
NONLOCAL DIFFUSION PROBLEMS THAT APPROXIMATE A

PARABOLIC EQUATION WITH SPACIAL DEPENDENCE

ALEXIS MOLINO AND JULIO D. ROSSI

Abstract. In this paper we show that smooth solutions to the Dirichlet prob-

lem for the parabolic equation

vt(x, t) =

N∑
i,j=1

aij(x)
∂2v(x, t)

∂xi∂xj
+

N∑
i=1

bi(x)
∂v(x, t)

∂xi
x ∈ Ω,

with v(x, t) = g(x, t), x ∈ ∂Ω, can be approximated uniformly by solutions of
nonlocal problems of the form

uε
t (x, t) =

∫
Rn

Kε(x, y)(uε(y, t)− uε(x, t))dy, x ∈ Ω,

with uε(x, t) = g(x, t), x /∈ Ω, as ε → 0, for an appropriate rescaled kernel
Kε. In this way we show that the usual local evolution problems with spatial

dependence can be approximated by non-local ones. In the case of an equation

in divergence form we can obtain an approximation with symmetric kernels,
that is, Kε(x, y) = Kε(y, x).

1. Introduction

Nonlocal diffusion problems of the form

(1) ut(x, t) =

∫
Rn

K(x, y)(u(y, t)− u(x, t))dy

and variations of it, have been extensively studied in recent years (see [1, 6, 5]
and references therein). Here, the kernel K : RN × RN → R is a nonnegative,
smooth function such that

∫
RN K(x, y)dx = 1. A physical interpretation of (1) is

the following: if K(x, y) is the probability distribution that individuals jump from
y to x and u(x, t) is the density at position x at time t, then

∫
RN K(x, y)u(y, t)dy

is the rate at which individuals are arriving to position x from all other locations
y. Further, with the same reasoning,

∫
RN K(x, y)u(x, t)dy is interpreted as the rate

at which they are leaving position x to all other places. Hence, in the absence of
external or internal sources, the density u(x, t) satisfies (1) (see [1, 11, 13]). This
kind of nonlocal diffusion equation is relevant in applications, for example, in the
study of biological dispersal of species, image processing, particle systems, elasticity
and coagulation models, [2, 3, 4, 11, 12, 13].

In this work we consider the following nonlocal diffusion problem: given a
bounded domain Ω ⊂ RN , g ∈ L1

((
RN \ Ω

)
× (0,∞)

)
and u0 ∈ L1(Ω), find u(x, t)
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dalućıa FQM-116 (Spain). The second author is supported by CONICET (Argentina).
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such that

(PK)


ut(x, t) =

∫
RN

K(x, y)(u(y, t)− u(x, t))dy, x ∈ Ω, t > 0,

u(x, t) = g(x, t), x /∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where the kernel K(x, y) is a positive function with compact support contained in
Ω×B(0, d) ⊂ RN × RN with

(2) 0 < sup
y∈B(0,d)

K(x, y) = C(x) ∈ L∞(Ω).

As we mentioned before, the integral term in the problem takes into account the
individuals arriving or leaving position x ∈ Ω from or to other places. In this model,
imposing u(x, t) = g(x, t) for x /∈ Ω, we are prescribing the values of u outside Ω. In
the particular case g = 0, we mean that individuals that leave Ω, die (and therefore
the density outside Ω is zero).

Existence and uniqueness of solutions of (PK) is proved in Proposition 2.1 using a
fixed point argument (see also Appendix A, for an alternative proof). In Proposition
2.2 we obtain an appropriate comparison principle.

As a local counterpart to our nonlocal evolution problem, we have the following
second order local parabolic differential equation with Dirichlet boundary condi-
tions

(Q)


vt(x, t) =

N∑
i,j=1

aij(x)
∂2v(x, t)

∂xi∂xj
+

N∑
i

bi(x)
∂v(x, t)

∂xi
, x ∈ Ω, t > 0,

v(x, t) = g(x, t), x ∈ ∂Ω, t > 0,

v(x, 0) = u0(x), x ∈ Ω,

where the coefficients aij(x), bi(x) are smooth in Ω and (aij(x)) is a symmetric
positive definite matrix, i.e., aij = aji and

∑
ij aij(x)ξiξj ≥ α|ξ|2 for every real

vector ξ = (ξ1, . . . , ξN ) 6= 0 and for some α > 0.

