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Abstract. In this paper, we study the nonlocal perimeter associated with a nonnegative radial kernel

J : RN → R, compactly supported, verifying
∫
RN J(z)dz = 1. The nonlocal perimeter studied here is

given by the interactions (measured in terms of the kernel J) of particles from the outside of a measurable

set E with particles from the inside, that is,

PJ (E) :=

∫
E

(∫
RN\E

J(x− y)dy

)
dx.

We prove that an isoperimetric inequality holds and that, when the kernel J is appropriately rescaled,

the nonlocal perimeter converges to the classical local perimeter. Associated with the kernel J and the

previous definition of perimeter we can consider minimal surfaces. In connexion with minimal surfaces
we introduce the concept of J-mean curvature at a point x, and we show that again under rescaling we

can recover the usual notion of mean curvature. In addition, we study the analogous to a Cheeger set in

this nonlocal context and show that a set Ω is J-calibrable (Ω is a J-Cheeger set of itself) if and only if
there exists τ such that τ(x) = 1 if x ∈ Ω satisfying −λJΩτ ∈ ∆J

1
χ

Ω, here λJΩ is the J-Cheeger constant

λJΩ =
PJ (Ω)
|Ω| and, ∆J

1 is given, formally, by

∆J
1 u(x) =

∫
RN

J(x− y)
u(y)− u(x)

|u(y)− u(x)|
dy.

Moreover, we also provide a result on J-calibrable sets and the nonlocal J-mean curvature that says
that a J-calibrable set can not include points with large curvature. Concerning examples, we show that

balls are J-calibrable for kernels J that are radially nonincresing, while stadiums are J-calibrable when

they are small but they are not when they are large.

1. Introduction

Our main goal in this paper is to define a notion of perimeter, curvature and minimal surfaces for
measurable sets without assuming any regularity condition on the boundary of the set. We also want
our approach to be compatible with the usual notions of perimeter and curvature in the sense that we
recover these usual quantities when we introduce a scaling parameter in our context that goes to zero.

Let J : RN → [0,+∞[ be a measurable, nonnegative and radially symmetric function verifying∫
RN J(z)dz = 1. Associated with this function J , we introduce a nonlocal version of the usual perimeter

of a set: let E ⊂ RN be a measurable set, the nonlocal J-perimeter of E is defined by

PJ(E) :=

∫
E

(∫
RN\E

J(x− y)dy

)
dx.
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It is easy to see that

PJ(E) =
1

2

∫
RN

∫
RN

J(x− y)|χE(y)− χE(x)|dxdy. (1.1)

Also, if |E| < +∞, we have

PJ(E) = |E| −
∫
E

∫
E

J(x− y)dydx (1.2)

This definition of perimeter is nonlocal in the sense that it is determined by the behaviour of E in
a neighbourhood of the boundary ∂E. The quantity PJ(E) measures the interaction between points of
E and RN \ E via the interaction density J(x − y). For J compactly supported in a ball Br(0), the
interaction is possible when the points x ∈ E and y ∈ RN \ E are both close to the boundary ∂E:

PJ(E) =

∫
{x∈E : d(x,RN\E)<r}

∫
{y∈RN\E : d(y,E)<r}

J(x− y)dydx.

Since the kernel is not singular the concept of perimeter is well defined for every measurable set and
is finite for every set with finite measure.

For the nonlocal perimeter there is an isoperimetric inequality when J is radially nonincreasing. For
every set E with finite measure it holds that

PJ(E)

|E|
≥ PJ(Br)

|Br|
where Br is a ball with the same measure as E, |Br| = |E| (here and in what follows we denote by |E|
the Lebesgue measure of a set E in RN ).

Associated with a kernel J we define the space

BVJ(RN ) :=

{
u : RN → R measurable :

∫
RN

∫
RN

J(x− y)|u(y)− u(x)|dxdy <∞
}
.

We have that L1(RN ) ⊂ BVJ(RN ). For u ∈ BVJ(RN ), we also define the functional

FJ(u) :=
1

2

∫
RN

∫
RN

J(x− y)|u(y)− u(x)|dxdy.

