
Nonlocal higher order evolution equations.

Julio D. Rossi and Carola-Bibiane Schönlieb

Abstract. In this paper we study the asymptotic behavior of solutions to the
nonlocal operator ut(x, t) = (−1)n−1 (J ∗ Id− 1)n (u(x, t)), x ∈ RN which
is the nonlocal analogous to the higher order local evolution equation vt =
(−1)n−1(∆)nv. We prove that solutions to both equations have the same as-
ymptotic decay rate as t goes to infinity. Moreover, we prove that the solutions
of the nonlocal problem converge to the solution of the higher order problem
with right hand side given by powers of the Laplacian when the kernel J is
rescaled in an appropriate way.
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1. Introduction

Our main concern in this paper is the asymptotic behavior of solutions of a nonlocal
diffusion operator of higher order in the whole RN , N ≥ 1.

Let us consider the following nonlocal evolution problem:




ut(x, t) = (−1)n−1 (J ∗ Id− 1)n (u(x, t))

= (−1)n−1

(
n∑

k=0

(
n

k

)
(−1)n−k(J∗)k(u)

)
(x, t),

u(x, 0) = u0(x),

(1.1)

for x ∈ RN and t > 0. Here (J ∗ u)(x, t) =
∫
RN J(x − y)u(y, t) dy is the usual

convolution of J and u and (J∗)k(u) denotes the convolution with J iterated k
times. J ∈ C(RN ,R) is a nonnegative, radial function with

∫
RN J(x) dx = 1

and u0 ∈ L1(RN ) denotes the initial condition for (1.1). We call equation (1.1) a
higher-order nonlocal diffusion equation since the diffusion of the density u at a
point x and time t not only depends on u and its derivatives at the point (x, t),
but on all the values of u in a fixed neighborhood of x through the convolution
term J ∗ u.
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Nonlocal problems like (1.1) with n = 1, i.e.,
{

ut(x, t) = (J ∗ u)(x, t)− u(x, t), x ∈ RN , t > 0,
u(x, 0) = u0(x), x ∈ RN ,

(1.2)

have been recently widely used to model diffusion processes. In this case, u(x, t) is
interpreted as the density of a single population at the point x at time t and J(x−y)
is the probability of “jumping” from location y to location x. The convolution
(J ∗ u)(x) is then the rate at which individuals arrive to position x from all other
positions, while −u(x, t) = − ∫

RN J(y−x)u(x, t) dy is the rate at which they leave
position x to reach any other position. Hence, in absence of external sources, we
obtain the evolution problem (1.2), see [23]. For more references concerning these
evolution problems and their stationary counterparts we quote for instance [4], [8],
[16], [17], [18], [19], [20] and [35], devoted to travelling front type solutions. The
problem (1.2) is considered in [10], [27], while the “Neumann” boundary condition
for the same problem is treated in [1], [14] and [15]. See also [28] for the appearance
of convective terms and [12], [13] for other interesting features in related nonlocal
problems.

Recently nonlocal equations like (1.2) also found applications in image process-
ing. The main advantage of nonlocal operators in image processing is the ability to
process both structures (like edges) but also textures within the same framework.
In [5] a nonlocal filter, referred to as nonlocal means, was suggested for image
denoising. A variational understanding of this filter was first presented in [29] as
a nonconvex functional and later in [25] as a convex quadratic functional. In the
latter reference the authors investigated the functional

J(u) =
1
2

∫

Ω×Ω

|u(x)− u(y)|2 w(x, y) dxdy,

where the weight function w(x, y) ∈ Ω×Ω is positive and symmetric, i.e. w(x, y) =
w(y, x). The proposed flow for minimizing the energy J(u) was then defined as





ut(x) =
∫

Ω

(u(y)− u(x)) w(x, y) dy, x ∈ Ω,

u(x, 0) = u0(x),
(1.3)

taking the given (noisy) image u0 as the initial condition. With w(x, y) = J(x−y)
equation (1.3) has the same structure as the nonlocal equation (1.2).

