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Abstract. In this paper we consider the elliptic system ∆u = up− vq,
∆v = −ur + vs in Ω, where the exponents verify p, s > 1, q, r > 0
and ps > qr and Ω is a smooth bounded domain of RN . First, we
show existence and uniqueness of boundary blow-up solutions, that is,
solutions (u, v) verifying u = v = +∞ on ∂Ω. Then, we use them
to analyze the removability of singularities of positive solutions of the
system in the particular case qr ≤ 1, where comparison is available.

1. Introduction and description of the main results.

The main purpose of the present paper is to perform an analysis of exis-
tence and uniqueness of positive solutions for the nonlinear elliptic system{

∆u = up − vq
∆v = −ur + vs,

in Ω, (1.1)

where Ω is a smooth bounded domain of RN , p, s > 1 and q, r > 0. We
will be mainly dealing with the so-called “large” or “boundary blow-up”
solutions, that is, functions u, v ∈ C2(Ω) with the property that

u = v = +∞ on ∂Ω.

This “boundary condition” is understood in the sense that u(x), v(x)→ +∞
as x approaches the boundary ∂Ω.

Equations with boundary blow-up have been largely studied in the lit-
erature in the last years. It is not our intention to give a complete list of
references on the subject, but we prefer to refer the reader to the survey
[22]. However, we remark that most of the works in this topic have been
restricted to scalar equations, and, at the best of our knowledge, not very
much is known for elliptic systems. Actually, there is no real understanding
of the general picture for systems of the form{

∆u = f(u, v)
∆v = g(u, v)

in Ω.

However, we quote [8, 9, 12, 13, 15, 16, 17, 18, 19, 21], for systems of Lotka-
Volterra type (cooperative, competitive, predator-prey) and for special sys-
tems involving power nonlinearities. We also quote [10] for results on large
solutions for a system with a nonlinearity in the gradient.
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In the present paper, our aim is to understand the features of (1.1).
Throughout the paper we will always assume a weakly coupling condition,
which in our context is given by the inequality

ps > qr. (1.2)

First, we note that the existence and the boundary behavior of solutions
depend on several relations between the exponents. We begin by assuming
that p, q, r, s verify

p

p− 1
>

q

s− 1
and

s

s− 1
>

r

p− 1
. (1.3)

These inequalities ensure that the dominating terms in the right-hand side
of both equations in (1.1) near the boundary are up and vs, respectively.
This makes the existence of large solutions somewhat simpler.

Theorem 1. Let Ω be a bounded C2 domain of RN and assume p, s > 1 and
q, r > 0 verify (1.2) and (1.3). Then, there exists a positive large solution
of the system (1.1). Moreover, if qr ≤ 1, then the solution is unique and
verifies,

lim
x→∂Ω

d(x)αu(x) = (α(α+ 1))
1
p−1

lim
x→∂Ω

d(x)βv(x) = (β(β + 1))
1
s−1 ,

(1.4)

where α = 2
p−1 and β = 2

s−1 .

Next, we note that condition (1.3) is not necessary for the existence of
large solutions of (1.1). When one of the inequalities in (1.3) does not hold,
it is still possible to have positive large solutions (as long as condition (1.2) is
not violated). The only difference is that now both terms in the right-hand
side of one of the equations in (1.1) have the same growth near ∂Ω.

Thus we assume next that (1.3) does not hold. It is to be noted that
condition (1.2) prevents both inequalities in (1.3) to fail, therefore one of
them will always hold. Due to the symmetry of the problem we can always
assume that

p

p− 1
≤ q

s− 1
and

s

s− 1
>

r

p− 1
. (1.5)

In this case, our results for system (1.1) read as follows:

Theorem 2. Let Ω be a bounded C2 domain of RN and assume p, s > 1 and
q, r > 0 verify (1.2) and (1.5). Then, there exists a positive large solution
of the system (1.1). Moreover, if qr ≤ 1, then the solution is unique and it
verifies:

lim
x→∂Ω

d(x)γu(x) = A0

lim
x→∂Ω

d(x)βv(x) = (β(β + 1))
1
s−1 .

(1.6)

where γ = 2q
p(s−1) , β = 2

s−1 and A0 is the unique positive root of the equation

γ(γ+1)A = Ap− (β(β+1))
q
s−1 when p

p−1 = q
s−1 while A0 = (β(β+1))

q
p(s−1)

when the first inequality in (1.5) is strict.
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The existence proofs in Theorems 1 and 2 follow by the use of the method
of sub and supersolutions. We refer to the appendix in [18] for an instance
of the method when applied to a particular competitive system, which is
however easily extended to deal with (1.1). As for the uniqueness, it follows
by means of a sweeping argument, once the boundary behavior of all possible
solutions (equations (1.4) and (1.6)) is obtained. In this regard, it is to be
remarked that the condition qr ≤ 1 is essential in our approach not only to
have uniqueness, but also to obtain the boundary behavior, since comparison
is used there (see in particular Lemma 7 in Section 3).