It is important to stress that here we will use that (Q) has smooth solutions. In
fact, under regularity assumptions on the boundary data g, the domain Ω and the
initial condition u0, we have that the solutions of (Q) are C2+α,1+α/2

(
Ω× [0, T ]

)
.

For such a regularity result we refer to [14].

Our main goal in this work is to show that the Dirichlet problem for the parabolic
equation (Q) can be approximated by nonlocal problems of the form (PK). More
precisely, given J : RN → R a nonnegative, radial and continuous function with
compact support and finite second order momentum, we consider the rescaled kernel

(3) Kε(x, y) =
C(x)

εN+2
a
(
x− E(x)(x− y)

)
J

(
L−1(x)

x− y
ε

)
Here a is given by a(s) =

∑
i(si+M), with M large enough to ensure a(x) ≥ β > 0.

The matrix L(x) is the Cholesky’s factor of A(x), that is, A(x) = L(x)Lt(x),
the matrix E(x) is related with the coefficients (aij(x)) and bi(x) and C(x) is a
normalizing function, see Section 3 for a precise definition. Then, we prove that uε,
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solutions of rescaled nonlocal problems (PKε
), approximate uniformly the solution

of the corresponding Dirichlet problem for the parabolic equation. We can now
formulate our main result.

Theorem 1.1. Let v ∈ C2+α,1+α/2
(
Ω× [0, T ]

)
be the solution to (Q). Let, for a

given ε > 0, uε be the solution to (PKε
), with initial condition u0(x) and external

datum g(x, t). Then, we have

‖v − uε‖L∞(Ω×[0,T ]) → 0, as ε→ 0.

To deal with an equation in divergence form

vt(x, t) =

N∑
i,j=1

∂

∂xi

(
aij(x)

∂v(x, t)

∂xj

)
,

we can just take

bi(x) :=

N∑
j=1

∂aij(x)

∂xj

and the previous approach works. However, in this case the resulting family of non-
local approximating problems have non-symmetric kernels. Note that for symmetric
kernels, i.e., K(x, y) = K(y, x), one has the desirable property of an ”integration
by parts formula”, that is,∫∫

K(x, y)(u(y)−u(x))ϕ(x)dydx = −1

2

∫∫
K(x, y)(u(y)−u(x))(ϕ(y)−ϕ(x))dydx.

This is similar to the usual integration by parts formula for divergence form oper-
ators, ∫

div(A(x)∇v(x))ϕ(x)dx = −
∫
A(x)∇v(x)∇ϕ(x)dx.

To obtain a family of symmetric kernels Kε(x, y) = Kε(y, x) such that the corre-
sponding solutions to the nonlocal problems converge as ε → 0 to the solution to
the Dirichlet problem in divergence form we consider,

(4) Kε(x, y) =
2

C(J)εN+2
G

(
B−1(x)

x− y
ε

)
G

(
B−1(y)

x− y
ε

)
,

where G2(s) = J(s) (J is a radially symmetric, compactly supported and smooth
kernel), and B(x) = (bij(x)) is a N ×N matrix such that

det(B(x))B(x)Bt(x) = A(x).

Note that B(x) is invertible since A(x) is. In this way we obtain a family of non-
local symmetric kernels such that the approximation result given in Theorem 1.1
holds.

For constant matrices A and bi(x) = 0 in problem (Q), the rescaled kernels (3)
and (4) coincide.

We finish the introduction with a brief description of previous results. When
one considers a convolution kernel J (as before, radially symmetric, compactly
supported and smooth) and rescale it, that is, for

(5) Kε(x, y) =
C

εN+2
J

(
y − x
ε

)
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one finds in the limit as ε → 0 solutions to the classical heat equation, vt = ∆v.
This fact was proved in [8] for Dirichlet boundary conditions and in [7] for Newmann
boundary conditions. For an evolution problem with the same kernel but with an
inhomogeneous term a(y) in front in the whole RN we refer to [16] (see also [5]).
In this case the limit equation is given by vt = ∆(a(x)v). For approximations of
models from elasticity (peridynamics) we refer to [2]. Concerning nonlinear nonlo-
cal problems (approximating for example the p−Laplacian or the porous medium
equation) we refer to the book [1] and the survey [17]. We remark that in the
previously mentioned references the case of matrix dependent problems (like the
ones included in this paper) was not treated (only scalar coefficients appear).

