry at u = 0 which is
uniform with respect to λ ∈ I, if R, η > 0 and ψ ∈ X \ {0} can be chosen
independent of λ ∈ I in the previous definition. In that case, the reference
MP level will be designated as

cλ = inf
Γ

max Jλ ◦ γ, (2.8)

Γ = {γ ∈ C[0, 1] : γ(0) = 0, γ(1) = ψ}.
The next result is a shortened version of Theorem 1.1 and Corollary 1.2 in

[16]. They are stated there under less restrictive hypotheses. However, we
have narrowed the scope of the assertions to confine ourselves to the setting
of problem (1.6).

Theorem 3 ([16]). Let I be a real interval, and Jλ : X → R, λ ∈ I, be a
family of C1 functionals of the form,

Jλ(u) = A(u)− λP(u),

where P(u) ≥ 0 for all u ∈ X and A(u) → ∞ as ‖u‖X → ∞. Assume that
Jλ has a uniform MP geometry at u = 0 when λ ∈ I. Then the following
features hold.

1) For almost all λ ∈ I there exists a BPS at level cλ, with cλ defined
by (2.8).

2) Assume that both P and DP keep bounded on bounded sets of X, that
any BPS sequence at the level cλ admits a convergent subsequence
in X, and let λ0 belong to the interior of I. Then there exist an
increasing sequence λn with λn → λ0, and {un} ⊂ X such that

Jλn(un) = cλn , cλn → cλ0 , and DJλn(un) = 0, (2.9)

for all n. Moreover, provided that un is bounded it becomes a PS
sequence for Jλ0 at the level cλ0.

Theorem 3 is our main tool to establish the existence of nontrivial solu-
tions to problem (1.6).

3. Proof of Theorem 1.

We are first discussing the geometry of Jλ near u = 0. A preliminary fact
is ∫

Ω

1

q(x) + 1
|u|q(x)+1 dx = o(‖u‖2H1

0 (Ω)),

as ‖u‖H1
0 (Ω) → 0. In fact, let un ∈ H1

0 (Ω) be any sequence such that

tn = ‖un‖H1
0 (Ω) → 0. By setting un = tnvn, a subsequence vn′ of vn can be

extracted such that (we write vn instead vn′ in what follows) vn → v weakly
in H1

0 (Ω) and strongly in Lq++1(Ω). In addition, vn → v a. e. in Ω while,
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by the results in [3], there exists h ∈ Lq++1(Ω) such that |vn(x)| ≤ h(x), a.
e. in Ω. By using (2.1) we obtain

lim
n→∞

1

‖un‖2H1
0 (Ω)

∫
Ω

1

q(x) + 1
|un|q(x)+1 dx

= lim
n→∞

∫
Ω

t
q(x)−1
n

q(x) + 1
|vn|q(x)+1 dx = 0.

This proves the assertion. As a consequence, given any bounded interval
I ⊂ R+ there exists ε > 0 and C > 0, both independent of λ ∈ I, such that

Jλ(u) ≥ C‖u‖2H1
0 (Ω) (3.10)

for all u ∈ H1
0 (Ω) satisfying ‖u‖H1

0 (Ω) ≤ ε.

To check that the functional Jλ exhibits a MP geometry at u = 0 which is
“uniform” when λ varies in bounded intervals I ⊂ R+, we look for a function
ψ ∈ H1

0 (Ω) so that

Jλ(ψ) < 0, (3.11)

for all λ ∈ I, where ψ does not depend on λ ∈ I. Set ψ = tφ1, where φ1 > 0
is an eigenfunction associated to the first Dirichlet eigenvalue λ1, and t > 0
is to be determined. Then,

Jλ(tφ1) ≤
∫
d(x)≤d0

(
B(tφ1)2 − E(tφ1)q(x)+1

)
dx

+

∫
d(x)>d0

(
B(tφ1)2 − E(tφ1)q(x)+1

)
dx,

where d(x) = dist(x, ∂Ω), d0 > 0 is a suitably small constant,

E =
λ

q+ + 1

and

B =
λ1

2
.

Now choose x̄ ∈ Ω so that q(x̄) = q+ = maxΩ q, and take a small δ with
the property that B(x̄, δ) ⊂ {d(x) > d0} and q(x) > q+ − η > 1 in B(x̄, δ).
We have

Jλ(tφ1) ≤ Bt2
∫
d(x)≤d0

φ2
1 dx−

∫
B(x̄,δ)

(
E(tφ1)q+−η+1 −B(tφ1)2

)
dx, (3.12)

if t > 0 is taken so large as to have (tφ1)q(x)−1 ≥ B/E in d(x) > d0. Since
q+ − η + 1 > 2 it follows from (3.12) that a value of t0 > 0 can be found
(independent on λ ∈ I) so that (3.11) holds for ψ = t0φ1.