Let us also mention in passing that with the same ideas it is possible
to study solutions of (1.1) with different boundary conditions, for instance
u = λ, v = µ on ∂Ω, where λ, µ > 0 or u = +∞, v = µ on ∂Ω, in the same
spirit as in [18].

Another interesting question regarding system (1.1) and closely connected
to the existence of large solutions is the analysis of positive solutions with
an isolated singularity, that is, solutions solving the equation in the whole
domain except at one point. There is no loss of generality in assuming that
the equation holds in B \ {0}, where B is the unit ball in RN , and we will
always do so from now on. Then, we consider the system{

∆u = up − vq
∆v = −ur + vs

in B \ {0}. (1.7)

Our interest now is to obtain conditions which ensure that a positive solution
(u, v) of (1.7) has a removable singularity, in the sense that (u, v) is actually
smooth in B and it solves the problem in the whole B.

The topic of removability of isolated singularities has been largely studied,
beginning with the pioneering work [6]. Numerous works have dealt with
this question for different types of elliptic equations (see for instance [7] for
further references). However, the study of elliptic system is not so developed.
We refer to [2, 3, 4, 5, 14] for systems which are of Hamiltonian type. As far
as we know, the study of removable singularities for general elliptic systems
involving powers but which are not of Hamiltonian type (as (1.7)) is still
open.

We state next our results for system (1.7) which depend on whether the
exponents verify (1.3) or not. It is to be remarked again that, since com-
parison is needed in our proofs, we will assume that qr ≤ 1.

Theorem 3. Assume p, s > 1 and q, r > 0 are such that qr ≤ 1 and (1.3)
holds. Let (u, v) be a positive classical solution of (1.7). Then:

(a) If p ≥ N
N−2 , s ≥ N

N−2 , then the singularity at x = 0 is removable, so

that u, v ∈ C∞(B) and they are a solution of the system in B;

(b) If p ≥ N
N−2 , s < N

N−2 and q < s− 1, then u ∈ L∞loc(B).

(c) If p < N
N−2 , s ≥ N

N−2 and r < p− 1, then v ∈ L∞loc(B).

It is worthy of mention that these results are optimal in the following
sense: when p < N

N−2 , s < N
N−2 there are solutions to the system which

have both components unbounded. In the case p ≥ N
N−2 , s < N

N−2 , q ≥ s−1

(and similarly in the symmetric situation p < N
N−2 s ≥ N

N−2 , r ≥ p − 1),
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there are solutions (u, v) where u is bounded but v is not (see Remark 1 in
Section 4). On the other hand, in all cases, and according to Theorem 1,
there are always solutions where both components are bounded in B.

Theorem 4. Assume p, s > 1 and q, r > 0 are such that qr ≤ 1 and
(1.5) holds. Suppose further that s ≥ N

N−2 . Let (u, v) be a positive classical

solution of (1.7). Then:

(a) If p ≥ N
N−2 , then the singularity at x = 0 is removable, so that

u, v ∈ C∞(B) and they are a solution of the system in B;

(b) If p < N
N−2 and qr < p(s− 1), then v ∈ L∞loc(B).

As in the previous theorem, it is possible to show that, whenever s < N
N−2 ,

solutions which are unbounded in both components can be constructed. As
for case (b), we do not know if the condition qr < p(s − 1) is necessary or
not for the removability of singularities.

The rest of the paper is organized as follows: in Section 2 we will analyze
some scalar equations with power-type nonlinearities which will be useful
when considering the existence of large solutions of (1.1). Section 3 will
be devoted to the proof of the existence and uniqueness of large solutions
(Theorems 1 and 2) while in Section 4 we will study the removability of
singularities for system (1.7).

2. Some scalar equations.

In this section, we consider some scalar equations related to the system
(1.1). Their solutions will be used as instrument when proving existence for
(1.1). We begin by considering the well-known problem{

∆u = up in Ω
u = +∞ on ∂Ω,

(2.1)

where p > 1. This problem has been deeply analyzed in several papers,
therefore we only state its most important properties without proofs (see
for instance [1]).

Theorem 5. Assume Ω is a C2 bounded domain and let p > 1. Then
problem (2.1) admits a unique positive solution, which in addition verifies

lim
x→∂Ω

d(x)αu(x) = (α(α+ 1))
1
p−1 ,

where α = 2
p−1 .

