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Abstract. In this paper we find the optimal regularity for viscosity
solutions of the pseudo infinity Laplacian. We prove that the solutions
are locally Lipschitz and show an example that proves that this result
is optimal. We also show existence and uniqueness for the Dirichlet
problem.

1. Introduction.

The main goal of this article is to study the optimal regularity of viscosity
solutions to the pseudo infinity Laplacian. We find that the solutions are
Lipschitz but not necessarily C1.

The pseudo infinity Laplacian is the second order nonlinear operator given
by

(1.1) ∆̃∞u =
∑

i∈I(∇u)

uxixi |uxi |2,

where the sum is taken over the indexes in I(∇u) = {i : |uxi | = maxj |uxj |}.
This operator appears naturally as a limit of p−Laplace type problems. In
fact, let up be a sequence of solutions to

(1.2) ∆̃pu =
N∑

i=1

(|uxi |p−2uxi)xi = 0.

Suppose that u0 is a uniform limit of the sequence up, then u0 is a viscosity
solution to

∆̃∞u = 0.

A proof of this fact is contained in this paper for completeness, the main
arguments being taken from [4].

Eigenvalue problems for this operator were studied in [4]. Belloni and
Kawohl point out that this operator arises in the problem of finding an
optimal Lipschitz extension of boundary data when the Euclidean norm is
substituted by the l1-norm. The Lipschitz extension problem is a relevant
question that has been studied by several other authors, see for example
[1, 2, 7, 10]. Since, the Lipschitz constant is dependent on the norm used
to measure distances in the domain, it is natural to expect that different
elliptic operators will arise from different norms. In our case, the operator
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(1.1) arises by considering the l1−norm (for details see [4]). When the
standard Euclidean norm is considered the corresponding equation is

(1.3) ∆∞u =
N∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi
= (Du)T D2u(Du) = 0.

This widely studied operator is known in the literature as the infinity Lapla-
cian. A comprehensive survey in the subject of Lipschitz extensions and the
infinity Laplacian can be found in [2]. Limits of p−Laplacians are also rele-
vant in mass transfer problems, see [6], [9].

Concerning regularity results for these operators the best known result
is contained in [11] where Savin proved that a solution to the standard
infinity Laplacian (1.3) in two space dimensions is C1. This regularity result
contrasts with our main result. More specifically, we show:

Theorem 1. Let u : Ω → R be a viscosity solution to

(1.4) ∆̃∞u = 0,

where Ω ⊂ RN . Then u is locally Lipschitz.

Moreover, this result is optimal for N ≥ 2, since

(1.5) u(x, y) = x +
1
2
|y|,

is viscosity solution to (1.4) that has no further regularity than Lipschitz.

Given that for N = 1 the infinity Laplacian and pseudo infinity Laplacian
coincide and the similar motivation for these two operators, at first one could
expect a similar regularity for solutions to (1.3) and (1.4). Nevertheless, the
control over second derivatives of solutions to (1.3) is better, since for a
solution to (1.4), the equation may not give any control over the second
derivatives of some of the variables (like y in our example (1.5)).

Further discussion about regularity and the Proof of Theorem 1 can be
found in Section 2. The main ingredient of the proof is that solutions to
(1.4) verify a comparison with l1-cones property. This property analogous
to the one satisfied by solutions to the usual infinity Laplacian with l2-cones,
see [2] and [5].

For sake of completeness, we also show existence and uniqueness to the
Dirichlet problem.

Theorem 2. Given a bounded smooth domain Ω ⊂ RN , for any Lipschitz
boundary data g(x), there exists a unique viscosity solution to

∆̃∞u = 0 in Ω,

u = g on ∂Ω.

The proof of Theorem 2 can be found in Section 3. The existence result
is proved using arguments from [4]. The strategy is to take limits (along
subsequences) of variational solutions to (1.2) as p →∞. Uniqueness follows
by adapting results in [3].
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2. Optimal regularity. Proof of Theorem 1

First, let us recall the standard definition of viscosity solution, see [8].

Definition 2.1. Consider

F (x,Du,D2u) = 0 in Ω.