Set now A(u) =
1

2
‖u‖2

H1
0 (Ω)

, P(u) as defined in (2.3) and fix a bounded

interval I ⊂ R+. Then, Theorem 3–1) can be applied to show the existence,
for almost all λ ∈ I, of a BPS sequence vn ∈ H1

0 (Ω) of Jλ at the MP level
cλ. Since Lemma 2 permits to extract a convergent subsequence vn′ → v
in H1

0 (Ω) and cλ > 0 (after a proper choice of 0 < R ≤ ε in (3.10)) then



8 J. GARCÍA-MELIÁN, J. D. ROSSI AND J. C. SABINA DE LIS

we get a nontrivial solution v to (1.6). Moreover, this argument proves the
existence of a nontrivial solution to (1.6) for almost all λ > 0.

Let us show next that existence actually holds for all λ > 0. First, notice
that (2.1) implies that both

N(u) =
|u|q(x)

q(x) + 1
and DN(u) = |u|q(x)−1u

remain bounded on bounded sets of H1
0 (Ω), and so are both P and DP.

On the other hand, Lemma 2 says that every BPS sequence of Jλ admits
a convergent subsequence in H1

0 (Ω). Thus, by applying Theorem 3–2) at a
fixed λ0 > 0 we obtain sequences λn → λ0, λn increasing, and un ∈ H1

0 (Ω)
such that

Jλn(un) = cλn , DJλn(un) = 0 and cλn → cλ0 .

We will prove in Section 4 that such sequence is bounded in H1
0 (Ω) (see

Lemma 5). Therefore, Theorem 3–2) allows us to conclude that un is a
BPS sequence of Jλ0 at the level cλ0 and, as above, it furnishes a nontrivial
solution u ∈ H1

0 (Ω) to (1.6) satisfying Jλ0(u) = cλ0 .

Observe also that the entire analysis of this section and the corresponding
one in Section 4, can still be carried out if Jλ is replaced by the functional

Jλ,+(u) =
1

2
‖u‖2H1

0 (Ω) − λ
∫

Ω

u
q(x)+1
+

q(x) + 1
dx, (3.13)

where u+ = max{u, 0}. In fact, it can be checked that a nontrivial critical
point u ∈ H1

0 (Ω) of J+
λ defines a positive solution to (1.6). This concludes

the proof of i).

Assertion ii) is readily attained if the full analysis is performed in the
subspace of H1

0 (Ω) which consists of radially symmetric functions.

The statement in iii) is a consequence of standard Lp estimates. Indeed, if

un := uλn is a sequence of positive solutions with λn → 0 and λnt
q+−1
n → 0,

(here tn = ‖un‖∞), then vn = un/tn solves −∆vn = λnt
q(x)−1
n vn. Since the

right hand side converges to zero in L∞(Ω), a subsequence vn′ can be found
so that vn′ → 0 in C1(Ω), what is not possible.

A proof of iv) is postponed until the end of Section 4.

Remark 2. The limit in (1.7) could be infinite. Indeed, let Ω = B be
a ball centered at x = 0 with radius R > 0 and assume that q > 1 is
radially symmetric and such that {r : q(r) = q+} is a set of measure zero.
Suppose that un := uλn is a family of positive radial solutions with λn → 0.
As already shown, tn := ‖un‖∞ = un(0) → ∞. Setting un = tnvn, a
straightforward computation yields the relation,

tn =
λn

N − 2

∫ R

0
s

(
1−

( s
R

)N−2
)
vn(s)q(s)tq(s)n ds.

Thus,

1 =
λnt

q+−1
n

N − 2

∫ R

0
s

(
1−

( s
R

)N−2
)
vn(s)q(s)t−(q+−q(s))

n ds,
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whence λnt
q+−1
n →∞ since the integral goes to zero.

4. Uniform bounds.

This section is dedicated to show the a priori bounds required in the proof
of Theorem 1 i) and also the statement in Theorem 1 iv). We will assume
throughout that a “reference” sequence (λn, un) ∈ (0,+∞)×H1

0 (Ω) satisfies
the following hypothesis:

(H)J The sequence λn is increasing and λn → λ0 for some positive λ0

while Jλn(un) = cλn with

cλn = inf
γ∈Γ

max Jλn ◦ γ,

where Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = ψ}, ψ ∈ H1

0 (Ω)
does not depend on n and cλn > max{0, Jλn(ψ)}. In addition,

DJλn(un) = 0,

for all n ∈ N.