Each of the equations in (1.1) can be regarded as a perturbation of (2.1)
with a non-homogeneous singular term. Hence it is natural to consider the
problem {

∆u = up − C0d(x)−γ in Ω
u = +∞ on ∂Ω

(2.2)

with C0 > 0 and γ > 0. Some instances of this problem have been already
studied, actually with more general perturbation terms, but only the case
γ < 2p

p−1 seems to have been considered up to now (see [23] and [11]). We

mention in passing that the term C0d(x)−γ can be replaced by a continuous,
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nonnegative function h which has the same behavior near the boundary, and
the same results can be obtained. However, we are sticking to model (2.2),
since it will be enough for our purposes.

Theorem 6. Assume Ω is a C2 bounded domain and let p > 1, C0 > 0 and
γ > 0. Then, problem (2.2) admits a unique positive solution. In addition,
we always have

lim
x→∂Ω

d(x)αu(x) = A0, (2.3)

where:

(a) If γ < 2p
p−1 , then α = 2

p−1 and A0 = (α(α+ 1))
1
p−1 .

(b) If γ = 2p
p−1 , then α = 2

p−1 and A0 is the unique positive root of the

equation α(α+ 1)A−Ap = −C0.

(c) If γ > 2p
p−1 , then α = γ

p and A0 = C
1
p

0 .

Proof. We can restrict our attention to γ ≥ 2
p−1 and refer to [23] and [11]

for the case γ < 2p
p−1 . For n ∈ N, consider the problem{

∆u = up − C0

(
d(x) + 1

n

)−γ
in Ω

u = +∞ on ∂Ω.
(2.4)

According to Theorem 1 in [23], problem (2.4) admits a unique positive
solution, which we will denote by un. It is a simple consequence of the
uniqueness that the sequence {un} is increasing in n. Let us see that {un}
converges to a solution of (2.2). Let Ω′ ⊂⊂ Ω, and set d0 = infΩ′ d(x). Then

∆un ≥ upn−C0d
−γ
0 in Ω′, so that again by uniqueness we obtain that un ≤ v̄

in Ω′, where v̄ is the unique positive solution of{
∆v = vp − C0d

−γ
0 in Ω′

v = +∞ on ∂Ω′.

This implies that the sequence {un} is locally uniformly bounded. Now
we can use the standard interior estimates in [20] to obtain first that {un}
is locally bounded in C1,α for every α ∈ (0, 1) and then in C2,α for every
α ∈ (0, 1). Therefore, with the use of Ascoli-Arzelá’s theorem and a diagonal
procedure, we have un → u in C2

loc(Ω), where u is a classical solution to (2.2).

Next, let us show (2.3). It is well known (cf. for instance the Appendix in
Chapter 14 of [20]) that the distance function d(x) is C2 in a neighborhood
of the boundary of the form Ωδ0 = {x ∈ Ω : d(x) < δ0}, where it also
verifies |∇d| = 1. For δ ∈ (0, δ0), θ ∈ (0, δ) and A, B to be chosen, let
ū = A(d − θ)−α + B, where α = γ

p (remember that we are assuming γ ≥
2p
p−1). Let us show that ū is a supersolution of ∆u = up − C0d

−γ in the

set θ < d < δ if δ < δ0 is chosen small enough. This is equivalent to the
following inequality:

Aα(α+ 1)(d− θ)α(p−1)−2 −Aα(d− θ)α(p−1)−1∆d ≤ Ap − C0

if θ < d < δ. Since α(p− 1)− 1 ≥ 1, it would be enough to have

Aα(α+ 1)(d− θ)α(p−1)−2 −Aα sup
Ωδ0

|∆d| δ ≤ Ap − C0. (2.5)
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Next, let γ = 2p
p−1 , so that α(p − 1) − 2 = 0. For ε > 0 small enough, let

A = A0 +ε, where A0 is as in part (b) of the statement. Since (A0 +ε)α(α+
1) < (A0 +ε)p−C0, we can certainly obtain (2.5) if δ is small enough. When

γ > 2p
p−1 , it is sufficient to have 0 < (A0 + ε)p −C0 and then choose δ small

enough. Thus, in either case, ū is a supersolution in θ < d < δ for δ small
enough, depending on ε but not on θ, and where B > 0 is arbitrary. Now
choose B so that ū > u on d = δ. Then since ū = +∞ on d = θ while u is
finite there, we may apply the comparison principle to deduce that u < ū
in θ < d < δ. Letting θ → 0, we arrive at d(x)αu(x) ≤ (A0 + ε) +Bd(x)α if
0 < d < δ. Thus we can let x→ ∂Ω and then ε go to zero to arrive at

lim sup
x→∂Ω

d(x)αu(x) ≤ A0. (2.6)

In a similar way, it can be shown that the function (A0− ε)(d+ θ)−α−B is
a subsolution of (2.2) in 0 < d < δ as long as it is nonnegative. Then taking
u = max{(A0− ε)(d+ θ)−α−B, 0}, we have a nonnegative subsolution and
we can use a comparison as before to obtain that u ≥ u in 0 < d < δ.
Letting x→ ∂Ω and then ε→ 0, we have

lim inf
x→∂Ω

d(x)αu(x) ≥ A0.

which together with (2.6) shows (2.3).

