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Abstract. In this paper we study homogenization problems for the best
constant in the Sobolev trace embedding W 1,p(Ω) ↪→ Lq(∂Ω) in a bounded
smooth domain when the boundary is perturbed by adding an oscillation. We
find that there exists a critical size of the amplitude of the oscillations for
which the limit problem has a weight on the boundary. For sizes larger than
critical the best trace constant goes to zero and for sizes smaller than critical
it converges to the best constant in the domain without perturbations.

1. Introduction.

In this paper we consider homogenization problems for the best Sobolev trace
constant when a periodic oscillation is added on the boundary.

Sobolev inequalities have been studied by many authors and is by now a classical
subject. Relevant for the study of boundary value problems for differential operators
is the Sobolev trace inequality that has been intensively studied, see for example,
[3, 8, 9, 12] and references therein.

Given a bounded smooth domain Ω ⊂ RN , we deal with the best constant of
the Sobolev trace embedding W 1,p(Ωε) ↪→ Lq(∂Ωε) where Ωε is given by adding
an oscillating perturbation to the boundary of a fixed domain, Ω. When q = p this
leads to an eigenvalue problem of the Steklov type, [19].

To be more concrete, let us describe the domains, Ωε. For simplicity, we consider
only perturbations in a region of the boundary ∂Ω but is clear that the same kind
of analysis can be done if the boundary is perturbed everywhere. First, we identify
the region of the boundary of Ω ⊂ RN where the perturbation is localized. We
assume that there exits a smooth function Φ : U ′ ⊂ RN−1 → R, where U ′ is an
connected open neighborhood and such that parameterizes a region Γ1 of ∂Ω

{(x1, x
′) ∈ RN | x′ ∈ U ′, x1 = Φ(x′)} = Γ1 ⊂ ∂Ω.

Without loss of generality, we can assume that Ω is under Γ1. We consider a
connected tube open neighborhood U = (δ1, δ2)× U ′ ⊂ RN such that

U ∩ ∂Ω = Γ1,

and
Ω ∩ U = {(x1, x

′) ∈ U | x′ ∈ U ′, x1 < Φ(x′)}.
Now, let f : RN−1 → R be a smooth (C1 is enough) periodic function with period
Y ′ := [0, 1]N−1 with f(0) = 0. We denote the translate cells as εY ′

n = εn + εY ′
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2 J. FERNÁNDEZ BONDER, R. ORIVE AND J.D. ROSSI

with n ∈ ZN−1. We then define the perturbed domain Ωε as follows:

Ωε ∩ U := {(x1, x
′) ∈ U | x′ ∈ U ′

ε, x1 < Φ(x′) + εaf(x′/ε)χU ′ε(x
′)},

where U ′
ε =

⋃ {
εY ′

n | such that εY ′
n ⊂ U ′, n ∈ ZN

}
,

Γ1
ε =

{
(x1, x

′) ∈ RN | x′ ∈ U ′, x1 = Φ(x′) + εaf(x′/ε)χU ′ε(x
′)

}
,

Ωε ∩ U c := Ω ∩ U c,

where χU ′ε is the characteristic function of U ′
ε. Therefore, we are considering oscil-

lations of period ε with size εa. Let us remark that the oscillations are not located
at the boundary of U ′.

For any 1 < p < ∞ and for every subcritical exponent,

1 ≤ q < p∗ :=
p(N − 1)
(N − p)+

,

we consider the Sobolev trace inequality, S(ε)‖v‖p
Lq(∂Ωε) ≤ ‖v‖p

W 1,p(Ωε), for all
v ∈ W 1,p(Ωε). The best Sobolev trace constant is the largest S(ε) such that the
above inequality holds,

(1.1) S(ε) := inf
v∈W 1,p(Ωε)\W 1,p

0 (Ωε)

∫

Ωε

|∇v|p + |v|p dx

(∫

∂Ωε

|v|q dS

)p/q
.

For subcritical exponents, 1 ≤ q < p∗, the embedding W 1,p(Ωε) ↪→ Lq(∂Ωε) is
compact, so we have existence of extremals, i.e., functions where the infimum is
attained. These extremals are strictly positive in Ωε (see [11]) and C1,α

loc (Ω)∩Cα(Ω)
(see [20, 16]). When one normalize the extremals with

(1.2)
∫

∂Ωε

|uε|qdS = 1,

they are weak solutions of the following problem

(1.3)





∆puε = |uε|p−2uε in Ωε,

|∇uε|p−2 ∂uε

∂νε
= S(ε)|uε|q−2uε on ∂Ωε,

where ∆pu = div(|∇u|p−2∇u) is the usual p−laplacian operator and νε is the unit
outward normal vector, see [11]. In the rest of this article we will assume that the
extremals are normalized according to (1.2) and hence solutions of (1.3). Note that
when p = 2 the equation becomes linear, even in this case our results are new. Of
special importance is the case q = p. In this case (1.3) is an eigenvalue problem of
Steklov type, see [11, 13, 17, 19], etc.