(1) An upper semi-continuous function u is a subsolution if for every
φ ∈ C2(Ω) such that u−φ has a strict maximum at the point x0 ∈ Ω
with u(x0) = φ(x0) we have:

F (x0, Dφ(x0), D2φ(x0)) ≤ 0.

(2) A lower semi-continuous function u is a viscosity supersolution if for
every φ ∈ C2(Ω) such that u− φ has a strict minimum at the point
x0 ∈ Ω with u(x0) = φ(x0) we have:

F (x0, Dφ(x0), D2φ(x0)) ≥ 0.

(3) Finally, u is a viscosity solution if it is a super and a subsolution.

We will use this definition with

F (x, ξ, M) = −
∑

i∈I(ξ)

Mii|ξi|2,

where I(ξ) = {i : |ξi| = maxj |ξj |}.
Now we prove that viscosity solutions enjoy comparison with l1-cones.

These cones are defined by

Cx0(x) = a + b
N∑

i=1

|xi − (x0)i|.

We denote the l1 ball by

Br(x0) =

{
x :

N∑

i=1

|xi − (x0)i| ≤ r

}
.

Lemma 2.2. Let u be a viscosity solution to (1.4). If u(x) ≥ Cx0(x) for
x ∈ ∂(Br(x0) \ {x0}), then u(x) ≥ Cx0(x) for x ∈ Br(x0).

Proof. We follow [7] and argue by contradiction. Suppose that u(y) <
Cx0(y) for some y ∈ Br(x0) and consider the perturbation of the cone,

w(x) = C̃x0(x)− ε

(
R2 −

N∑

i=1

|xi − (x0)i|2
)

,

where C̃x0 is a smooth approximation of Cx0 (one can consider C̃x0(x) =
a + b

∑N
i=1 |xi − (x0)i|a with a > 1 close to 1). If R is large enough and

ε is small enough we obtain w(x) ≤ u(x) for x ∈ ∂(Br(x0) \ {x0}) and
max(w − u) = w(z) − u(z) > 0. A direct computation shows wxi(z) 6= 0
and wxixi(z) > 0, for ε small, which contradicts the fact that u is a viscosity
solution. ¤

Similarly we have that
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Lemma 2.3. Let u be a viscosity solution to (1.4). If u(x) ≤ Cx0(x) for
x ∈ ∂(Br(x0) \ {x0}), then u(x) ≤ Cx0(x) for x ∈ Br(x0).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. First we show, following [7], that every viscosity solu-
tion is locally Lipschitz. Let

Sr(x0) = maxPN
i=1 |xi−(x0)i|=r

{
u(x)− u(x0)

r

}
.

Consider the cones centered at x0,

Cb
x0

(x) = u(x0) + b
N∑

i=1

|xi − (x0)i|

and let

br = inf
{

b : u(x) ≤ Cb
x0

(x) for x ∈ ∂(Br(x0) \ {x0})
}

.

This number br is well defined since u is continuos and hence bounded on
∂Br(x0).

Taking b = br we have

u(x)− u(x0)
r

≤ Cb
x0

(x)− u(x0)
r

= br.

Hence
Sr(x0) ≤ br.

From Lemma 2.3 we get that br is nondecreasing, if r′ < r then br′ ≤ br.
Therefore

(2.1) Sr′ ≤ br or all r′ ≤ r.

A similar argument using Lemma 2.2 proves that

(2.2) Tr(x0) = minPN
i=1 |xi−(x0)i|=r

{
u(x)− u(x0)

r

}

is bounded below.

From (2.1) and (2.2) we obtain that there exists a constant C such that

maxPN
i=1 |xi−(x0)i|≤r

{ |u(x)− u(x0)|
r

}
≤ C, for all r small.

Or equivalently, u is locally Lipschitz.