To conclude the proof we consider uniqueness. Assume u1 and u2 are
positive solutions of (2.2). Then, according to (2.3), we have

lim
x→∂Ω

u1(x)

u2(x)
= 1

uniformly. Hence for every ε > 0, there exists δ > 0 such that u1 ≤ (1+ε)u2

in Ωδ. Now denote Ωδ = {x ∈ Ω : d(x) > δ} and consider the problem{
∆v = vp − C0d(x)−γ in Ωδ

v = u1 on ∂Ωδ,

whose unique solution is v = u1. It is clear that (1+ε)u2 is a supersolution of
this problem, so that by comparison u1 ≤ (1 + ε)u2 in Ωδ, and consequently
in Ω. Letting ε → 0 we have u1 ≤ u2, and reversing the roles of both
solutions we finally achieve uniqueness. This finishes the proof. �

3. Existence and uniqueness of blow-up solutions.

The goal of this section is to prove Theorems 1 and 2. The proofs of
existence rely on the method of sub and supersolutions (cf. the appendix in
[18] for a proof of the method for a different system, which is readly extended
to deal with (1.1)). Those of uniqueness are based on a sweeping argument,
complemented with the obtention of the boundary rates (1.4) and (1.6).

Proof of Theorem 1 (existence part). Denote by U the unique solution of
(2.1) and V the unique solution of the same problem when p is replaced by
s. Then there exist positive constants C1, C2 such that

C1d(x)−α ≤ U(x) ≤ C2d(x)−α

C1d(x)−β ≤ V (x) ≤ C2d(x)−β,
x ∈ Ω, (3.1)
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where α = 2
p−1 and β = 2

s−1 . We claim that the pair (MU,MηV ) is a

supersolution of (1.1), for some suitable η > 0 and large enough positive M .
To see this, it suffices to check that

MUp ≤MpUp −MηqV q

MηV ≤ −M rU r +MηsV s

which is a consequence of

MηqC2d(x)−βq ≤ (Mp −M)C1d(x)−αp

M rC2d(x)−αr ≤ (Mηs −Mη)C1d(x)−βr.

Now, taking into account that αp > βq and βs > αr, these inequalities are
possible if we have, for some positive constant C (depending only on Ω):

Mηq ≤ C(Mp −M)

M r ≤ C(Mηs −Mη).
(3.2)

The choice
r

s
< η <

p

q
, (3.3)

which is possible by assumption (1.2), implies that (3.2) holds if M is large
enough. Therefore (MU,MηV ) is a supersolution of (1.1).

On the other hand, (U, V ) is easily seen to be a subsolution. Thus the
method of sub and supersolutions implies the existence of a positive solution
(u, v) of (1.1) which verifies u = v = +∞ on ∂Ω. �

For the proof of uniqueness, we will use the following comparison lemma,
which is interesting in its own right. We do not know if the condition qr ≤ 1,
which is used in our proofs, is necessary or not.

Lemma 7. Assume p, s > 1 and qr ≤ 1. Let (u1, v1) ∈ C2(Ω)2 (respectively
(u2, v2)) be a positive subsolution (resp. supersolution) of the system (1.1)
such that

lim sup
x→∂Ω

u1(x)

u2(x)
≤ 1, lim sup

x→∂Ω

v1(x)

v2(x)
≤ 1. (3.4)

Then u1 ≤ u2 and v1 ≤ v2 in Ω.

Proof. We claim first that (tu2, t
νv2) is a supersolution for t > 1, provided

ν > 0 is chosen in a suitable way. To see this we need to check the inequalities{
(tνq − t)vq2 ≤ (tp − t)up2
(tr − tν)ur2 ≤ (tνs − tν)vs

in Ω. (3.5)

Observe that p, s > 1 imply that the right-hand side in both equations in
(3.5) is positive, since t > 1. Thus the inequalities will hold provided νq ≤ 1
and r ≤ ν, which will make the left-hand sides in (3.5) negative. This is
possible if

r ≤ ν ≤ 1

q
,

which can be obtained since qr ≤ 1. Thus (tu2, t
νv2) is a supersolution of

(1.1).
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As we have mentioned, we want to use a sweeping argument. Since u2

and v2 are positive, and according to (3.4), we have u1 ≤ tu2 and v1 ≤ tνv2

in Ω for large t. Define:

t0 = inf{t > 1 : tu2 > u1, t
νv2 > v1 in Ω}.