Through a series of steps we will show that under condition (H)J , the se-
quence un is bounded in H1

0 (Ω). Notice that, since Jλ is non increasing in
λ, then cλn is bounded.

In what follows C will designate different constants whose explicit values
are irrelevant for the purposes of the proofs.

Lemma 4. Let {(λn, un)} ⊂ (0,+∞)×H1
0 (Ω) be a sequence satisfying (H)J .

Then there exists C > 0 such that

‖ |un|q(x)+1‖L1(Ω,dµ) ≤ C, (4.1)

where dµ = dist(x, ∂Ω) dx. Furthermore, for every 1 ≤ p <
N

N − 1
there

exists another constant C such that

‖un‖Lp(Ω) ≤ C. (4.2)

Proof. First observe that Jλn(un) is bounded from above since cλn is non
increasing. On the other hand

‖un‖2H1
0 (Ω) − λn

∫
Ω

1

q(x) + 1
|un|q(x)+1 dx = 0,

for all n. This implies that

λn

∫
Ω

q(x)− 1

q(x) + 1
|un|q(x)+1 dx = O(1), (4.3)

as n→∞. Using hypothesis (1.5) we conclude that∫
Ω
d(x)|un|q(x)+1 dx ≤ C,

what proves (4.1). In particular λn|un|q(x) is bounded in L1(Ω, dµ) since
λn remains bounded. We use now the crucial fact that (λn, un) solves (1.6)
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together with the estimates in Lemma 2.1 of [5] (see also [23]) to achieve
(4.2). �

Lemma 5. Assume that {(λn, un)} ⊂ (0,+∞)×H1
0 (Ω) satisfies the hypoth-

esis (H)J . Then, the sequence un is bounded in H1
0 (Ω).

Proof. Using once again that (λn, un) solves (1.6) we get∫
Ω
|∇un|2 dx = λn

∫
Ω
|un|q(x)+1 dx,

that is, to get a bound for ‖un‖H1
0 (Ω) we need to obtain a uniform bound for

the integral in the right hand side of the above equality. So set Ωδ = {x ∈
Ω : d(x) < δ}, with δ > 0 and suitably small, Qδ = Ω \ Ωδ. Writing∫

Ω
|un|q(x)+1 dx =

∫
Ωδ

|un|q(x)+1 dx+

∫
Qδ

|un|q(x)+1 dx,

we observe that (4.1) entails that the third integral in the equality is uni-
formly bounded. To estimate the second integral we select a value q1 veri-
fying

1 < q1 <
N

N − 1
.

Then we obtain

|u|q(x) ≤ 1 + |u|q1

for all x ∈ Ωδ, if δ is chosen small enough.

On the other hand, using Lemma 4, we obtain:∫
Ωδ

|un|q(x)+1 dx ≤
∫

Ωδ

|un| dx+

∫
Ωδ

|un|q1+1 dx ≤ C +

∫
Ωδ

|un|q1+1 dx.

We now borrow ideas from [4] to estimate the last integral. First, observe
that ∫

Ωδ

|un|q1+1 dx =

∫
Ωδ

(d|un|q1)θ(|un|q1)1−θ |un|
dθ

dx,

where,

θ =
2

N + 1
< 1.

By using Hölder’s inequality, we get∫
Ωδ

|un|q1+1 dx ≤
(∫

Ωδ

d|un|q1 dx
)θ(∫

Ωδ

|un|q1
|un|

1
1−θ

d
θ

1−θ
dx

)1−θ

≤ C

(∫
Ωδ

|un|q1
|un|

1
1−θ

d
θ

1−θ
dx

)1−θ

, (4.4)

where Lemma 4 has been used to estimate the second integral in the first
line, since q1 <

N
N−1 . We next observe that for arbitrarily small ε > 0 a

positive constant Cε can be chosen so that

|u|q1 ≤ ε|u|qBT + Cε,
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for all u ≥ 0, where qBT = N+1
N−1 is the well-known Brezis-Turner exponent

(cf. [4]). Thus, the last integral in (4.4) can be estimated as,(∫
Ωδ

|un|q1
|un|

1
1−θ

d
θ

1−θ
dx

)1−θ

≤ ε1−θ

(∫
Ωδ

|un|
2

1−θ

d
θ

1−θ
dx

)1−θ

+ Cε

(∫
Ωδ

|un|
1

1−θ

d
θ

1−θ
dx

)1−θ

≤ ε1−θ
∥∥∥∥un
d
θ
2

∥∥∥∥2

L
2

1−θ (Ω)

+ Cε

∥∥∥un
dθ

∥∥∥
L

1
1−θ (Ω)

, (4.5)

where it has been used that

qBT =
1

1− θ
.