To finish the proof of the theorem we have to show that

(2.3) u(x, y) = x +
1
2
|y|

is a viscosity solution of (1.4). To see this fact, we need to check Definition
2.1. First, let us verify (1) in 2.1. Assume that u − φ has a maximum at
(x0, y0) with y0 6= 0. Then, since u− φ is smooth and satisfies

(u− φ)x(x0, y0) = 0, (u− φ)y(x0, y0) = 0

and
(u− φ)xx(x0, y0) ≤ 0.
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Since ux(x0, y0) = 1, |uy(x0, y0)| = 1/2 and uxx(x0, y0) ≤ 0 we get

φx(x0, y0) = 1 > |φy(x0, y0)| = 1/2 and − φxx(x0, y0) ≤ 0.

Hence, we obtain
−∆̃∞φ(x0, y0) ≤ 0.

Analogously if u− φ has a minimum at (x0, y0) with y0 6= 0 we have

−∆̃∞φ(x0, y0) ≥ 0.

Now, if y0 = 0 and φ is smooth, u − φ cannot have a minimum at (x0, y0).
On the other hand, if it has a maximum at this point we obtain

φx(x0, y0) = 1 > |φy(x0, y0)| ≤ 1/2 and − φxx(x0, y0) ≤ 0.

Therefore
−∆̃∞φ(x0, y0) ≤ 0.

Combining the previous inequalities, we conclude that u is a viscosity
solution to (1.4), finishing the proof of Theorem 1. ¤

Remark 2.4. Note that l1-cones are not differentiable along the axes (they
are only Lipschitz), whereas the l2-cones are differentiable everywhere away
from the vertex. Here l1-cones play the same role as the one played by the
l2-cones in the theory for the usual infinity Laplacian, ∆∞, see [2]. This is
a good argument to explain why solutions to the pseudo infinity Laplacian,
∆̃∞, are Lipschitz but not C1.

Remark 2.5. In the definition of the pseudo infinity Laplacian the sum is
taken over all indexes where the l∞-norm of the gradient is attained. One
may think that the lack of C1 regularity comes from the fact that the indexes
of the sum may change from one point to another. This is not always the
case, as in our example where |ux| = max{|ux|, |uy|}.
Remark 2.6. As trivial examples of solutions we may consider bilinear
functions, that is, u(x, y) = a1xy+a2x+a3y+a4. With these examples it is
easy to find solutions in which the indexes of the maximum of the derivatives
depend on the point. Also, by the above proof, u(x, y) = a(y)x + b(y) is a
solution if a(y) > a′(y)x + b′(y).

3. Existence and uniqueness. Proof of Theorem 2

We will obtain a solution of (1.4) taking limit as p →∞ of solutions to

∆̃pu = 0 in Ω(3.1)

u(x) = g(x) for x ∈ ∂Ω.(3.2)

Solutions to (3.1)-(3.2) can be obtained by variational arguments. Notice
first that since g is Lipschitz it can be extended in Ω to a function in
W 1,∞(Ω), that we still denote as g. Hence, we can define

(3.3) Ep(g) = inf
v∈W 1,p(Ω) : u−g∈W 1,p

0 (Ω)

∫

Ω

N∑

i=1

|uxi |p.
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Let us denote by

|||u||| =
(∫

Ω

N∑

i=1

|uxi |p
)1/p

.

This is a seminorm in W 1,p(Ω) equivalent to the usual one.

By a standard compactness argument, we can show that there is a up ∈
W 1,p(Ω) that realizes Ep(g). This function up is a weak solution to (1.2).

From definition (3.3), using g as a test function, we can easily obtain a
constant C, independent of p, such that

‖up‖W 1,p(Ω) ≤ C‖g‖W 1,∞(Ω).

Therefore, fixing q < p and using Holder’s inequality, we get

(3.4) ‖up‖W 1,q(Ω) ≤ C.

By a diagonal procedure we obtain a sequence pi →∞ such that

upi → u weakly in W 1,q(Ω).

Again by compactness, the limit verifies u = g on the boundary. Using (3.4)
we conclude u ∈ W 1,∞(Ω).

Now, we want to prove that u is a viscosity solution to (1.4). To this end
we need a lemma that shows that up are also viscosity solutions. Then, we
pass to the limit in the viscosity sense.

Lemma 3.1. Every weak solution up to (3.1) is also viscosity solution to
(3.1).