Note that in our problem (1.1) we just have the iteration k-times of the
nonlocal operator J ∗ u − u as right hand side of the equation. This can be seen
as a nonlocal generalization of higher order equations of the form

vt(x, t) = −An(−∆)
αn
2 v(x, t), (1.4)

with A and α are positive constants specified later in this section. Note that when
α = 2 (1.4) is just vt(x, t) = −An(−∆)nv(x, t). Higher order diffusions of this
type appear in various applications. The Cahn-Hilliard equation, for instance, is a
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fourth order reaction diffusion equation which models phase separation and coars-
ening of binary alloys, see [22] for more details and references. A modified Cahn-
Hilliard equation was further proposed in [6] and [7] for inpainting (i.e., image
interpolation) of binary images. Another fourth order example is the Kuramoto-
Sivashinsky equation (cf. e.g. [30]), used in the study of spatiotemporal chaos (cf.
[21]). In both equations a linear fourth order diffusion as in (1.4) for n = α = 2
is involved. Nonlocal higher order problems have been, for instance, proposed as
models for periodic phase separation. Here the nonlocal character of the problem
is associated with long-range interactions of ”particles” in the system. An example
is the nonlocal Cahn-Hilliard equation (cf. e.g. [26], [31], [32]).

Here we propose (1.1) as a model for higher order nonlocal evolution. For this
model, we first prove existence and uniqueness of a solution, but our main aim is
to study the asymptotic behaviour as t → ∞ of solutions to (1.1). Moreover, we
prove that solutions to (1.1) converge to the solution to (1.4) when the problem is
rescaled in an appropriate way.

Now, let us proceed with the precise description of our main results.

Statement of the results. For a function f we denote by f̂ the Fourier trans-
form of f and by f̌ the inverse Fourier transform of f . Our hypotheses on the
convolution kernel J that we will assume throughout the paper are:

The kernel J ∈ C(RN ,R) is a nonnegative, radial function with total mass
equals one,

∫
RN J(x) dx = 1. This means that J is a radial density probability which

implies that its Fourier transform verifies |Ĵ(ξ)| ≤ 1 with Ĵ(0) = 1. Moreover, we
assume that

Ĵ(ξ) = 1−A |ξ|α + o(|ξ|α) for ξ → 0, (1.5)
for some A > 0 and α > 0.

Under these conditions on J we have the following results. First, we show
existence and uniqueness of a solution

Theorem 1.1. Let u0 ∈ L1(RN ) such that û0 ∈ L1(RN ). There exists a unique
solution u ∈ C0([0,∞); L1(R)N ) of (1.1) that, in Fourier variables, is given by the
explicit formula,

û(ξ, t) = e(−1)n−1(Ĵ(ξ)−1)ntû0(ξ).

Next, we deal with the asymptotic behavior as t →∞.

Theorem 1.2. Let u be a solution of (1.1) with u0, û0 ∈ L1(RN ). Then the asymp-
totic behavior of u(x, t) is given by

lim
t→+∞

t
N
αn max

x
|u(x, t)− v(x, t)| = 0,

where v is the solution of vt(x, t) = −An(−∆)
αn
2 v(x, t) with initial condition

v(x, 0) = u0(x) and A and α as in (1.5). Moreover, we have that there exists
a constant C > 0 such that

‖u(., t)‖L∞(RN ) ≤ C t−
N
αn
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and the asymptotic profile is given by

lim
t→+∞

max
y

∣∣∣t N
αn u(yt

1
αn , t)− ‖u0‖L1(RN ) GA(y)

∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−An|ξ|αn

.

Finally, we show that solutions to nonlocal problems like (1.1), rescaled in
an appropriate way, converge to a solution to the problem (1.4) as the scaling
parameter tends to 0.

Theorem 1.3. Let uε be the unique solution to



(uε)t(x, t) = (−1)n−1 (Jε ∗ Id− 1))n

εαn
(uε(x, t)),

u(x, 0) = u0(x),
(1.6)

where Jε(s) = ε−NJ( s
ε ). Then, for every T > 0, we have

lim
ε→0

‖uε − v‖L∞(RN×(0,T )) = 0,

where v is the solution to the local problem vt(x, t) = −An(−∆)
αn
2 v(x, t) with the

same initial condition v(x, 0) = u0(x).

Organization of the paper. The rest of the paper is organized as follows: in
Section 2 we prove existence and uniqueness of a solution; in Section 3 we deal
with the asymptotic behavior and, finally, in Section 4 we approximate the usual
higher order problem by nonlocal ones.

2. Existence and uniqueness. Proof of Theorem 1.1

To prove existence and uniqueness of solutions we make use of the Fourier trans-
form.

Proof of Theorem 1.1. We have

ut(x, t) = (−1)n−1

(
n∑

k=0

(
n

k

)
(−1)n−k(J∗)k(u)

)
(x, t).

Applying the Fourier transform to this equation we obtain

ût(ξ, t) = (−1)n−1
n∑

k=0

(
n

k

)
(−1)n−k(Ĵ(ξ))kû(ξ, t)

= (−1)n−1(Ĵ(ξ)− 1)nû(ξ, t).

Hence
û(ξ, t) = e(−1)n−1(Ĵ(ξ)−1)ntû0(ξ).