This functional is the nonlocal analog of the energy functional associated with the total variation. In
what follows we denote by BV (RN ) the set of functions of bounded total variation, i.e.,

BV (RN ) := {u ∈ L1(RN ) : |Du|(RN ) <∞},
where |Du| is the total variation of the distributional gradient of u ([5], [27]). If F is the energy functional
associated with the total variation, i.e.,

F(u) :=

∫
RN
|Du|, u ∈ BV (RN ),

then a measurable set E ⊂ RN has finite perimeter if χE ∈ BV (RN ). The perimeter of E is defined as

Per(E) :=

∫
RN
|DχE |.

Note that the nonlocal perimeter PJ(E), written in the form (1.1), can be seen as the nonlocal version
of Per(E).

The notion of nonlocal perimeter can be localized to a bounded open set Ω ⊂ RN by setting

PJ(E,Ω) :=

∫
E

∫
RN\E

J(x− y)dydx−
∫
E\Ω

∫
RN\(E∪Ω)

J(x− y)dydx.
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If we define the nonlocal interaction between two measurable sets A and B of RN as

LJ(A,B) :=

∫
A

(∫
B

J(x− y)dy

)
dx (1.3)

(which is equatl to LJ(B,A) by the symmetry of J), then we can rewrite the nonlocal perimeter as

PJ(E) = LJ(E,RN \ E),

and the localized nonlocal perimeter as

PJ(E,Ω) = LJ(E,RN \ E)− LJ(E \ Ω,RN \ (E ∪ Ω)) = LJ(Ω ∩ E,RN \ E) + LJ(E \ Ω,Ω \ E).

Observe that, if we assume that in B there is an homogeneous population (we assume density 1 of the
population inside B) and J(x−y) is the probability that an individual jumps from y to x, then LJ(A,B)
is the total amount of individuals that arrives to A from B. Note that one can think all this the other
way arround, if we assume that in A there is a population with density 1, then LJ(A,B) is the amount
of individuals that goes from A to B. Then we can remark that the individuals that go from RN \ E to
E travel across the boundary of the set E, and, therefore, ours is a natural way of defining the perimeter
of this set; we are counting the total flux of individuals that crosses the boundary when they go from
RN \ E to E.

For singular kernels, that is, for kernels of the form J(ξ) = 1
|ξ|N+s the concept of nonlocal perimeter

was introduced in [18] (see also the pioneering works [35], [36], where some functionals of this type were
analyzed in connection with fractal dimensions). For 0 < s < 1, the s-perimeter of E ⊂ RN is defined
(formally) as

Pers(E) :=

∫
E

∫
RN\E

1

|x− y|N+s
dxdy.

The usual notion of perimeter is recovered by the limit

lim
s→1

(1− s)Pers(E) = Per(E),

see [20], [6].
Recently, the s-perimeter has inspired a variety of literature in different directions (see [14], [19], [20],

[24], [33], [34] and the references therein). Our aim here is to deal with non–singular kernels. As for the
case of singular kernels, we will prove that the usual notion of perimeter is recovered by a limit rescaling
formula:

lim
ε↓0

CJ
ε
PJε(E) = lim

ε↓0
CJε

N−1PJ

(
E

ε

)
= Per(E),

where Jε are the rescaled kernels

Jε(x) :=
1

εN
J
(x
ε

)
,

and the constant CJ is given by

CJ =
2∫

RN
J(z)|zN |dz

.

Let Ω an open bounded subset of RN . We say that a measurable set E ⊂ RN is J-minimal in Ω if

PJ(E,Ω) ≤ PJ(F,Ω) for any measurable set F such that F \ Ω = E \ Ω.

We will see that such a set verifies the equation (Theorem 3.4)∫
RN

J(x− y)
(
χRN\E(y)− χE(y)

)
dy = 0, (1.4)
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for all x ∈ ∂E ∩ Ω such that |E ∩Bδ(x)| > 0 and |(RN \ E) ∩Bδ(x)| > 0 for every small δ.
So, by analogy with the classical case, we consider the left hand side of (1.4) as a nonlocal mean

curvature, denoted by HJ
∂E(x) (see Section 3 for the details). For this nonlocal curvature we can also

show an approximation result to recover the usual notion of mean curvature. In fact, when E ⊂ RN a
smooth set with C2 boundary, for every x ∈ ∂E, we have

lim
ε↓0

CJ
ε
HJε
∂E(x) = (N − 1)H∂E(x),

where H∂E(x) is the (local) mean curvature of ∂E at x.
Note that both the nonlocal perimeter and the nonlocal mean curvature at a point x are continuous

with as functions of E in the following sense: if En → E in the sense that |En4E| → 0 then

PJ(En)→ PJ(E) and HJ
∂En(x)→ HJ

∂E(x).