Proof. We will follow the ideas in [4]. Let us prove first that up is a viscosity
subsolution. Fix x0 ∈ Ω and φ smooth such that u−φ has a strict maximum
at x0 with u(x0) = φ(x0). Assume, arguing by contradiction, that there
exists r > 0 such that

−∆̃pφ(z) > 0, z ∈ Br(x0).

Set M = sup{(φ−up)(y) : y ∈ ∂Br(x0)} and Φ = φ−M/2. Hence we have
Φ > u on ∂Br(x0), Φ(x0) < u(x0) and

−∆̃pΦ(z) > 0, z ∈ Br(x0).

We multiply by (up − Φ)+ and integrate by parts to obtain
∫

{u>Φ}

N∑

i=1

|Φxi |p−2Φxi(up − Φ)xi dx > 0.

Now, we use the fact that up is a weak solution to obtain
∫

{u>Φ}

N∑

i=1

|uxi |p−2uxi(up − Φ)xi dx = 0.

Therefore

0 ≤
∫

{u>Φ}

N∑

i=1

(|uxi |p−2uxi − |Φxi |p−2Φxi

)
(up − Φ)xi dx < 0,

which is a contradiction.
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The proof of up being a viscosity supersolution is completely analogous.
This finishes the proof of the Lemma. ¤

Now we are ready to prove our second result.

Proof of Theorem 2. We will divide the proof in two steps. In the first step
we prove that the uniform limit of up is a viscosity solution to (1.4). Then,
in the second step, we finish by proving uniqueness of viscosity solutions.

Step 1:

We prove that u is subsolution. As before, we skip the proof of u being a
supersolution, since it is analogous.

Let φ be a smooth function such that u − φ has a strict maximum at
x0 ∈ Ω. By uniform convergence of upi , we have that there is sequence of
points xpi → x0 such that upi − φ attains a maximum at xpi . By Lemma
3.1 we know that

−
N∑

j=1

|φxj |pi−2φxjxj (xpi) ≤ 0.

If the maxj |φxj |(x0) = 0 the result is trivial. Otherwise, since φ is smooth,
dividing by maxj |φxj |pi−4(xpi) and taking limits we obtain that

−
∑

j∈I(∇φ)(x0)

|φxj |2φxjxj (x0) ≤ 0.

This shows that the limit is a viscosity subsolution, finishing step 1.

Step 2:

We will follow closely the arguments in [3]. The main point of the proof
is to obtain an equivalent result to their Lemma 3.2, that is,

Lemma 3.2 (Hopf’s Lemma). Assume that w is a viscosity supersolution
to equation (1.4) with a local minimum at y0. Then w is constant in a
neighborhood of y0.

Proof. Let wβ be the inf-convolution of w, that is

wβ(y) = inf
z

(
w(z) +

|y − z|2
β2

)
.

It is possible to show that wβ is also a viscosity supersolution. Moreover,
wβ is semi-convex.

We will prove the result by contradiction. Since wβ is a semi-convex
function, by translating it we can assume that there is an Euclidean ball BR

such that wβ > 0 on ∂BR
2

and wβ(z0) = 0 for some z0 ∈ BR \BR
2
.

We consider
χ(x) = e−α|x|2 − e−αR2

.

A straightforward computation shows that

−∆̃∞χ(x) = −
∑

{i: |xi|=maxj |xj |}
8α3e−3α|x|2 |xi|2(2α|xi|2 − 1)
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Given that for x ∈ BR \ BR
2

it holds |xi| = maxj |xj | ≥ R
2
√

N
, for α large

enough we obtain

(3.5) −∆̃∞χ(x) < 0.

Now we show, that for a large enough α, it holds that wβ ≥ χ. In
fact, 0 = χ ≤ wβ on ∂BR and for α large also χ ≤ wβ on ∂BR

2
. If the

maxBR\B̄ R
2

(χ− wβ) > 0, we have that the maximum is attained for some z

that satisfies χ(z)− wβ(z) > 0 and, since wβ is a viscosity supersolution, it
must also hold

−∆̃∞χ(z) ≥ 0,

which contradicts (3.5). Hence, for every x ∈ BR \BR
2

it holds

wβ ≥ χ,

which contradicts that wβ(z0) = 0.