Since û0(ξ) ∈ L1(RN ) and e(−1)n−1(Ĵ(ξ)−1)nt is continuous and bounded, û(·, t) ∈
L1(RN ) and the result follows by taking the inverse Fourier transform. ¤
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Now we prove a lemma concerning the fundamental solution of (1.1).

Lemma 2.1. The fundamental solution w of (1.1), that is the solution of the equa-
tion with initial condition u0 = δ0, can be decomposed as

w(x, t) = e−tδ0(x) + v(x, t), (2.1)

with v(x, t) smooth. Moreover, if u is a solution of (1.1) it can be written as

u(x, t) = (w ∗ u0)(x, t) =
∫

RN

w(x− z, t)u0(z) dz.

Proof. By the previous result we have

ŵt(ξ, t) = (−1)n−1(Ĵ(ξ)− 1)nŵ(ξ, t).

Hence, as the initial datum verifies ŵ0 = δ̂0 = 1, we get

ŵ(ξ, t) = e(−1)n−1(Ĵ(ξ)−1)nt = e−t + e−t
(
e[(−1)n−1(Ĵ(ξ)−1)n+1]t − 1

)
.

The first part of the lemma follows applying the inverse Fourier transform.
To finish the proof we just observe that w ∗ u0 is a solution of (1.1) with

(w ∗ u0)(x, 0) = u0(x). ¤

3. Asymptotic behavior. Proof of Theorem 1.2

Next we prove the first part of Theorem 1.2.

Theorem 3.1. Let u be a solution of (1.1) with u0, û0 ∈ L1(RN ). Then, the as-
ymptotic behavior of u(x, t) is given by

lim
t→+∞

t
N
αn max

x
|u(x, t)− v(x, t)| = 0,

where v is the solution of vt(x, t) = −An(−∆)
αn
2 v(x, t), with initial condition

v(x, 0) = u0(x).

Proof. As in the previous section, we have in Fourier variables,

ût(ξ, t) = (−1)n−1(Ĵ(ξ)− 1)nû(ξ, t).

Hence
û(ξ, t) = e(−1)n−1(Ĵ(ξ)−1)ntû0(ξ).

On the other hand, let v(x, t) be a solution of vt(x, t) = −An(−∆)
αn
2 v(x, t), with

the same initial datum v(x, 0) = u0(x). Solutions of this equation are understood
in the sense that

v̂(ξ, t) = e−An|ξ|αntû0(ξ).
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Hence in Fourier variables∫

RN

|û− v̂| (ξ, t) dξ =
∫

RN

∣∣∣(e(−1)n−1(Ĵ(ξ)−1)nt − e−An|ξ|αnt)û0(ξ)
∣∣∣ dξ

≤
∫

|ξ|≥r(t)

∣∣∣
(
e(−1)n−1(Ĵ(ξ)−1)nt − e−An|ξ|αnt

)
û0(ξ)

∣∣∣ dξ

+
∫

|ξ|<r(t)

∣∣∣
(
e(−1)n−1(Ĵ(ξ)−1)nt − e−An|ξ|αnt

)
û0(ξ)

∣∣∣ dξ

= I + II,

where I and II denote the first and the second integral respectively. To get a
bound for I we decompose it in two parts,

I ≤
∫

|ξ|≥r(t)

∣∣∣e−An|ξ|αntû0(ξ)
∣∣∣ dξ +

∫

|ξ|≥r(t)

∣∣∣e(−1)n−1(Ĵ(ξ)−1)ntû0(ξ)
∣∣∣ dξ

= I1 + I2.

First we consider I1. Setting η = ξt1/(αn) and writing I1 in the new variable η we
get,

I1 ≤ ‖û0‖L∞(RN )

∫

|η|≥r(t)t
1

αn

e−An|η|αn

t−
N
αn dη,

and hence

t
N
αn I1 ≤ ‖û0‖L∞(RN )

∫

|η|≥r(t)t
1

αn

e−An|η|αn

dη
t→∞−→ 0

if we impose that

r(t)t
1

αn
t→∞−→ ∞. (3.1)

To deal with I2 we have to use different arguments for n even and n odd. Let us
begin with the easier case of an even n.

- n even - Using our hypotheses on J we get

I2 ≤ Ce−t,

with r(t) t→∞−→ 0 and therefore

t
N
αn I2 ≤ Ce−tt

N
αn

t→∞−→ 0.

Now consider the case when n is odd.