We also introduce the notion of nonlocal Cheeger constant (we will call it J-Cheeger constant) of a
non–null measurable bounded Ω ⊂ RN by

hJ1 (Ω) := inf

{
PJ(E)

|E|
: E ⊂ Ω, E measurable with |E| > 0

}
. (1.5)

A measurable set EΩ ⊂ Ω achieving the infimun in (1.5) is called a J-Cheeger set of Ω. Note that, due to
the lack of compactness (that is due to the fact that here we are considering non-singular kernels) we find
examples of convex sets without a J-Cheeger set inside. Associated with this notion of Cheeger set we
have J–calibrable sets (a J-Cheeger set of itself, see Section 6 for details). Concerning examples, we show
that balls are J–calibrable for kernels J that are radially nonincresing. We give a characterization of these
sets by means of a nonlocal version of the 1-Laplacian operator. We show that a set Ω is J-calibrable if
and only if there exists τ such that τ(x) = 1 if x ∈ Ω and

−λJΩτ ∈ ∆J
1
χ

Ω,

where λJΩ is the J-Cheeger constant λJΩ = PJ (Ω)
|Ω| and, formally,

∆J
1u(x) =

∫
RN

J(x− y)
u(y)− u(x)

|u(y)− u(x)|
dy.

Moreover, J–calibrable sets are related to the nonlocal curvature defined previously. In fact, when a set
Ω is J–calibrable then

HJ
∂Ω(x) = −

∫
RN

J(x− y)(χΩ(y)− χRN\Ω(y))dy ≤ λJΩ =
PJ(Ω)

|Ω|
,

for every x ∈ Ω.

The paper is organized as follow: In Section 2 we show some properties (such as a co-area formula
and an isoperimetric inequality) of the nonlocal perimeter and provide some simple examples where it
can be explicitly computed, we also prove here that we recover the usual notion of perimeter when one
rescales the kernel. In Section 3 we deal with nonlocal minimal surfaces, introduce the nonlocal mean
curvature and show that again under rescaling we can recover the usual notion of local mean curvature.
In Section 4 we introduce some nonlocal operators that are used to give a characterization of the nonlocal
perimeter. In Section 5 we study the Cauchy problem for the nonlocal 1−Laplacian. Finally, in Section 6
we analyze the nonlocal Cheeger sets and the nonlocal calibrable sets showing that again we recover the
usual local results when we rescale the kernel. We also include in this last section our characterizations
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of J–calibrability and the proof of the fact that balls and small stadiums are J–calibrable while large
stadiums are not.

2. Nonlocal Perimeter

Associated with J we have introduced the nonlocal interaction beteween to sets A and B in (1.3) as

LJ(A,B) :=

∫
A

∫
B

J(x− y)dydx for measurable sets A,B ⊂ RN ,

and a concept of perimeter of a set in that can be written as

PJ(E) = LJ(E,RN \ E).

Let us now give some properties of this nonlocal perimeter. The first ones are easy to obtain.

Proposition 2.1. It holds that

PJ(E) ≤ |E| for all set E of Lebesgue finite measure (2.1)

and

PJ(E) = PJ(z + E) for all z ∈ RN and all set E of Lebesgue finite measure.

Proposition 2.2. Let A, B ⊂ RN be measurable sets with A ∩B = ∅. Then,

PJ(A ∪B) = PJ(A) + PJ(B)− 2LJ(A,B).

In particular, if

d(A;B) := inf
{
|x− y| : x ∈ A, y ∈ B

}
>

1

2
diam(supp(J)),

then

PJ(A ∪B) = PJ(A) + PJ(B).

Proof. We have

PJ(A ∪B) =

∫
A∪B

(∫
RN\(A∪B)

J(x− y)dy

)
dx

=

∫
A

(∫
RN\(A∪B)

J(x− y)dy

)
dx+

∫
B

(∫
RN\(A∪B)

J(x− y)dy

)
dx

=

∫
A

(∫
RN\A

J(x− y)dy −
∫
B

J(x− y)dy

)
dx+

∫
B

(∫
RN\B

J(x− y)dy −
∫
A

J(x− y)dy

)
dx

= PJ(A) + PJ(B)− 2

∫
A

(∫
B

J(x− y)dy

)
dx,

as we wanted to show. 2

Corollary 2.3. Let A, B, C be pairwise disjoints measurable sets in RN . Then

PJ(A ∪B ∪ C) = PJ(A ∪B) + PJ(A ∪ C) + PJ(B ∪ C)− PJ(A)− PJ(B)− PJ(C).