We claim that t0 = 1, so that u2 ≥ u1 and v2 ≥ v1, and the proof is finished.

To prove the claim, assume that t0 > 1. We have t0u2 ≥ u1 and tν0v2 ≥ v1

in Ω. Moreover,

−∆(t0u2) + (t0u2)p ≥ (tν0v2)q ≥ vq1 ≥ −∆u1 + up1

so that the strong maximum principle implies that either t0u2 ≡ u1 in Ω or
t0u2 > u1 in Ω (recall that p > 1). Of course, the first option is ruled out
by (3.4), since t0 > 1, hence t0u2 > u1 in Ω.

Similarly −∆(tν0v2) + (tν0v2)s ≥ −∆v1 + vs1, so that again tν0v2 > v1 in
Ω. Using again (3.4), it follows that for small enough ε, (t0 − ε)u2 > u1

and (t0 − ε)νv2 > v1, contradicting the minimality of t0. Therefore our
assumption that t0 > 1 is false, and we deduce t0 = 1, as we wanted to
show. �

Proof of Theorem 1 (boundary behavior and uniqueness part). The proof of
(1.4) follows in a similar way as that of (2.3) in Theorem 6. We begin by
constructing a supersolution in a neighborhood of the boundary Ωδ for small
enough δ (such that d ∈ C2(Ωδ) and |∇d| = 1 in Ωδ). Choose θ ∈ (0, δ) and
let

ū = A(d− θ)−α +K

v̄ = B(d− θ)−β +M

where K,M > 0 are to be chosen. In order that (ū, v̄) is a supersolution in
θ < d < δ, we need the two inequalities:

Aα(α+ 1) (d− θ)−α−2 −Aα(d− θ)−α−1∆d

≤ (A(d− θ)−α +K)p − (B(d− θ)−β +M)q

and

Bβ(β + 1) (d− θ)−β−2 −Bβ(d− θ)−β−1∆d

≤ −(A(d− θ)−α +K)r + (B(d− θ)−β +M)s.

(3.6)

Since p, s > 1, we have (a + b)p ≥ ap + bp, (a + b)s ≥ as + bs for every
a, b > 0. Moreover, for every ε > 0, there exists a constant C = C(ε) such
that (a+ b)q ≤ (1 + ε)aq +Cbq, (a+ b)r ≤ (1 + ε)ar +Cbr for every a, b > 0.
Therefore (3.6) is implied by

Aα(α+ 1) (d− θ)−α−2 −Aα(d− θ)−α−1∆d

≤ Ap(d− θ)−αp +Kp − (1 + ε)Bq(d− θ)−βq − CM q

and

Bβ(β + 1) (d− θ)−β−2 −Bβ(d− θ)−β−1∆d

≤ −(1 + ε)Ar(d− θ)−αr − CKr +Bs(d− θ)−βs +M s.
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Taking into account that α+2 = αp > βq, β+2 = βs > αr, these inequalities
can be achieved for θ < d < δ provided that

(Aα (α+ 1)−Ap)−Aαδ supΩδ0
|∆d|

≤ −(1 + ε)Bqδαp−βq + (Kp − CM q)(d− θ)αp

and

(Bβ (β + 1)−Bs)−Bβδ supΩδ0
|∆d|

≤ −(1 + ε)Arδβs−αr + (M s − CKr)(d− θ)βs.

(3.7)

If we fix A > (α(α + 1))
1
p−1 and B > (β(β + 1))

1
s−1 , we can then choose δ

small enough to ensure that (3.7) holds. It suffices to choose Kp > CM q,
M s > CKr, which is certainly possible for large K and M , since ps > qr.
Thus (ū, v̄) is a supersolution of (1.1) in θ < d < δ, and we can choose large
enough K and M so that u ≤ ū, v ≤ v̄ on d = δ.

Applying Lemma 7 in θ < d < δ, we see that u ≤ ū, v ≤ v̄ there,

so that letting θ → 0, then x → ∂Ω, and finally A → (α(α + 1))
1
p−1 ,

B → (β(β + 1))
1
s−1 we obtain

lim sup
x→∂Ω

d(x)αu(x) ≤ (α(α+ 1))
1
p−1

lim sup
x→∂Ω

d(x)βv(x) ≤ (β(β + 1))
1
s−1 .

This establishes the upper bound in (1.4). The lower bound is immediate,
since for every solution (u, v) we always have ∆u ≤ up in Ω, so by comparison
u ≥ U , and from Theorem 5 we get

lim inf
x→∂Ω

d(x)αu(x) ≥ (α(α+ 1))
1
p−1 .

A lower bound for v is obtained in the similar way; thus the proof of the
boundary behavior of solutions when qr ≤ 1 is finished.