- n odd - From our hypotheses on J we have that Ĵ verifies

Ĵ(ξ) ≤ 1−A |ξ|α + |ξ|α h(ξ),

where h is bounded and h(ξ) → 0 as ξ → 0. Hence there exists D > 0 and a
constant a such that

Ĵ(ξ) ≤ 1−D |ξ|α , for |ξ| ≤ a.
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Moreover, because
∣∣∣Ĵ(ξ)

∣∣∣ ≤ 1 and J is a radial function, there exists a δ > 0 such
that

Ĵ(ξ) ≤ 1− δ, for |ξ| ≥ a.

Therefore I2 can be bounded by

I2 ≤
∫

a≥|ξ|≥r(t)

∣∣∣e(−1)n−1(Ĵ(ξ)−1)ntû0(ξ)
∣∣∣ dξ

+
∫

|ξ|≥a

∣∣∣e(−1)n−1(Ĵ(ξ)−1)ntû0(ξ)
∣∣∣ dξ

≤ ‖û0‖L∞(RN )

∫

a≥|ξ|≥r(t)

e−Dn|ξ|αnt dξ + Ce−δnt.

Changing variables as before, η = ξt1/(αn), we get

t
N
αn I2 ≤ ‖û0‖L∞(RN )

∫

at
1

αn≥|η|≥r(t)t
1

αn

e−Dn|η|αn

dη + Ct
N
αn e−δnt

≤ ‖û0‖L∞(RN )

∫

|η|≥r(t)t
1

αn

e−Dn|η|αn

dη + Ct
N
αn e−δnt → 0,

as t →∞ if (3.1) holds.
It remains only to estimate II. We proceed as follows

II =
∫

|ξ|<r(t)

e−An|ξ|αnt
∣∣∣et[(−1)n−1(Ĵ(ξ)−1)n+An|ξ|αn] − 1

∣∣∣ |û0(ξ)| dξ.

Applying the binomial formula and taking into account the two different cases
when n is even and odd we can conclude

t
N
αn II ≤ Ct

N
αn

∫

|ξ|<r(t)

e−An|ξ|αntt(|ξ|αn
h(ξ) + K(|ξ|αk

h(ξ)k)) dξ,

where K(|ξ|αk
h(ξ)k) is a polynomial in |ξ|α and h(ξ) with 0 < k ≤ n and provided

we impose

t(r(t))αnh(r(t)) → 0 as t →∞. (3.2)

In this case we have

t
N
αn II ≤ C

∫

|η|<r(t)t
1

αn

e−An|η|αn

(|η|αn
h(η/t1/(αn))

+K(|η|αk
h(η/t1/(αn))k)

1
t(αk)/(αn)

) dη.

To show the convergence of II to zero we use dominated convergence. Because
of our assumption on h we know h(η/t1/(αn)) → 0 as t → ∞ (note that clearly
also h(η/t1/(αn))k converges to zero for every k > 0). Further the integrand is
dominated by ‖h‖L∞(RN ) e−An|η|αn |η|αn, which belongs to L1(RN ).
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Combining this with our previous results we have that

t
N
αn

∫

RN

|û− v̂| (ξ, t) dξ ≤ t
N
αn (I + II) → 0 as t →∞, (3.3)

provided we can find a r(t) → 0 as t →∞ which fulfills both conditions (3.1) and
(3.2). This is done in Lemma 3.1, which is postponed just after the present proof.
To conclude we only have to observe that from the convergence of the Fourier
transforms û(·, t) − v̂(·, t) → 0 in L1 the convergence of u − v in L∞ follows.
Indeed, from (3.3) we obtain

t
N
αn max

x
|u(x, t)− v(x, t)| ≤ t

N
αn

∫

RN

|û− v̂| (ξ, t) dξ → 0, t →∞,

which ends the proof of the theorem. ¤

The following Lemma shows that there exists a function r(t) satisfying (3.1)
and (3.2), as required in the proof of the previous theorem.

Lemma 3.1. Given a function h ∈ C(R,R) such that h(ρ) → 0 as ρ → 0 with
h(ρ) > 0 for small ρ, there exists a function r with r(t) → 0 as t → ∞ which
satisfies

lim
t→∞

r(t)t
1

αn = ∞
and

lim
t→∞

t(r(t))αnh(r(t)) = 0.

Proof. For fixed t large enough, we choose r(t) as a solution of

r(h(r))
1

2αn = t−
1

αn . (3.4)

This equation defines a function r = r(t) which, by continuity arguments goes to
zero as t tends to infinity, satisfying also the additional asymptotic conditions in
the lemma. Indeed, if there exists tn → ∞ with no solution of (3.4) for r ∈ (0, δ)
then h(r) ≡ 0 in (0, δ), which is a contradiction to our assumption that h(r) > 0
for r small. ¤

As a consequence of Theorem 3.1, we obtain the following corollary which
completes the results gathered in Theorem 1.2 in the Introduction.