This implies that wβ is locally constant in a neighborhood of z0. Hence,
following the proof in [3], we obtain that w is constant in some neighborhood
of every minimum. ¤

By using the sup-convolution we can prove a similar statement to Lemma
3.2 when a viscosity subsolution has a local maximum.

Once these Lemmas are established, the rest of the proof of uniqueness is
contained in the comparison principle proved in [3]. We briefly sketch the
proof here.

Let u and v be sub and supersolution to (1.4) respectively, such that u ≤ v
on ∂Ω. By regularizing u and v by sup and inf convolution and taking u− η
instead of u we can assume u is semi-convex, v is semi-concave and u < v
on ∂Ω. We need to show u ≤ v in Ω.

We establish the comparison principle by contradiction. Suppose that

(3.6) max
Ω

(u− v) > 0.

Define for h small

M(h) = max
x∈Ωh

(u(x + h)− v(x)),

where Ωh = {x ∈ Ω : d(x, ∂Ω) > h}.
Notice that (3.6) implies that M(0) > 0. Hence, if (3.6) holds, we must

have for h small enough that M(h) > 0.

Before finding the contradiction we will show that necessarily one of the
following holds:

(1) There is a sequence hn → 0 such that at any maximum point xhn of
u(·+ hn)− v(·) holds Du(xhn + hn) = Dv(xhn) 6= 0 for every n. or

(2) There is a neighborhood of 0 such that for every h in this neighbor-
hood M(h) = M(0).

If (1) holds we are going to reach the contradiction by proving that neces-
sarily for n large enough M(hn) ≤ 0, which contradicts (3.6). On the other
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hand, if (2) holds, we show that Lemma 3.2 implies that the set where M(0)
is achieved is open and closed, hence equal to Ω, contradicting that u < v
on ∂Ω (when M(0) > 0).

Let us start by showing that either (1) or (2) holds. Suppose that (1)
does not occur. Notice that M is a maximum of semi-convex functions
which implies that M is semi-convex in a neighborhood of 0. Let xh ∈ Ω
be a maximum point of u(·+ h)− v(·). By general properties of semiconvex
functions (see (DMP) in [3]) u(· + h) and v(·) are differentiable at xh and
Du(xh + h) = Dv(xh).

The semiconvexity of u implies that, if Du(xh+h) = Dv(xh) = 0 for some
h, then there is a constant r, small enough, such that for every h′ ∈ Br(h)

M(h′) ≥u(xh + h′)− v(xh)

≥u(xh + h)− v(xh)− C|h− h′|2.
It follows that

M(h′) ≥M(h)− C|h− h′|2.
Which implies 0 ∈ ∂M(h).

Since (1) does not hold, necessarily for any h in a neighborhood of 0
must hold that 0 ∈ ∂M(h), or equivalently M(h) = M(0) for h in some
neighborhood of 0. That is (2) holds.

Now we are left to show that both of these alternatives lead us to contra-
diction.

(a) If (2) holds: Then for every h in a neighborhood from 0

u(x0)− v(x0) = M(0) = M(h) ≥ u(x0 + h)− v(x0).

That is x0 is a local maximum for u. Lemma 3.2 implies that u is constant
in a neighborhood of x0. Since u− v attains a local maximum at x0 and u
is constant, v must attain a local minimum at x0. Using once more Lemma
3.2, we conclude that v must also be constant in a neighborhood of x0. It
follows that the set where M(0) is attained is open. By continuity of u and
v it must be also closed, hence it must equal Ω, which contradicts that u < v
on ∂Ω.