The proof of uniqueness is immediate, since from (1.4) we have that every
two pairs of positive solutions (u1, v1), (u2, v2) verify

lim
x→∂Ω

u1(x)

u2(x)
= lim

x→∂Ω

v1(x)

v2(x)
= 1 (3.8)

Therefore we can apply Lemma 7 to obtain that u1 = u2, v1 = v2. This
concludes the proof of Theorem 1. �

Proof of Theorem 2. The proof of this theorem runs along the same lines as
the previous one, so we only remark the relevant differences. To begin with
the existence, consider the unique solutions of the problems{

∆u = up − d(x)−
2q
s−1 in Ω

u = +∞ on ∂Ω

and {
∆v = vs − d(x)

− 2qr
p(s−1) in Ω

v = +∞ on ∂Ω
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(cf. Theorem 6), which will be denoted by ū and v̄, respectively. By our
hypotheses, and owing to Theorem 6, there exist two positive constants K1,
K2 such that K1d(x)

− 2q
p(s−1) ≤ ū(x) ≤ K2d(x)

− 2q
p(s−1)

K1d(x)−
2
s−1 ≤ v̄(x) ≤ K2d(x)−

2
s−1 ,

x ∈ Ω. (3.9)

We claim that, choosing η as in (3.3), the pair (Mū,Mηv̄) is a supersolution
of (1.1) if M > 1 is large enough. Indeed, it suffices to have Mηqv̄q −Md−

2q
s−1 ≤ (Mp −M)ūp

M rūr −Mηd
− 2qr
p(s−1) ≤ (Mηs −Mη)v̄s

in Ω.

Using (3.9), these inequalities are implied by{
(MηqKq

2 −M) ≤ Kp
1 (Mp −M)

(M rKr
2 −Mη)d

− 2qr
p(s−1) ≤ Ks

1(Mηs −Mη)d−
2s
s−1

in Ω.

Observing that 2s
s−1 >

2qr
p(s−1) and due to the choice of η, it follows that the

previous inequality can be achieved in Ω choosing M large enough. Hence
(Mū,Mηv̄) is a supersolution of (1.1).

As before, a subsolution is given by (U, V ). Moreover, using (3.1) and
(3.9), we have

U(x) ≤ C2d(x)
− 2
p−1 ≤ C2Kd(x)

− 2q
p(s−1) ≤ C2K

K1
ū ≤Mū,

if M is taken large enough, where K = (supΩ d)
2q

p(s−1)
− 2
p−1 . Similarly, V ≤

Mηv̄ if M is large enough, so that we are in a position to apply the method
of sub and supersolutions and obtain a positive solution (u, v) of problem
(1.1) with u = v = +∞ on ∂Ω.

The boundary behavior (1.6) also follows by constructing suitable sub and
supersolutions near the boundary of Ω. Again, we take them of the form
ū = A(d−θ)−γ +K, v̄ = B(d−θ)−β +M , where as before β = 2

s−1 , but now

γ = 2q
p(s−1) . A simple computation shows that (ū, v̄) will be a supersolution

in θ < d < δ if we have

Aγ(γ + 1)−Aγ(d− θ)∆d ≤ (Ap − (1 + ε)Bq)(d− θ)γ+2−γp

+(Kp − CM q)(d− θ)γ+2

and

Bβ(β + 1)−Bβ(d− θ)∆d ≤ Bs − (1 + ε)Ar(d− θ)β+2−γr

+(M s − CKr)(d− θ)β+2,

where C = C(ε) > 0. First of all, we choose M and K verifying Kp −
CM q,M s − CKr > 0, which is possible by the condition ps > qr. Also,
we always have β + 2− γr > 0, so that the second inequality above will be

verified if we choose δ small enough and B > (β(β + 1))
1
s−1 . As for the first

inequality, it depends on whether γ+2−γp = 0 or γ+2−γp < 0. In the first
case, it suffices to take δ small and A verifying Aγ(γ + 1) < Ap− (1 + ε)Bq,
while in the second Ap−(1+ε)Bq > 0 would suffice. In either case we obtain
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a supersolution (ū, v̄) and by using Lemma 7 we would arrive at u ≤ ū and
v ≤ v̄ in θ < d < δ. Letting θ → 0, then x→ ∂Ω, we would obtain

lim sup
x→∂Ω

d(x)γu(x) ≤ A, lim sup
x→∂Ω

d(x)βv(x) ≤ B.

Letting B → (β(β + 1))
1
s−1 and then A→ A0, we obtain the desired upper

bound. The lower bound is shown in a completely similar way.