Our concern in this article is the study of the limit of S(ε) and of the corre-
sponding extremals as ε goes to zero. We find that there is a critical size of the
amplitudes for the oscillations such that the extremals for this embedding converges
as the oscillations go to infinity to a solution of an homogenized limit problem and
the best trace constant converges to a homogenized best trace constant. For ampli-
tudes larger than the critical one, the size of the boundary becomes too large and
so the Sobolev trace constant goes to zero. For amplitudes smaller that the critical
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one, the perturbation is too small, so the Sobolev trace constant converges to the
one of the unperturbed domain.

The precise statement of our result is as follows:

Theorem 1. Let S(ε) be the best Sobolev trace constant given by (1.1).

(1) If a < 1, then S(ε) goes to zero as ε → 0. Moreover, it holds

(1.4) S(ε) ≤ Cε(1−a)p/q → 0 as ε → 0.

(2) If a > 1, then S(ε) converges as ε → 0 to S(0) the best Sobolev trace
constant of the unperturbed domain Ω. The corresponding normalized ex-
tremals, rescaled to Ω, converge (along subsequences) strongly in W 1,p(Ω)
to an extremal of the unperturbed domain.

(3) If a = 1, then S(ε) converges as ε → 0 to S∗ the best Sobolev trace constant
of the original domain with a weight on the boundary,

(1.5) S∗ = inf
v∈W 1,p(Ω)\W 1,p

0 (Ω)

∫

Ω

|∇v|p + vp dx

(∫

∂Ω

m(x)|v|q dS

)p/q
,

where

(1.6) m(x) :=





∫

Y

√
1 + |∇Φ(x′) +∇f(y)|2 dy

√
1 + |∇Φ(x′)|2 for x ∈ ∂Ω ∩ U,

1 elsewhere

Moreover, the normalized extremals (rescaled to Ω in a suitable way) con-
verge (along subsequences) weakly in W 1,p to an extremal of (1.5).

Let us end the introduction with some bibliographical discussion. The interest in
problems with oscillating boundary appears in the influence of micro-structures of
surfaces (porous medium, composites, micro-materials) over the large scale behav-
ior. The mathematical analysis of problems with oscillating boundary was presented
in [18].

Now, we describe briefly some related results for problems with oscillating bound-
ary for a second order elliptic equation. In [4] and [15], the asymptotic behavior of
solutions to the Neumann boundary value problem with respect to the oscillating
boundary shows a limiting macrostucture. In [1] the authors study the behavior of
the Laplace equation in as oscillating domain imposing non-homogeneous Dirich-
let boundary conditions on the oscillating part of the boundary. In [5] and [14]
a rapidly oscillating boundary with unlimited growth and inhomogeneous Fourier
boundary condition is studied. The limiting problem can involve Dirichlet, Fourier
or Neumann boundary conditions depending on the structure. There exists refer-
ences that deal with quasilinear operators and oscillating boundaries, see [2] and
[7]. On the other hand, the homogenization problem for the best Sobolev trace con-
stant with a fixed domain for periodic media or in domains with holes was recently
studied in [10].
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2. Proofs of the results

2.1. Subcritical case. a < 1. This is the easiest case. The result follows just by
taking v ≡ 1 as a test in the variational characterization of S(ε), (1.1). In fact what
we get is the following inequality

S(ε) ≤ |Ωε|
|∂Ωε|p/q

.

It is clear that
lim
ε→0

|Ωε| = |Ω|.
Let us estimate |∂Ωε|. We have

|∂Ωε| ≥ |∂Ωε ∩ U | ≥
∫

U ′ε

√
1 + |∇Φ(x′) + εa−1∇f(x′/ε)|2 dx′

= εa−1

∫

U ′ε

√
ε2(1−a) + |ε1−a∇Φ(x′) +∇f(x′/ε)|2 dx′.

As a < 1, it is easy to see that∫

U ′ε

√
ε2(1−a) + |ε1−a∇Φ(x′) +∇f(x′/ε)|2 dx′ → m(|∇f |) :=

∫

Y ′
|∇f(y′)| dy′ > 0.

Hence, |∂Ωε| ≥ cεa−1. From where it follows that

S(ε) ≤ Cε(1−a)p/q → 0 as ε → 0,

as we wanted to show.