Corollary 3.1. The asymptotic behavior of solutions of (1.1) is given by

‖u(., t)‖L∞(RN ) ≤
C

t
N
αn

.

Moreover, the asymptotic profile is given by

lim
t→+∞

max
y

∣∣∣t N
αn u(yt

1
αn , t)− ‖u0‖L1(RN ) GA(y)

∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−An|ξ|αn

.
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Proof. From Theorem 3.1 we obtain that the asymptotic behavior is the same as
the one for solutions of the evolution given by a power n of the fractional Laplacian.
It is easy to check that the asymptotic behavior is in fact the one described in the
statement of the corollary. In Fourier variables we have

limt→∞ v̂(ηt−
1

αn , t) = limt→∞ e−An|η|αn

û0(ηt−
1

αn )

= e−An|η|αn

û0(0)

= e−An|η|αn ‖u0‖L1(RN ) .

Therefore
lim

t→+∞
max

y

∣∣∣t N
αn v(yt

1
αn , t)− ‖u0‖L1(RN ) GA(y)

∣∣∣ = 0,

where GA(y) satisfies ĜA(ξ) = e−An|ξ|αn

. ¤

With similar arguments as in the proof of Theorem 3.1 one can prove that
also the asymptotic behavior of the derivatives of solutions u of (1.1) is the same as
the one for derivatives of solutions v of the evolution of a power n of the fractional
Laplacian, assuming sufficient regularity of the solutions u of (1.1).

Theorem 3.2. Let u be a solution of (1.1) with u0 ∈ W k,1(RN ), k ≤ αn and
û0 ∈ L1(RN ). Then, the asymptotic behavior of Dku(x, t) is given by

lim
t→+∞

t
N+k
αn max

x

∣∣Dku(x, t)−Dkv(x, t)
∣∣ = 0,

where v is the solution of vt(x, t) = −An(−∆)
αn
2 v(x, t) with initial condition

v(x, 0) = u0(x).

Proof. We begin again by transforming our problem for u and v in a problem for
the corresponding Fourier transforms û and v̂. For this we consider

max
x

∣∣Dku(x, t)−Dkv(x, t)
∣∣ = max

ξ

∣∣∣( ̂Dku(ξ, t))∨ − ( ̂Dkv(ξ, t))∨
∣∣∣

≤
∫

RN

∣∣∣ ̂Dku(ξ, t)− ̂Dkv(ξ, t)
∣∣∣ dξ =

∫

RN

|ξ|k |û(ξ, t)− v̂(ξ, t)| dξ.

Showing
∫
RN |ξ|k |û(ξ, t)− v̂(ξ, t)| dξ → 0 as t → ∞ works analogue to the proof

of Theorem 3.1. The additional term |ξ|k is always dominated by the exponential
terms. ¤

4. Scaling the kernel. Proof of Theorem 1.3

In this section we show that the problem vt(x, t) = −An(−∆)
αn
2 v(x, t) can be

approximated by nonlocal problems like (1.1) when rescaled in an appropriate
way.
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Proof of Theorem 1.3. The proof uses once more the explicit formula for the so-
lutions in Fourier variables. We have, arguing exactly as before,

ûε(ξ, t) = e(−1)n−1 (cJε(ξ)−1)n

εαn tû0(ξ).

and
v̂(ξ, t) = e−An|ξ|αntû0(ξ).

Now, we just observe that Ĵε(ξ) = Ĵ(εξ) and therefore we obtain∫

RN

|ûε − v̂| (ξ, t) dξ =
∫

RN

∣∣∣(e(−1)n−1 (Ĵ(εξ)−1)n

εαn t − e−An|ξ|αnt)û0(ξ)
∣∣∣ dξ

≤ ‖û0‖L∞(RN )

(∫

|ξ|≥r(ε)

∣∣∣e(−1)n−1 (Ĵ(εξ)−1)n

εαn t − e−An|ξ|αnt
∣∣∣ dξ

+
∫

|ξ|<r(ε)

∣∣∣e(−1)n−1 (Ĵ(εξ)−1)n

εαn t − e−An|ξ|αnt
∣∣∣ dξ

)
.

For t ∈ [0, T ] we can proceed as in the proof of Theorem 1.2 (Section 3) to obtain
that

max
x
|uε(x, t)− v(x, t)| ≤

∫

RN

|ûε − v̂| (ξ, t) dξ → 0, ε → 0.

We leave the details to the reader. ¤
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