For the nonlocal perimeter there is an isoperimetric inequality when J is radially decreasing.
We will write ωN for the Lebesgue measure of the unit ball, ωN := |B1|.
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Theorem 2.4 (Isoperimetric Inequality). Let J be a nonnegative radially nonincreasing function.
For every measurable set E with finite measure it holds that

PJ(E)

|E|
≥ PJ(Br)

|Br|
(2.2)

where Br is a ball such that |Br| = |E|.

Proof. The proof uses the symmetric decreasing rearrangement, which replaces a given nonnegative func-
tion f by a radial function f∗. Let us recall briefly the definition and some basic properties of this re-
arrangement. Let E be a measurable set of finite measure. Its symmetric rearrangement E∗ is given by the
open centered ball whose measure agrees with |E|, that is, E∗ = Br if r is such that |Br| = ωNr

N = |E|.
Now for a nonnegative and measurable function f that vanishes at infinity, in the sense that all its
positive level sets have finite measure, we define define the symmetric decreasing rearrangement f∗ by
symmetrizing its the level sets,

f∗(x) =

∫ ∞
0

χ{f(x)>t}∗ dt.

Note that for a radially nonincreasing function it holds that f∗ = f and that the previous definitions are
consistent in the sense that

χ
A∗ = (χA)∗.

We refer to [28] and [30] for details.
For the rearrangement of functions interacting with a convolution we have the Riesz rearrangement

inequality [30, Theorem 3.7], namely,∫
RN

f(x)(g ∗ h)(x) dx ≤
∫
RN

f∗(x)(g∗ ∗ h∗)(x) dx.

Now, using this inequality, for the nonlocal perimeter defined above, one has

PJ(E) :=

∫
E

(∫
RN\E

J(x− y)dy

)
dx = |E| −

∫
E

(∫
E

J(x− y)dy

)
dx

= |E| −
∫
RN

χ
E(x)(J ∗ χE)(x) dx ≥ |E| −

∫
RN

(χE)∗(x)(J∗ ∗ (χE)∗)(x) dx

= |Br| −
∫
RN

χ
Br (x)(J ∗ χBr )(x) dx = P J(Br),

and we conclude (2.2) from the fact that |E| = |Br|. 2

Proposition 2.5. For every u ∈ BV (RN ) we have

FJ(u) ≤ 1

2
F(u). (2.3)

In particular, for every set of finite perimeter E ⊂ RN ,

PJ(E) ≤ 1

2
Per(E).

Proof. Given u ∈ BV (RN ) there exists a sequence {un}n∈N ⊂ C∞(RN ) ∩BV (RN ) such that

lim
n→∞

‖un − u‖L1(RN ) = 0 lim
n→∞

∫
RN
|∇un|dx =

∫
RN
|Du|.
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Then, in order to prove (2.3) it will be sufficient to prove it for u ∈ C∞(RN ) ∩BV (RN ).

FJ(u) =
1

2

∫
B1(0)

J(z)

∫
RN
|u(x+ z)− u(x)| dxdz.

Observe that we have

|u(x+ z)− u(x)| ≤
(∫ 1

0

|∇u(x+ tz)|dt
)
|z|.

Hence

FJ(u) ≤ 1

2

∫
B1(0)

J(z)

∫
RN

(∫ 1

0

|∇u(x+ tz)|dt
)
|z| dxdz

≤ 1

2

∫
B1(0)

J(z)

∫ 1

0

(∫
RN
|∇u(x+ tz)|dx

)
dtdz

≤ 1

2

∫
B1(0)

J(z)

(∫
RN
|∇u(ξ)|dξ

)
dz =

1

2

∫
RN
|∇u(ξ)|dξ.

2

Theorem 2.6 (Coarea formula). For any u ∈ L1(RN ), let Et(u) := {x ∈ RN : u(x) > t}. Then

FJ(u) =

∫ +∞

−∞
PJ(Et(u)) dt. (2.4)

Proof. Since

u(x) =

∫ ∞
0

χ
Et(u)(x) dt−

∫ 0

−∞
(1− χEt(u)(x)) dt,

we have

u(y)− u(x) =

∫ +∞

−∞
χ
Et(u)(y)− χEt(u)(x) dt.