We now recall the next variant of Hardy inequality (Lemma 2.2 in [4]). It
states that for every u ∈ H1

0 (Ω) and 0 ≤ s ≤ 1, a positive constant C exists
so that the inequality ∥∥∥ v

ds

∥∥∥
Lp(Ω)

≤ C‖v‖H1
0 (Ω),

holds true for every v ∈ H1
0 (Ω), provided that

1

p
=

1

2
− 1− s

N
.

Taking into account that p =
2

1− θ
for s =

θ

2
while the corresponding p

associated to s = θ satisfies p >
1

1− θ
, we conclude from (4.4) and (4.5)

(after possibly diminishing ε) that∫
Ωδ

|un|q(x)+1 dx ≤ ε1−θ‖u‖2H1
0 (Ω) + Cε‖u‖H1

0 (Ω) + C.

Thus,
‖un‖2H1

0 (Ω) ≤ ε
1−θ‖un‖2H1

0 (Ω) + Cε‖un‖H1
0 (Ω) + C,

which certainly implies that ‖un‖H1
0 (Ω) is bounded if ε is properly chosen. �

Proof of assertion iv) in Theorem 1. We first show that the MP level cλ in-
volved in Section 3 and associated to the solution uλ satisfies

lim
λ→∞

cλ = 0.

Let γλ be the path γλ(τ) = τψ, 0 ≤ τ ≤ 1, which joins u = 0 with the
function ψ = t0φ1 computed in Section 3 (notice that now t0 depends on λ
since λ→∞). Set

c̃λ = max Jλ ◦ γλ = max
0≤t≤t0

Jλ(tφ1).

Since 0 < cλ ≤ c̃λ then it suffices to show that

lim
λ→∞

c̃λ = 0. (4.6)
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Take h(t) = Jλ(tφ1). It is clear that h achieves its maximum at a value
t = tλ satisfying ∫

Ω
λ1φ

2
1 dx = λ

∫
Ω
t
q(x)−1
λ φ

q(x)+1
1 dx. (4.7)

Hence, tλ → 0 as λ→∞. From

c̃λ = Jλ(tλφ1) ≤ λ1tλ
2

2

∫
Ω
φ2

1 dx, (4.8)

(4.6) follows.

Next, we use both (4.7) and (4.8) to provide a better estimate of c̃λ. For
a small δ > 0 there exists k0 > 0 such that

φ1(x) ≥ k0d(x),

for all x ∈ Ωδ. For the sake of simplicity we assume that q is Lipschitz in
Ωδ and so a constant k1 exists so that q satisfies

1 < q(x) < 1 + k1d(x),

for all x ∈ Ωδ (the case q ∈ Cα can be handled analogously). Denoting
temporarily ε = tλ, we obtain∫

Ω
εq(x)−1φ

q(x)+1
1 dx ≥

∫
Ωδ

εq(x)−1φ
q(x)+1
1 dx ≥

∫
Ωδ

εk1d(k0d)2+k1d dx,

while ∫
Ωδ

εk1d(k0d)2+k1d dx ≥ |∂Ω|
∫ δ

0
εk1s(k0s)

2+k1s ds.

On the other hand,∫ δ

0
εk1s(k0s)

2+k1s ds ≥ (1− η)

∫ δ

0
εk1s(k0s)

2 ds,

where 0 < η < 1 provided that δ is chosen suitably small. A direct compu-
tation reveals that ∫ δ

0
εk1s(k0s)

2 ds = − C

ln3 ε
(1 + o(1)), (4.9)

as ε→ 0+, for a certain positive constant C. Going back to (4.7) and using
(4.9) we arrive at ∫

Ω
λ1φ

2 dx ≥ −C λ

ln3 ε
,

that yields, after restoring tλ instead of ε

tλ = O(e−C
3√
λ),

as λ→∞.