Finally, uniqueness is obtained exactly as in Theorem 1, since (1.6) implies
(3.8) for every two pairs of positive solutions (u1, v1), (u2, v2), and Lemma
7 can be used in the same way. �

4. Removability results.

In this section, we will consider the removability results stated in the
Introduction. Our proofs are based on the classical paper [6], together with
the use of the boundary blow-up solutions of system (1.1) to obtain suitable
upper bounds for the singularities. Since the proof of both Theorem 3 and
Theorem 4 are very similar, we only give the first one.

We begin with the proof of the upper bounds.

Lemma 8. Assume p, s > 1 and qr ≤ 1. Let (u, v) be a positive classical
solution of {

∆u = up − vq
∆v = −ur + vs

in B \ {0}.

Then:

(a) If p
p−1 >

q
s−1 and s

s−1 >
r
p−1 , then there exist positive constants C1

and C2 such that:

u(x) ≤ C1|x|−
2
p−1 , v(x) ≤ C2|x|−

2
s−1 , x ∈ B1/2 \ {0}.

(b) If p
p−1 ≤

q
s−1 and s

s−1 >
r
p−1 , then there exist positive constants C1

and C2 such that:

u(x) ≤ C1|x|−
2q

p(s−1) , v(x) ≤ C2|x|−
2
s−1 , x ∈ B1/2 \ {0}.

Proof. We only show part (a), since part (b) can be accomplished in a com-
pletely similar way. Choose x with 0 < |x| < 1

2 and let

z(y) = |x|αu(x+ |x|y)

w(y) = |x|βv(x+ |x|y)
y ∈ B1/2,

where α = 2
p−1 and β = 2

s−1 . It is easy to see that{
∆z = zp − |x|αp−βqwq ≥ zp − wq

∆w = −|x|βs−αrzr + ws ≥ −zr + ws
in B1/2,

since αp > βq and βs > αr, according to our hypotheses. Let (Z,W ) be the
unique solution of the problem

∆z = zp − wq
in B1/2∆w = −zr + ws

z = w = +∞ on ∂B1/2
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given by Theorem 1. Since qr ≤ 1, we can compare as in Lemma 7 to obtain
that actually z ≤ Z, w ≤ W in B1/2. In particular, setting y = 0, we have

u(x) ≤ Z(0)|x|−α, v(x) ≤W (0)|x|−β, as was to be shown. �

The next lemma is a slight generalization of the results in [6], to deal with
right-hand sides which are not bounded. From now on, we will use the letter
C to denote positive constants, which may vary from line to line.

Lemma 9. Assume u ∈ C2(B \ {0}) is positive and verifies

−∆u+ up ≤ C0|x|−ω in B \ {0}, (4.1)

where p ≥ N
N−2 , C0 > 0 and ω < N . Suppose in addition that u(x) ≤

C|x|2−N in B1/2 \ {0}. Then,

u(x) ≤ C|x|2−ω in B1/2 \ {0},
if ω > 2,

u(x) ≤ C(1− |x|2−ω) in B1/2 \ {0},
if ω < 2, while

u(x) ≤ −C log |x| in B1/2 \ {0}.
for ω = 2.

In particular, u ∈ L∞loc(B) provided that ω < 2.

Proof. We only prove the case ω 6= 2 (minor adjustments are needed when
ω = 2). We will show first that u ∈ Lploc(B). For this aim, choose a family

of functions ξn ∈ C∞(RN ) with the properties that ξn(x) = 0 for |x| < 1
2n ,

ξ(x) = 1 if |x| > 1
n and 0 ≤ ξn ≤ 1. Then there exists a positive constant C

such that |∇ξn| ≤ Cn, |∆ξn| ≤ Cn2.

Taking ϕ ∈ C∞0 (B) with ϕ ≥ 0 and multiplying the equation in (4.1) by
ϕξn we obtain, after integration by parts:∫

upϕξn ≤ C0

∫
|x|−ωϕ+

∫
u∆(ξnϕ). (4.2)

For the last integral, we have the inequality:∣∣∣∣∫ u∆(ξnϕ)

∣∣∣∣ ≤ C ∫
{ 1
2n
<|x|< 1

n
}
n2u+ C

∫
{ 1
2n
<|x|< 1

n
}
nu+ C

∫
supp ϕ

u.

Using that u ≤ C|x|2−N , we see that all the above integrals are bounded
by a positive constant independent of n. Taking into account that ω < N
implies |x|−ω ∈ L1(B), we have from (4.2)∫

upϕξn ≤ C,

where C does not depend on n. Letting n→ +∞ we see that u ∈ Lploc(B).