The rest of this paper is organized as follows: in Section 2, we prove existence and
uniqueness for solutions to problem (PK) using a fixed point theorem (Proposition
2.1). In addition, we show a comparison principle (Proposition 2.2). In Section 3,
using Cholesky’s decomposition of the matrix A(x) = (aij(x)), we prove the uniform
convergence of uε to v, the solution of the local parabolic equation (Theorem 1.1).
In Section 4 we deal with the divergence form equation proving the convergence
result for a symmetric family of kernels. Finally, the Appendix is devoted to give an
alternative proof of existence of solutions (Appendix A), additionally, a technical
computation using in the proof of Theorem 1.1 is postponed to the second part of
the Appendix (Appendix B).

2. Existence, Uniqueness and Comparison Principle

By a solution of problem (PK) we mean a function u ∈ C([0,∞);L1(Ω)) which
satisfies

u(x, t) =

∫ t

0

∫
RN

K(x, y)(u(y, s)− u(x, s))dyds+ u0(x), x ∈ Ω, t ≥ 0,

here we understand that u(y, s) = g(y, s) when y ∈ RN \ Ω, s > 0. Consequently,
due to the previous integral expression, we notice that u ∈ C1([0,∞);L1(Ω)).

Proposition 2.1. If u0 ∈ L1(Ω), there exists a unique solution of problem (PK).

Proof. Fixed t0 > 0, we set the Banach space Xt0 = C
(
[0, t0];L1(Ω)

)
with norm

|||v||| = max
0≤t≤t0

‖v(·, t)‖L1(Ω).

Let T : Xt0 −→ Xt0 be the operator defined by

T (v)(x, t) =

∫ t

0

∫
RN

K(x, y)(v(y, s)− v(x, s))dyds+ u0(x),

with v(x, t) = g(x, t) if x /∈ Ω.

Note that in the definition of the operator T we include the fact that we are
taking v(y, s) = g(y, s) when y /∈ Ω.
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In this way, using Fubini’s theorem we obtain

‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω)

+

∫ t

0

(∫
Ω

∫
RN

K(x, y)|v(y, s)|dydx+

∫
Ω

∫
RN

K(x, y)|v(x, s)|dydx
)
ds.

Recalling hypothesis (2), let us denote by C = ‖C(x)‖∞. We get∫
RN

K(x, y)|v(y, s)|dy ≤ C(x)‖v(·, s)‖L1(Ω) ≤ C‖v(·, s)‖L1(Ω)

and ∫
RN

K(x, y)|v(x, s)|dy ≤ |B(0, d)|C(x)|v(x, s)| ≤ C|B(0, d)||v(x, s)|.

Hence

(6) ‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω) + C̃

∫ t

0

‖v(·, s)‖L1(Ω)ds,

where C̃ = C(|Ω|+ |B(0, d)|). Since ‖v(·, s)‖L1(Ω) ≤ |||v||| it follows that

‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω) + tC̃|||v|||,
thus operator T is well defined and

|||T (v)||| ≤ ‖u0‖L1(Ω) + t0C̃|||v|||.

Now, choosing t0 < C̃−1, for every w, z ∈ Xt0 we get

|||T (w − z)||| < |||w − z|||.
Hence, T is a contraction onXt0 which mapsXt0 into itself, then by the Banach con-
traction principle there exists a unique u ∈ Xt0 such that T (u) = u, i.e., we get local
existence and uniqueness of problem (PK) for 0 ≤ t ≤ t0. Moreover, taking the Ba-
nach space X2t0 = C

(
[t0, 2t0];L1(Ω)

)
with norm |||v||| = maxt0≤t≤2t0 ‖v(·, t)‖L1(Ω),

T : X2t0 −→ X2t0 defined by

T (v)(x, t) =

∫ t

t0

∫
RN

K(x, y)(v(y, s)− v(x, s))dyds+ u(x, t0),

and arguing as above, there exists a unique solution in [t0, 2t0] and consequently in
[0, 2t0]. By an iteration argument, we obtain a unique solution u ∈ C([0,∞);L1(Ω))
of problem (PK). �

For an alternative proof we refer the reader to Appendix A.