Using (4.8) and taking into account that cλ ≤ c̃λ we finally get that

cλ = O(e−C
3√
λ), (4.10)

as λ→∞.
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Now we proceed to obtain exponentially small uniform bounds of uλ as
λ→∞. Just as before the relation

λ

∫
Ω

q(x)− 1

q(x) + 1
|uλ|q(x)+1 dx = O(e−C

3√
λ), (4.11)

holds as λ→∞ and so∫
Ω
|uλ|q(x)+1dµ = o(e−C

3√
λ) as λ→∞, (4.12)

where dµ = d(x) dx.

Some few facts from the theory of Lp(x) spaces are now required. For
p ∈ L∞(Ω), p ≥ 1 a. e. in Ω, the modular functional ρp is defined on the set
M(Ω) of measurable functions u in Ω as

ρp(u) =

∫
Ω
|u|p(x) dµ dµ = d(x) dx.

Then the class Lp(x)(Ω) := {u ∈ M(Ω) : ρp(u) < ∞} becomes a Banach
space under the norm

‖u‖p(x) = inf
{
λ > 0 : ρp

(u
λ

)
≤ 1
}
.

This is, of course, the so–called Luxemburg norm. We refer to [20] for a
comprehensive account on this and further abstract classes of generalized
Orlicz–type spaces. Some well–known features are the following (see for
instance [8] for an expeditious overview):

(a) ‖u‖p(x) < 1 if and only if ρp(u) < 1.

(b) ‖u‖p(x) < 1 implies ‖u‖p+p(x) ≤ ρp(u) ≤ ‖u‖p−p(x) where p− = ess inf u,
p+ = ess supu.

(c) The embedding Lr(x) ⊂ Lp(x) is continuous provided that r ∈ L∞(Ω)
fulfills r ≥ p a. e. in Ω.

Hence, according to (a) and (4.12),

‖u‖q++1
q(x)+1 ≤ ρq+1(u) = o(e−C

3√
λ) as λ→∞,

while (c) implies that

‖u‖q(x) = o(e−C
3√
λ) as λ→∞,

since q− = 1. Thus, it follows from (b) that∫
Ω
λ|uλ|q(x) dµ = o(e−C

3√
λ) as λ→∞. (4.13)

Recall that the constant C is not the same in each particular appearance.

Using the same argument as in Lemma 4 we conclude that

‖uλ‖p = o(e−C
3√
λ) as λ→∞, (4.14)

for every 1 ≤ p < N

N − 1
.
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To estimate ‖uλ‖H1
0 (Ω) we follow the approach in Lemma 5 and arrive at

the estimate∫
Ω
‖∇uλ‖2 dx ≤ λ

∫
Ωδ

|uλ| dx+ λ

∫
Ωδ

|uλ|q1+1 dx+O(e−C
3√
λ). (4.15)

Here, δ > 0 and q1 are the numbers introduced in the proof of Lemma 5 and
(4.13) has been employed to estimate the integral

λ

∫
Qδ

|uλ|q(x)+1 dx, where Qδ = Ω \ Ωδ.

The second integral in (4.15) is O(e−C
3√
λ) thanks to (4.14). By using the

computation in (4.5) we obtain

λ

∫
Ωδ

|uλ|q1+1 dx ≤
(∫

Ωδ

λ
1
θ |uλ|q1 dx

)θ {
ε1−θ‖uλ‖2H1

0 (Ω) + Cε‖uλ‖H1
0 (Ω)

}
.

Thus,

‖uλ‖2H1
0 (Ω) ≤ O(e−C

3√
λ){ε1−θ‖uλ‖2H1

0 (Ω)+Cε‖uλ‖H1
0 (Ω)}+O(e−C

3√
λ), (4.16)

as λ → ∞. This allows us to conclude first that ‖uλ‖H1
0 (Ω) = O(1) as

λ → ∞. In a second instance it implies that ‖uλ‖H1
0 (Ω) = O(e−C

3√
λ) as

λ → ∞ (interchange between “O” and “o” is obtained by modifying C).
Finally, estimate (4.16) leads in a standard way to a corresponding one in
C2,β(Ω) for a certain 0 < β < 1.

This completes the proof of Theorem 1. �

Remark 3. When studying the asymptotic behavior as λ → ∞ of a family
uλ of solutions through a scaling method (cf. [14]), a critical issue is the
concentration of maxima of solutions on ∂Ω. In the case where Ω is a convex
domain this possibility can be ruled out in some problems by means of the
moving planes technique as in [6]. However, this approach cannot be used

here since our nonlinearity uq(x) lacks the right monotonicity properties near
the boundary. This is due, of course, to the fact that q = 1 on ∂Ω.
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