(b) If (1) holds: Let ϕε such that

(3.7) ϕ′ε(t) = exp
(∫ t

0
exp (−ε−1(s + ε−1))ds

)

and ψε(t) its inverse. Define

Gε(w, q,N) = −
∑

i∈I(q)

|qi|2
(
ϕ′ε(w)Nii + ϕ′′ε(w)|qi|2

)
,

where I(q) = {i : |qi| = maxj |qj |}.
We denote as

Uε(x) =ψε(u),

Vε(x) =ψε(v).
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Then, given that

Gε

(
Uε,

∂Uε

∂xi
, D2Uε

)
= −(ϕ′ε(u))2∆̃∞u,

we have that Uε is a subsolution to

Gε

(
Uε,

∂Uε

∂xi
, D2Uε

)
= 0.

Similarly, Vε is a supersolution.

By definition of ϕε we have that Uε and Vε are, respectively, semi-convex
and semi-concave. It holds that Uε(· + hn) − Vε(·) attains its maximum at
some interior point xε ∈ Ω. Since Uε and Vε are semiconvex and semiconcave
(property (DMP) in [3]), both of them are differentiable at xε and |DUε| =
|DVε|. Notice that Uε → u and Vε → v as ε → 0 . Hence, we can find
a sequence εk → 0 such that xεk

→ x, where x is a maximum of uε(· +
hn) − vε(·). Since (1) holds, we have |Du| = |Dv| ≥ δ(n) > 0. By general
properties of semi-convex and semi-concave functions (property (PGC) in
[3]) and the definition of ϕε, we have for ε small enough |DUε| = |DVε| ≥
δ(n)

2 .

Note that one can construct a sequence of points pm and a sequence
functions

fm(x) = Uε(x + hn)− Vε(x)− 〈pm, x〉,
such that fm has a strict maxima at xm

ε and xm
ε → xε as m →∞. Lemma

A.3 in [8] shows that if r > 0 is small enough, there is a ρ > 0 such that the
set of maximum points in Br(xm

ε ) of

gm(x) = Uε(x + hn)− Vε(x)− 〈pm, x〉 − 〈q, x〉
with q ∈ Bρ(0) (ρ ≤ ρ), contains a set of positive Lebesgue measure. By
Alexansandrov’s result, Uε(· + hn) and Vε(·) are twice differentiable a.e.
Therefore for r small and ρ ≤ ρ, there is a z ∈ Br(xm

ε ) and q ∈ Bρ(0) such
that z is a maximum of gm and Uε and Vε are twice differentiable at z. Since
z is a maximum it holds DUε = DVε + pm + q. As before, for q, ρ small and
m large

|DUε| = |DVε + pm + q| ≥ δ(n)
4

.

Moreover, since Uε is semi-convex and Vε semi-concave, it holds

−C · Id ≤ D2Uε(z) ≤ D2Vε(z) ≤ C · Id,

for some constant C > 0 independent of ρ, r and m. Evaluating at z we
have by the definition of G

(3.8)
Gε(Uε(z + hn), DVε(z) + pm + q, D2Vε(z)) ≤ 0

≤ Gε(Vε(z), DVε(z), D2Vε(z)).

Since DVε(z) and D2Vε(z) are bounded, by taking a subsequence when
ρ, r → 0 and m → ∞ we can find P ≥ δ(n)

4 and X such that DVε(z) → P

and D2Vε(z) → X.
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Taking limits in (3.8) we obtain

(3.9) Gε(Uε(z + hn), P , X) ≤ 0 ≤ Gε(Vε(z), P , X).

On the other hand, it is easy to see by the definition of Gε and ϕε that

∂Gε(w, q, N)
∂w

=−
∑

i∈I(q)

|qi|2
(
ϕ′′ε (w)Nii + ϕ′′′ε (w)|qi|2

)

=−
∑

i∈I(q)

|qi|2 exp(−ε−1(w + ε−1))

× exp
(∫ w

0
exp(−ε−1(s + ε−1))ds

)

×
[(

1
ε
− exp(−ε−1(s + ε−1))

)
|qi|2 −Nii

]

Hence, for any δ > 0, ε small enough, |w| ≤ δ−1, δ ≤ |q| ≤ δ−1 and |N | ≤ δ−1

it holds

(3.10)
∂Gε(w, q, N)

∂w
> 0,

which contradicts (3.9), finishing the proof of uniqueness. ¤
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