By a subsolution (respectively supersolution) of problem (PK) we mean a func-
tion u ∈ C1([0, T ];L1(Ω)) which satisfies the following inequalities

ut(x, t)
(≥)

≤
∫
RN

K(x, y)(u(y, s)− u(x, s))dy, x ∈ Ω, t < 0,

u(x, t)
(≥)

≤ g(x, t), x /∈ Ω, t > 0.

u(x, 0)
(≥)

≤ u0(x), x ∈ Ω.
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Clearly, a solution is both a subsolution and a supersolution.

Proposition 2.2. Let u, v ∈ C1(Ω × [0, T ]) be a subsolution and supersolution
respectively of problem (PK). Then u ≤ v.

Proof. We will denote by w = v − u. Obviously w ∈ C1(Ω× [0, T ]) and it satisfies
wt(x, t) ≥

∫
RN

K(x, y)(w(y, t)− w(x, t))dy, x ∈ Ω, t < 0,

w(x, t) ≥ 0, x /∈ Ω, t > 0.

w(x, 0) ≥ 0, x ∈ Ω.

Now, we assume that w(x, t) is not a nonnegative function, that is, there exists
some point (x̃, t̃) ∈ Ω × (0, T ] such that w(x̃, t̃) < 0. Then, by the continuity of
w, there exists ε > 0 such that w(x̃, t̃) + εt̃ is also negative. Consider the function
w(x, t) + εt ∈ C(Ω× [0, T ]), and let (x0, t0) be its minimum, thus

wt(x0, t0) + ε ≤ 0.

Conversely,

wt(x0, t0) + ε >

∫
RN

K(x0, y)(w(y, t0)− w(x0, t0))dy ≥ 0,

this leads to a contradiction and we conclude that w(x, t) is a nonnegative function.
�

3. Proof of Teorem 1.1

It is well known that given A(x) = (aij(x)) a symmetric and positive definite
matrix there exists a unique lower triangular matrix L(x) = (lij(x)) with real and
positive diagonal entries such that

(7) A(x) = L(x)Lt(x),

where Lt(x) denotes the transpose of L(x) which is known as the Cholesky factor
and (7) is known as the Cholesky factorization, see for instance [10].

Let J : Rn → R be a nonnegative, radially symmetric, continuous function with∫
Rn J(z)dz = 1 and finite second order momentum. Assume also that J is strictly

positive in B(0, r) for some r > 0 and vanishes in Rn \B(0, r).

Now we introduce some notations. Given a matrix A(x) = (aij(x)) with C1(Ω̄)
coefficients we consider:

Ai(x) :=

N∑
j=1

aij(x),

W (x) :=


b1(x) 0 . . . 0

0 b2(x) . . . 0

0 0
. . . 0

0 . . . 0 bN (x)
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We consider the rescaled kernel

(8) Kε(x, y) =
C(x)

εN+2
a (x− E(x)(x− y)) J

(
L−1(x)

x− y
ε

)
.

Here a is defined as

a(s) =

N∑
i=1

(si +M),

for some constant M > 0 large enough to ensure a(x) ≥ β > 0. The matrix
L(x) is given by (7) (note that we can take any N ×N matrix (lij(x)), such that
A(x) = L(x)Lt(x)), the function C(x) is given by

C(x) =
2

C(J)a(x)(detA(x))1/2

being C(J) =
∫
J(z)z2

1dz and the matrix E(x) by

E(x) =
a(x)

2
W (x)A−1(x).

We remark that for the this kernel, Proposition 2.1 and Proposition 2.2 can be
used, since J is smooth, a(x) is strictly positive and the coefficients of the envolved
matrices are bounded. Therefore, for every ε > 0 we have existence, uniqueness
and the comparison principle for the nonlocal problem.

Lemma 3.1. Let u be a C2+α,1+α/2
(
RN × [0, T ]

)
function and

Lε(u) :=

∫
RN

Kε(x, y)(u(y, t)− u(x, t)dy.