Moreover, since u(y) ≥ u(x) imply χEt(u)(y) ≥ χEt(u)(x), we obtain that

|u(y)− u(x)| =
∫ +∞

−∞
|χEt(u)(y)− χEt(u)(x)| dt.

Therefore, by Tonelli-Hobson’s Theorem, we get

FJ(u) =
1

2

∫
RN

∫
RN

J(x− y)|u(y)− u(x)|dxdy

=
1

2

∫
RN

∫
RN

J(x− y)

(∫ +∞

−∞
|χEt(u)(y)− χEt(u)(x)|dt

)
dxdy

=

∫ +∞

−∞

(
1

2

∫
RN

∫
RN

J(x− y)|χEt(u)(y)− χEt(u)(x)|dxdy
)
dt =

∫ +∞

−∞
PJ(Et(u))dt.

2

We now consider the rescaled kernel

Jε(x) :=
1

εN
J
(x
ε

)
.
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Observe that if supp(J) = Br(0) then Jε is supported in Brε(0), has the same total mass as J , and verifies

PJ

(
1

ε
E

)
=

1

εN
PJε(E) for all set E of Lebesgue finite measure. (2.5)

Let also

CJ =
2∫

RN
J(z)|zN |dz

.

In [11] it is proved that the solutions uε of equations of the form

ut(t, x) =
CJ
ε

∫
Jε(x− y)

u(t, y)− u(t, x)

|u(t, y)− u(t, x)|
dy

converge (up to a subsequence) to the solution of

ut = ∆1u,

for different boundary conditions, being ∆1u := div
(
Du
|Du|

)
. Our aim is to study which is the behaviour

of the nonlocal J–perimeter under rescaling.

Example 2.7. Take J := 1
2
χ

[−1,1]. Then, a simple calculation gives

PJ([a, b]) =
1

2

(
1−

((
1− (b− a)

)+
)2)

=


1

2
if b− a > 1,

(b− a)
(

1− 1

2
(b− a)

)
if b− a ≤ 1.

(2.6)

Let us compute limε→0
CJ
ε PJε(E). Observe that for this particular kernel we have CJ = 4. On account

of (2.5) and (2.6), for ε small, we have

4

ε
PJε([a, b]) = 4PJ

([
a

ε
,
b

ε

])
= 4× 1

2
= 2 = Per([a, b]).

Example 2.8. Let now J(x) := w(‖x‖)χBR(0)(x). If w(r) = CRr
α then∫

RN
J(x)dx = CR

∫
BR(0)

‖x‖αdx = CR

∫ R

0

(∫
∂Br(0)

rαdσ

)
dr = CRNωN

∫ R

0

rα+N−1dr

=
CRNωN
N + α

RN+α = CR
N |BR(0)|Rα

N + α
.

Then, if α > −N and CR = N+α
N |BR(0)|Rα , we have

∫
RN J(x)dx = 1. Consider the case N = 1, R = 1 and

α = − 1
2 , which corresponds to

J(x) =
1

4
√
|x|
χ

[−1,1](x).

Then, a simple calculation gives

PJ([a, b]) =


b− a− 2

3
(b− a)

3
2 if b− a < 1

1

3
if b− a ≥ 1.

(2.7)
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Now CJ = 6 and, on account of (2.5) and (2.7), for ε small, we have

CJ
ε
PJε([a, b]) =

6

ε
PJε([a, b]) = 6PJ

([
a

ε
,
b

ε

])
= 6 · 1

3
= 2 = Per([a, b]).

Therefore, in these two above examples we have obtained that

lim
ε↓0

CJ
ε
PJε(E) = Per(E). (2.8)

We will now see that (2.8) is always true as a consequence of the following result by J. Dávila (see also [17]
and [31]).

Theorem 2.9 (Dávila [21]). Let B ⊂ RN be open, bounded with a Lipschitz boundary, and let 0 ≤ ρε
radial functions satisfying∫

RN
ρε(x)dx = 1, lim

ε→0

∫ ∞
δ

ρ̃ε(r)r
N−1dr = 0, ∀ δ > 0, (2.9)

where ρ̃ε(r) = ρε(x) for |x| = r. Then

lim
ε→0

∫
B

∫
B

|u(x)− u(y)|
|x− y|

ρε(x− y)dxdy = K1,N

∫
B

|Du|,

where

K1,N =
1

NωN

∫
SN−1

|e · σ|dσ =
Γ
(
N
2

)
√
π Γ
(
N+1

2

) , |e| = 1. (2.10)

With this result at hand we can prove the following convergence result as we rescale the kernel J .