Remark 2.1. It is clear from the previous proof that the constant C in (1.4) can
be any constant larger than |Ω|/(m(|∇f |))p/q.

2.2. Supercritical case. a > 1. Let us introduce the following notation, for any
u ∈ W 1,p(Ωε) and v ∈ W 1,p(Ω), we denote

Qε(u) :=

∫

Ωε

|∇u|p + up dx

(∫

∂Ωε

|u|q dS

)p/q
and Q0(v) :=

∫

Ω

|∇v|p + vp dx

(∫

∂Ω

|v|q dS

)p/q
.

To transform integrals in Ωε into integrals in Ω, let us perform the following
change of variables

x̄′ = x′, x̄1 = x1 − εaf(x′/ε)ϕ(x1, x
′),

where ϕ is a smooth cut-off function with bounded derivatives that vanishes outside
U . For every u ∈ C1(Ωε) consider

u(x1, x
′) = v(x̄1, x̄

′).

We obtain that v ∈ C1(Ω). In order to change variables in Qε(u), let us compute
the jacobian of the change of variables

J−1 = 1− εaf(x′/ε)ϕx1 .

The derivatives of v and u are related by

ux1 = vx̄1(1− εaf(x′/ε)ϕx1)
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and
∇x′u = −vx̄1(ε

a−1∇x′f(x′/ε)ϕ + εaf(x′/ε)∇x′ϕ) +∇x̄′v.

Therefore, as ϕ and f have bounded derivatives,∫

Ωε

|∇u|p dx = (1 + O(ε(a−1)))
∫

Ω

|∇v|p dx̄,

∫

Ωε

|u|p dx = (1 + O(εa))
∫

Ω

|v|p dx̄,

and ∫

∂Ωε

|u|q dS = (1 + O(ε(a−1)))
∫

∂Ω

|v|q dS.

Hence, we obtain, as a > 1,

(2.1) Qε(u) = Q0(v) + δε, with δε → 0, as ε → 0.

As ϕ and f have bounded derivatives, it can be checked that δε can be chosen
uniformly on bounded sets of W 1,p(Ω). Then,

Qε(u) ≥ S(0) + δε.

Now let uε be an extremal for (1.1), that is a minimizer of Qε, normalized by
(1.2). Taking u ≡ 1 in (1.1) we get

‖uε‖p
W 1,p(Ω) =

∫

Ωε

|∇uε|p + up
ε dx ≤ |Ωε|

|∂Ωε|p/q
≤ C.

Hence when we change variables we get that vε is bounded in W 1,p(Ω) indepen-
dently of ε, from where it follows that

(2.2) lim inf
ε→0

S(ε) ≥ S(0).

To obtain the upper bound, given ρ > 0 we take a C1(Ω) function v such that

Q0(v) ≤ S(0) + ρ,

hence, from (2.1) we obtain

S(ε) ≤ Qε(u) = Q0(v) + δε ≤ S(0) + ρ + δε.

Therefore
lim sup

ε→0
S(ε) ≤ S(0) + ρ.

As this inequality holds for every ρ > 0 we get

(2.3) lim sup
ε→0

S(ε) ≤ S(0).

Combining (2.2) and (2.3) we conclude

lim
ε→0

S(ε) = S(0).

Now we deal with the convergence of the extremals. Let uε be an extremal
for Qε. From our previous arguments we have that the rescaled functions vε are
bounded in W 1,p(Ω). Therefore we can extract a subsequence (that we still call vε)
such that vε ⇀ v weakly in W 1,p(Ω). We have

1 =
∫

∂Ωε

|uε|q dS = (1 + O(ε(a−1)))
∫

∂Ω

|vε|q dS.
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Hence, by the compactness of the embedding W 1,p(Ω) ↪→ Lq(∂Ω),
∫

∂Ω

|v|q dS = 1.

Moreover,

‖v‖p
W 1,p(Ω) ≤ lim inf

ε→0
‖vε‖p

W 1,p(Ω) = S(0) ≤ ‖v‖p
W 1,p(Ω).

Therefore,
lim
ε→0

‖vε‖p
W 1,p(Ω) = ‖v‖p

W 1,p(Ω),

and we conclude that the sequence vε converges strongly to v an extremal of S(0).

2.3. Critical case. a = 1. Since our perturbations are of size ε the perturba-
tions of Ω are contained in a small neighborhood of the perturbed portion of the
boundary. In fact, let

Aε = {x ∈ U ∩ Ω : dist(x, ∂Ω) < ε}.
Observe that |Aε| ∼ ε.

Now, we observe that, as before, taking u ≡ 1 in (1.1) we get that S(ε) is bounded
independently of ε. Thus, as before, the W 1,p(Ωε) norm of the normalized extremals
uε bounded independently of ε.