Then ∥∥∥∥∥∥Lε(u)−

 N∑
i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

N∑
i=1

bi(x)
∂u(x)

∂xi

∥∥∥∥∥∥
L∞(Ω×[0,T ])

≤ θ(ε),

for some function θ(ε) that goes to zero as ε→ 0.

Proof. Under the change variables y = x− εL(x)z, Lε(u) becomes

C(x) (detA(x))
1/2

ε2

∫
RN

a (x− εD(x)z) J(z)(u(x− εL(x)z, t)− u(x, t))dz

where D(x) = a(x)
2 W (x) (Lt(x))

−1
. By a simple Taylor expansion we obtain

Lε(u) =
−C(x) (detA(x))

1/2

ε

N∑
i=1

∂u

∂xi

N∑
j=1

lij(x)

∫
RN

a (x− εD(x)z) J(z)zjdz

+
1

2
C(x) (detA(x))

1/2
N∑

i,j=1

∂2u

∂xi∂xj

N∑
k,m=1

lik(x)ljm(x)

×
∫
Rn

a (x− εD(x)z) J(z)zkzmdz +O(εα)

= L1
ε(u) + L2

ε(u) +O(εα).
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For the first expression, L1
ε(u), having in mind the definition of the function a(s)

and that J is a radial function, more specifically, we use that
∫
J(z)zjdz = 0 and∫

J(z)zmzjdz = 0 if m 6= j, we get

lim
ε→0
L1
ε(u) = C(x) (detA(x))

1/2
N∑
i=1

∂u

∂xi

N∑
j=1

lij(x)

N∑
k,m=1

dkm(x)

∫
RN

J(z)zmzjdz

= C(x) (detA(x))
1/2

C(J)

N∑
i=1

∂u

∂xi

N∑
j=1

lij(x)

N∑
k=1

d tjk(x),

here d tjk(x) denotes the (j, k)-term of the matrix Dt(x). Finally, since

N∑
j=1

lij(x)

N∑
k=1

d tjk(x) =

N∑
k=1

(L(x)Dt(x))ik =
a(x)

2
bi(x),

it follows that

lim
ε→0
L1
ε(u) =

N∑
i=1

∂u(x, t)

∂xi
bi(x).

On the other hand, letting ε → 0 in L2
ε(u) taking into account the choice of the

matrix L(x) we have

lim
ε→0
L2
ε(u) =

N∑
i,j=1

∂2u(x, t)

∂xi∂xj

N∑
k=1

lik(x)l tkj(x) =

N∑
i,j=1

aij(x)
∂2u(x, t)

∂xi∂xj
,

which concludes the proof. �

Remark 3.2. We want to point out that the use of Cholesky’s decomposition is
not necessary for the proof. In fact, any matrix L(x) satisfying (7) is also allowed.
The reason to choose Cholesky’s factor is to ensure the uniqueness of the rescaled
kernel Kε defined in (8).

In order to prove our main result, let ṽ be a C2+α,1+α/2
(
RN × [0, T ]

)
extension

of v, the solution of the parabolic problem (Q). Therefore, ṽ verifies
ṽt(x, t) = Λ(ṽ(x, t)), x ∈ Ω, t ∈ (0, T ],

ṽ(x, t) = G(x, t), x /∈ Ω, t ∈ (0, T ],

ṽ(x, 0) = u0(x), x ∈ Ω,

where G(x, t) = g(x, t) if x ∈ ∂Ω and

Λ(ṽ(x, t)) =

N∑
i,j=1

aij(x)
∂2ṽ(x, t)

∂xi∂xj
+

N∑
i=1

bi(x)
∂ṽ(x, t)

∂xi
.

Moreover, as G is smooth we get

(9) G(x, t) = g(x, t) +O(ε), if dist(x, ∂Ω) ≤ aε,

where a = r
√
λmin. Here λmin denotes the maxx∈Ω λmin(A(x)) > 0. For more

details we refer the reader to Appendix B.
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Proof of Theorem 1.1. Set wε := ṽ − uε which satisfies

(10)


wt(x, t) = Λ(ṽ)− Lε(ṽ) + Lε(wε), x ∈ Ω, t ∈ (0, T ],

wε(x, t) = G(x, t)− g(x, t), x /∈ Ω, t ∈ (0, T ],

wε(x, 0) = 0, x ∈ Ω.