Theorem 2.10. Let J be compactly supported. If u ∈ BV (RN ) has compact support then

lim
ε↓0

CJ
ε
FJε(u) =

∫
RN
|Du|.

In particular, if E ⊂ RN is a bounded set of finite perimeter then

lim
ε↓0

CJ
ε
PJε(E) = lim

ε↓0
CJε

N−1PJ

(
E

ε

)
= Per(E).

Proof. Since u has compact support, for a large ball B containing supp(u) we can rewrite

FJε(u) =
1

2

∫
B

∫
B

Jε(x− y)|u(y)− u(x)|dydx and

∫
RN
|Du| =

∫
B

|Du|.

Now,

CJ
ε
FJε(u) =

1

K1,N

∫
B

∫
B

|u(x)− u(y)|
|x− y|

ρε(x− y)dxdy,

being

ρε(z) =
1

2
CJK1,N

|z|
ε
Jε(z).
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Then, denoting J̃(r) = J(x) if |x| = r,∫
RN

ρε(z)dz =
1

2
CJK1,N

∫
RN

|z|
ε

1

εN
J
(z
ε

)
dz

= K1,N

∫
RN
|w|J(w)dw∫

RN
|wN |J(w)dw

= K1,N

∫ ∞
0

∫
∂Br(0)

rJ̃(r)dσdr∫ ∞
0

∫
∂Br(0)

J̃(r)|σ · eN |dσdr

=

∫
SN−1

|eN · σ|dσ

NωN
·

NωN

∫ ∞
0

rN J̃(r)dr∫ ∞
0

J̃(r)rN
∫
SN−1

|eN · σ|dσdr
= 1;

and, for δ > 0,

lim
ε→0

∫ ∞
δ

ρ̃ε(r)r
N−1dr = lim

ε→0

∫ ∞
δ
ε

rN J̃(r)dr = 0

since J has compact support. Therefore, we can apply Theorem 2.9 to get the result. 2

3. Nonlocal minimal surfaces

Let Ω an open bounded subset of RN . We say that a measurable set E ⊂ RN is J-minimal in Ω if

PJ(E,Ω) ≤ PJ(F,Ω) for any measurable set F such that F \ Ω = E \ Ω.

Proposition 3.1. Let Ω an open bounded subset of RN . Then, E ⊂ RN is J-minimal in Ω if and only if

PJ(E) ≤ PJ(F ) for any measurable set F such that F \ Ω = E \ Ω.

Proof. If E \ Ω = F \ Ω then RN \ (Ω ∪ E) = RN \ (Ω ∪ F ). Therefore, since

PJ(A,Ω) = LJ(A,RN \A)− LJ(A \ Ω,RN \ (A ∪ Ω))

we get the result. 2

This is a nonlocal version of a set with minimal perimeter. Recall that if a set E has minimal (local)
perimeter in a bounded set Ω, then it has zero mean curvature at each point of ∂E ∩ Ω (see [27]), and
the curvature is the Euler-Lagrange equation associated to the minimization of the perimeter of a set.
In order to give a nonlocal version of this result we introduce the following nonlocal concept of mean
curvature.

Definition 3.2. Assume N ≥ 2 and let E ⊂ RN be measurable. For a point x ∈ RN we define its
J-mean curvature as

HJ
∂E(x) := −

∫
RN

J(x− y)(χE(y)− χRN\E(y))dy. (3.1)

Note that HJ
∂E(x) makes perfect sense for every x ∈ RN , not necessary for points in ∂E. This fact

will be used later in the paper.
Like the usual mean curvature, if ∂E is a smooth boundary, for x ∈ ∂E, HJ

∂E(x) measures in some
average sense the deviation of ∂E from its tangent hyperplane at x. Let us point out that with our choice,
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the curvature of a ball is positive as is common in geometry texts. Some authors define the curvature
with the reverse sign, see for example, [1] and [18].