Now, let w = K|x|2−ω if ω > 2, w = K(1−|x|2−ω) if ω < 2. Since ω < N ,
it is not hard to check that in either case w verifies

−∆w ≥ C0|x|−ω in B \ {0},
if K is chosen large enough. Enlarging K if necessary we can also assume
u ≤ w on ∂B1/2.
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Next, we use Lemma 1 in [6] to obtain

∆(u− w)+ ≥ ∆(u− w) sign+(u− w) ≥ 0

in D′(B \ {0}), where

sign+t =


1 t > 0

1

2
t = 0

0 t < 0.

Since p ≥ N
N−2 and u ∈ Lploc(B), we also have u − w ∈ L

N
N−2

loc (B). Thus we

can apply Lemma 2 in [6] to obtain that u verifies ∆(u−w)+ ≥ 0 in D′(B).
Hence, by the maximum principle, (u − w)+ ≡ 0 in B1/2, which completes
the proof. �

We finally consider the proof of our main result concerning removability
of singularities.

Proof of Theorem 3. By Lemma 8, we have u(x) ≤ C|x|−α, v(x) ≤ C|x|−β
in 0 < |x| < 1/2, for some positive constant C, where α = 2

p−1 , β = 2
s−1 .

Then, using the first equation in (1.7), we have

−∆u+ up = vq ≤ C|x|−βq in B1/2 \ {0}.

Obverve that p ≥ N
N−2 implies on one hand that α ≤ N − 2 therefore

u(x) ≤ C|x|2−N in B1/2 \ {0} and on the other hand βq = 2q
s−1 <

2p
p−1 ≤ N .

Therefore we can apply Lemma 9 to obtain that

u(x) ≤

{
C|x|2−βq βq > 2

−C log |x| βq = 2,

while u ∈ L∞loc(B) if βq < 2. The latter case amounts to q < s− 1 and just
proves part (b). In this regard, part (c) is the symmetric statement, thus it
follows in the same way.

To prove part (a) we may assume first that βq ≥ 2. Since s ≥ N
N−2 , we

can use a similar argument as above in the equation involving v to obtain
that

v(x) ≤

{
C|x|2−αr αr > 2

−C log |x| αr = 2,

being v ∈ L∞loc(B) if αr < 2. Therefore, using the first equation in (1.7) we
deduce that −∆v+ vp ≤ C in B \ {0}, and we obtain from Theorem 1 in [6]
that u ∈ L∞loc(B). Now it is standard to conclude: since v ∈ L∞(B1/2), the
problem {

−∆z + zp = vq in B1/2

z = u on ∂B1/2

admits a unique solution z ∈ C1,α(B1/2). Arguing as in Lemma 9, since u
solves the same equation in the sense of D′(B1/2), we obtain that u ≡ z.

Therefore u ∈ C1(B). The same argument shows that v ∈ C1(B) and by
bootstrapping we obtain u, v ∈ C∞(B). Observe that when βq < 2, so that
u ∈ L∞loc(B), we deduce in the same way that u, v ∈ C∞(B).
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Thus only the case βq ≥ 2, αr ≥ 2 remains to be proved. Set α1 = βq−2,
β1 = αr− 2, and suppose that, say, α1 = min{α1, β1} ≤ 2. If α1 < 2 and by
using Lemma 9 we obtain that u ∈ L∞loc(B). The previous argument then
shows that u, v ∈ C∞(B). If α1 = 2, Lemma 9 implies that

u(x) ≤ −C ln |x| ≤ C|x|−δ x ∈ B1/2,

for some δ < 2. By the same token we achieve again u, v ∈ C∞(B).

If min{α1, β1} > 2 then u(x) ≤ C|x|−α1 , v(x) ≤ C|x|−β1 in B1/2. By
iteration we construct sequences {αk} and {βk} given by{

αk = βk−1q − 2

βk = αk−1r − 2,

so that u(x) ≤ C|x|−αk , v(x) ≤ C|x|−βk in B1/2 provided that min{αl, βl} >
2 for l = 1, . . . , k. However, it is easily seen that αk, βk → −∞ as k → +∞
when qr = 1, while αk → −2(q+1)

1−qr , βk → −2(r+1)
1−qr as k → +∞ when qr < 1.

In either case, min{αk, βk} becomes eventually less than 2 after finitely many
steps. The proof is concluded. �

Remark 1. The results contained in Theorem 3 are optimal. In all remaining
cases a solution of (1.7) which is singular at zero can be constructed. For
instance, when p, s < N

N−2 , the solution is easily found by considering as a

subsolution the pair (ε|x|−α, δ|x|−β) for small ε and δ, and as a supersolution
(A|x|−α, B|x|−β), for large A and B.

When q > s− 1, the exponent α above has to be replaced by θ = βq − 2,
while for q = s − 1, the power in the first component of both the sub and
the supersolution has to be substituted by − log |x|.
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[23] L. Véron, Semilinear elliptic equations with uniform blow up on the boundary, J.
Anal. Math. 59 (1992), 231–250.
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