First, we claim that w̄(x, t) = K1θ(ε)t + K2ε is a supersolution with K1,K2 > 0
sufficiently large but independent of ε. Indeed, taking into account Lemma 3.1 and
that Lε(w̄) = 0 we have

w̄t(x, t) = K1θ(ε) ≥ Λ(ṽ)− Lε(ṽ) + Lε(w̄).

Moreover, w̄(x, 0) > 0 and by (9) we obtain that w̄(x, t) ≥ K2ε ≥ O(ε), for t ∈ (0, T ]
and x /∈ Ω such that dist(x, ∂Ω) ≤ aε, which is our claim. From the comparison
result we get

ṽ − uε ≤ w̄(x, t) = K1θ(ε)t+K2ε.

Similar arguments applied to the case w(x, t) = −w̄(x, t) leads us to assert that
w(x, t) is a subsolution of problem (10). We conclude, using again the comparison
principle stated in Proposition 2.2, that

−K1θ(ε)t−K2ε ≤ ṽ − uε ≤ K1θ(ε)t+K2ε,

and hence

‖v − uε‖L∞(Ω×[0,T ]) ≤ K1Tθ(ε) +K2ε→ 0.

�

Remark 3.3. It is worth pointing out that the particular case A(x) = I and
bi(x) = 0, which corresponds to the heat equation, the rescaled kernel (5) considered
by Cortázar et al. in [8] is the same Kε considered here. Moreover, if we take
another decomposition of the identity matrix, for example, consider li,j = 1 if
i + j = N + 1 and 0 otherwise, we can get a different nonlocal approximation by
nonlocal diffusion problems of the heat equation.

4. Divergence form operators

In this section, we consider the following rescaled kernel

(11) Kε(x, y) =
2

C(J)εN+2
G

(
B−1(x)

x− y
ε

)
G

(
B−1(y)

x− y
ε

)
,

where G2(s) = J(s) and B(x) = (bij(x)) is a N ×N matrix such that

det(B(x))B(x)Bt(x) = A(x).

Note that the kernels given in (11) are symmetric, that is, they verify

Kε(x, y) = Kε(y, x).

For this family of symmetric kernels Proposition 2.1 and Proposition 2.2 can
be used. Therefore, we have that the approximation result stated in Theorem 1.1
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holds for the divergence form equation

vt(x, t) =

N∑
i,j=1

∂

∂xi

(
aij(x)

∂v(x, t)

∂xj

)
.

This can be proved exactly as before as soon as one has the following result.

Lemma 4.1. Let u be a C2+α
(
RN
)
function and

Lε(u) :=

∫
RN

Kε(x, y)(u(y)− u(x)dy.

Then ∥∥∥∥∥Lε(u)−
N∑
i=1

∂

∂xi

(
aij(x)

∂u(x)

∂xj

)∥∥∥∥∥
L∞(Ω×[0,T ])

≤ θ(ε),

for some function θ(ε) that goes to zero as ε→ 0.

Proof. In this proof we will use the following notations for partial derivatives and
for the coefficients of the inverse and the adjoint of a matrix,

(f(s))′i =
∂f(s)

∂si
, B−1(x) = (b−1

ij (x)), B∗(x) = (b∗ij(x)).

Using the change of variable z = x−y
ε and Taylor’s expansions we get

Lε(u)(x) = F1,ε(x) + F2,ε(x) +O(ε2+α)

with

F1,ε(x) =
−2

C(J)ε

N∑
i=1

∂u(x)

∂xi

∫
RN

G(B−1(x− εz)z)G(B−1(x)z)zi dz

and

F2,ε(x) =
1

C(J)

N∑
i,j=1

∂2u(x)

∂xi∂xj

∫
RN

G(B−1(x− εz)z)G(B−1(x)z)zizj dz.