The key point to handle this case is to perform a change of variables like the one
that is used in the supercritical case, but now with a cut-off function ϕ depending
on ε such that ϕε ≡ 1 on ∂Ωε ∩Aε. Let

x̄′ = x′, x̄1 = x1 − εf(x′/ε)ϕε(x1, x
′),

where ϕε is a smooth cut-off function supported in Aε. For u ∈ C1(Ωε) consider

u(x1, x
′) = v(x̄1, x̄

′).

The derivatives of v and u are related by

ux1 = vx̄1(1− εf(x′/ε)(ϕε)x1)

and
∇x′u = −vx̄1(∇x′f(x′/ε)ϕε + εf(x′/ε)∇x′ϕε) +∇x̄′v.

We obtain that v ∈ C1(Ω). Moreover, the W 1,p(Ω) norm of the rescaled extremals
vε is bounded independently of ε. Hence we may assume, taking a subsequence if
necessary, that vε ⇀ v weakly in W 1,p(Ω).

Since the derivatives of ϕε are bounded by C/ε, the jacobian of the change of
variables verifies J−1 = 1 in Ω \ Aε and J−1 ≤ C in Aε. Therefore, as f has
bounded derivatives, the derivatives of ϕε are bounded by C/ε and the measure of
Aε is of order ε,

(2.4) lim
ε→0

∫

Ωε

|∇uε|p−2∇uε∇θ dx =
∫

Ω

|∇v|p−2∇v∇θ dx̄

and

(2.5) lim
ε→0

∫

Ωε

|uε|p−2uεθ dx =
∫

Ω

|v|p−2vθ dx̄.
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For the boundary term we have
∫

∂Ωε∩U

|uε|q−2uεθ dS =
∫

U ′\U ′ε
|vε|q−2vεθ

√
1 + |∇Φ(x̄′)|2 dx′

+
∫

U ′ε

|vε|q−2vεθ

√
1 + |∇Φ(x̄′) +∇f(

x̄′

ε
)|2 dx′.

When ε → 0, we get that U ′
ε → U ′ and

√
1 + |∇Φ(x̄′) +∇f(

x̄′

ε
)|2 ∗

⇀

∫

Y

√
1 + |∇Φ(x′) +∇f(y)|2 dy,

∗-weakly in L∞(U ′). Therefore,

lim
ε→0

∫

∂Ωε∩U

|uε|q−2uεθ dS =
∫

U ′
|v|q−2 v θ m(x̄′)

√
1 + |∇Φ(x̄′)|2 dx′,

considered m defined in (1.6). Hence, we get

(2.6)
∫

∂Ωε

|uε|q−2uεθ dS →
∫

∂Ω

|v|q−2v θ m(x) dS.

Since the extremals uε are solutions to (1.3), they satisfy, for every θ ∈ C∞(RN )

(2.7)
∫

Ωε

|∇uε|p−2∇uε∇θ dx +
∫

Ωε

|uε|p−2uεθ dx = S(ε)
∫

∂Ωε

|uε|q−2uεθ dS.

Using (2.4), (2.5) and (2.6) we obtain that a weak limit of the sequence vε in
W 1,p(Ω) satisfies

∫

Ω

|∇v|p−2∇v∇θ dx +
∫

Ω

|v|p−2vθ dx = S̄

∫

∂Ω

|v|q−2vθ dS.

That is to say that v is a weak solution of




∆pv = |v|p−2v in Ω,

|∇v|p−2 ∂v

∂ν
= S̄m(x)|v|q−2v on ∂Ω.

Therefore ∫

Ω

|∇v|p + vp dx = S̄

∫

∂Ω

m(x)|v|q dS.

Moreover, from our previous calculations in (2.6), we have

1 = lim
ε→0

∫

∂Ωε

|uε|q dS =
∫

∂Ω

m(x) |v|qdS.

Now, for every w ∈ W 1,p(Ω) we can define wε ∈ W 1,p(Ωε) by the change of variables
wε(x) = w(x̄). Thus, these wε verify

S(ε)
∫

∂Ωε

|wε|q dS ≤
∫

Ωε

|∇wε|p + |wε|p dx.

Taking limits in the above inequality, we arrive at

S̄

∫

∂Ω

m(x)|w|q dS ≤
∫

Ω

|∇w|p + |w|p dx.
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But, v is an extremal for this inequality. We conclude that S̄ = S∗ given by (1.5)
and that v is an extremal. This proves that

lim
ε→0

S(ε) = S∗.

Concerning the convergence of the extremals we have proved that the rescaled
extremals vε converge weakly to v in W 1,p(Ω). ¤
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