Let us first analyze the limit as ε→ 0 of F1,ε(x). As
∫
J(B−1(x)z)zidz = 0 (this

follows changing z by −z), we can use L’Hopital’s rule to obtain

lim
ε→0

F1,ε(x) =
2

C(J)

N∑
i=1

∂u(x)

∂xi

×
∫
RN

N∑
j=1

G′j(B
−1(x)z)

N∑
k,m=1

(b−1
jk )′m(x)zkzmG(B−1(x)z)zi dz.

Now we observe that

G′j(s)G(s) =
1

2
J ′j(s)

and hence

lim
ε→0

F1,ε(x) =
1

C(J)

N∑
i,j,k,m=1

∂u(x)

∂xi
(b−1
jk )′m(x)

∫
RN

J ′j(B
−1(x)z)zkzmzi dz.
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Changing variables as w = B−1(x)z we have

lim
ε→0

F1,ε(x) =
det(B(x))

C(J)

N∑
i,j,k,m,p,q,r=1

∂u(x)

∂xi
(b−1
jk )′m(x)bip(x)bkq(x)bmr(x)

×
∫
RN

J ′j(w)wpwqwr dw.

To continue we have to find the value of the last integral. We have that∫
RN

J ′j(w)wpwqwr dw = 0,

except for the following cases:

Case 1. p = q = r = j. In this case we have∫
RN

J ′j(w)(wj)
3 dw = −3

∫
RN

J(w)(wj)
2 dw = −3C(J).

Case 2. (p = j and q = r 6= j) or (q = j and p = r 6= j) or (r = j and p = q 6= j).
In any of these cases one index is equal to j and the other two indexes are the same
but different from j. Hence, in this case we get∫

RN

J ′j(w)wj(wq)
2 dw = −

∫
RN

J(w)(wq)
2 dw = −C(J).

Collecting these cases we obtain

lim
ε→0

F1,ε(x) =

N∑
i=1

∂u(x)

∂xi
Hi(x).

with

Hi(x) = −det(B(x))


N∑

j,k,m=1

3(b−1
jk )′m(x)bij(x)bkj(x)bmj(x)

+

N∑
j,k,m p6=j

(b−1
jk )′m(x)

[
bij(x)bkp(x)bmp(x)

]
+

N∑
j,k,m,p6=j

(b−1
jk )′m(x)

[
bip(x)bkj(x)bmp(x)

]

+

N∑
j,k,m p6=j

(b−1
jk )′m(x)

[
bip(x)bkp(x)bmj(x)

]
= −det(B(x))


N∑

j,k,m,p=1

(b−1
jk )′m(x)

[
bij(x)bkp(x)bmp(x)

]
+

N∑
j,k,m,p=1

(b−1
jk )′m(x)

[
bip(x)bkj(x)bmp(x)

]

+

N∑
j,k,m,p=1

(b−1
jk )′m(x)

[
bip(x)bkp(x)bmj(x)

] = A1 +A2 +A3.
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Let us compute each one of the last three terms A1, A2 and A3. First, using that

N∑
k=1

b−1
ik (x)bkj(x) =

{
1 i = j,
0 i 6= j,

we obtain

(12)

N∑
k=1

(b−1
ik )′m(x)bkj(x) = −

N∑
k=1

b−1
ik (x)(bkj)

′
m(x).

Using this property, we get

A1 = −det(B(x))

N∑
j,k,m,p=1

(b−1
jk )′m(x)

[
bij(x)bkp(x)bmp(x)

]
= det(B(x))

N∑
j,k,m,p=1

[
bij(x)b−1

jk (x)(bkp)
′
m(x)bmp(x)

]
= det(B(x))

N∑
m,p=1

[
(bkp)

′
m(x)bmp(x)

]
.

Now, for A2, using again (12) we have

A2 = −det(B(x))

N∑
j,k,m,p=1

(b−1
jk )′m(x)

[
bip(x)bkj(x)bmp(x)

]
= det(B(x))

N∑
j,k,m,p=1

[
b−1
jk (x)(bkj)

′
m(x)bip(x)bmp(x)

]
.

As

b−1
jk (x) =

1

det(B(x))
(b∗jk(x))t =

1

det(B(x))
b∗kj(x)

we get

A2 =

N∑
m,p=1

bip(x)bmp(x)

N∑
k,j=1

b∗kj(x)(bkj)
′
m(x).

Now we use the formula for the derivative of the determinant (see [9] for a simple
proof),

(det(B(x)))′m =

N∑
k,j=1

b∗kj(x)(bkj)
′
m(x),

to obtain

A2 =

N∑
m,p=1

bip(x)bmp(x)(det(B(x)))′m.
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Finally, for A3, using (12) one more time, we have

A3 = −det(B(x))

N∑
j,k,m,p=1

(b−1
jk )′m(x)

[
bip(x)bkp(x)bmj(x)

]
= det(B(x))

N∑
j,k,m,p=1

[
bip(x)(bkp)

′
m(x)bmj(x)b−1

jk (x)
]

= det(B(x))

N∑
m,p=1

[
(bmp)

′
m(x)bip(x)

]
.

Hence, collecting these expressions for Ai we obtain

Hi(x) =

N∑
j=1

[
det(B(x))(B′j(x)Bt(x))ij

+(det(B(x)))′j(B(x)Bt(x))ij

+det(B(x))(B(x)(Bt)′j(x))ij

]
=

N∑
j=1

∂aij(x)

∂xj
.

Therefore, we have obtained

(13) lim
ε→0

F1,ε(x) =

N∑
i=1

∂u(x)

∂xi

N∑
j=1

∂aij(x)

∂xj
.

Next, we deal with the limit as ε→ 0 of F2,ε(x). It holds that

lim
ε→0

F2,ε(x) =
1

C(J)

N∑
i,j=1

∂2u(x)

∂xi∂xj

∫
RN

G2(B−1(x)z)zizj dz.

Changing variables as w = B−1(x)z we get

lim
ε→0

F2,ε(x) =
det(B(x))

C(J)

N∑
i,j=1

∂2u(x)

∂xi∂xj

∫
RN

J(w)

N∑
k=1

bik(x)wk

N∑
m=1

bjm(x)wm dw.

Now we only have to observe that∫
RN

J(w)wkwm dw =

{
C(J) k = m,
0 k 6= m,

to obtain

(14) lim
ε→0

F2,ε(x) =

N∑
i,j=1

∂2u(x)

∂xi∂xj
det(B(x))

N∑
k=1

bik(x)bjk(x) =

N∑
i,j=1

∂2u(x)

∂xi∂xj
aij(x).

Finally, from (13) and (14) we conclude that

lim
ε→0
Lε(u)(x) =

N∑
i,j=1

∂2u(x)

∂xi∂xj
aij(x) +

N∑
i=1

∂u(x)

∂xi

N∑
j=1

∂aij(x)

∂xj

=

N∑
i,j=1

∂

∂xi

(
aij(x)

∂u(x)

∂xj

)
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as we wanted to show. �

5. Appendix

Appendix A. For any arbitrary T > 0 we claim that T is a contraction on
C
(
[0, T ];L1(Ω)

)
with norm

|||v||| = max
0≤t≤T

e−Mt‖v(·, t)‖L1(Ω)

being M some constant greater than C̃ = C(|Ω|+ |B(0, d)|). Indeed, from (6)

‖T (v)(·, t)‖L1(Ω) ≤ ‖u0‖L1(Ω) +
C̃

M

(
eMt − 1

)
|||v|||,

therefore

|||T (v)||| ≤ max
0≤t≤T

(
e−Mt‖u0‖L1(Ω) +

C̃

M

(
1− e−Mt

)
|||v|||

)
≤ ‖u0‖L1(Ω)+

C̃

M
|||v|||,

and the claim is proved. The rest of the proof is similar in spirit to the proof of
Proposition 2.1.

Appendix B. Given B(x), matrix n× n defined for each x ∈ Ω, we wish to recall
that the induced matrix norm to the euclidian matrix norm

‖B(x)‖2 = sup
y 6=0

‖B(x)y‖2
‖y‖2

is the spectral norm, i.e., ‖B(x)‖2 =
√
λMax(Bt(x)B(x)). Thus

‖L−1(x)‖2 =
√
λMax(A−1(x)) = (λmin(A(x)))

−1/2
,

and hence L−1(x)
x− y
ε
∈ B(0, r) if y ∈ B(x, rε

‖L−1(x)‖2 ) ⊂ B(x, aε).
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