Definition 3.3. We say that ∂E is a J-minimal surface in a bounded open set Ω if the set ∂E ∩ Ω
satisfies the nonlocal minimal surface equation

HJ
∂E(x) = 0 ∀x ∈ ∂E ∩ Ω : |E ∩Bδ(x)| > 0 and |(RN \ E) ∩Bδ(x)| > 0 for every small δ.

As examples of nonlocal minimal surfaces we have the following: By symmetry and (3.1) any hyper-
plane, E = {x ∈ RN : xN > 0}, is a J-minimal surface in RN . Similarly, the classical cone in the plane,
E := {(x, y) ∈ R2 : xy > 0}, is a J-minimal surface in R2.

Theorem 3.4. Let Ω an open bounded subset of RN . If E ⊂ RN a J-minimal set in Ω then ∂E is a
J-minimal surface in Ω.

Proof. Let E ⊂ RN a J-minimal set in Ω. Given x0 ∈ ∂E ∩Ω, there is δ > 0 such that Bδ(x0) ⊂ Ω. Now
consider

Aδ = Bδ(x0) ∩ (RN \ E)

and

Fδ = Aδ ∪ E.
Since, Fδ \ Ω = E \ Ω, we have

PJ(E) ≤ PJ(Fδ),

that is ∫
E

∫
RN\E

J(x− y)dydx ≤
∫
Fδ

∫
RN\Fδ

J(x− y)dydx.

Now, since Aδ ∩ E = ∅,∫
E

∫
RN\E

J(x− y)dydx =

∫
Fδ

∫
RN\E

J(x− y)dydx−
∫
Aδ

∫
RN\E

J(x− y)dydx.

Therefore ∫
Aδ

∫
RN\E

J(x− y)dydx ≥
∫
Fδ

(∫
RN\E

J(x− y)dy −
∫
RN\Fδ

J(x− y)dy

)
dx

=

∫
Fδ

(∫
Aδ

J(x− y)dy

)
dx =

∫
Aδ

∫
Aδ

J(x− y)dydx+

∫
E

∫
Aδ

J(x− y)dydx.

Hence ∫
Aδ

∫
Aδ

J(x− y)dydx ≤
∫
Aδ

(∫
RN\E

J(x− y)dy −
∫
E

J(x− y)dy

)
dx.

Now, since x ∈ ∂E, we have |Aδ| > 0. Then, dividing by |Aδ| and letting δ → 0, we conclude that(∫
RN\E

J(x0 − y)dy −
∫
E

J(x0 − y)dy

)
≥ 0.

With a similar procedure, but taking now Ãδ := Bδ(x0) ∩ E and F̃δ := E \ Ãδ, we arrive to∫
Ãδ

(∫
RN\E

J(x− y)dy −
∫
E

J(x− y)dy

)
dx ≤ −

∫
Ãδ

∫
Ãδ

J(x− y)dydx.
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Then, dividing by |Ãδ| > 0 and letting δ → 0, we get(∫
RN\E

J(x0 − y)dy −
∫
E

J(x0 − y)dy

)
≤ 0.

Therefore, as we wanted to show,

HJ
∂E(x0) = −

∫
RN

J(x0 − y)(χE(y)− χRN\E(y))dy = 0.

2

Remark 3.5. Let us point out that for the singular case, a similar result to Theorem 3.4 has been
obtained in [1] and [18] for singular kernels, where the nonlocal curvature at x ∈ ∂E is defined as∫

RN

χ
E(y)− χRN\E(y)

|x− y|N+s
dy.

Our definition of curvature differs from the above one, besides of the kernel, in the sign, but makes the
curvature of the ball positive.

Example 3.6. If J(x) = 1
|B1(0)|

χ
B1(0), then for any x ∈ Br(x0), we have

HJ
∂Br(x0)(x) = −

∫
RN

J(x− y)(χBr(x0)(y)− χRN\Br(x0)(y))dy

= − 1

|B1(0)|

∫
B1(x)

(χBr(x0)(y)− χRN\Br(x0)(y))dy

= − 1

|B1(0)|
(
|B1(x) ∩Br(x0)| − |B1(x) ∩ (RN \Br(x0))|

)
= − 1

|B1(0)|
(2|B1(x) ∩Br(x0)| − |B1(x)|)

= −2|B1(x) ∩Br(x0)|
|B1(0)|

+ 1.

And for the rescaled kernel,

HJε
∂Br(x0)(x) = − 1

εN

∫
RN

J

(
x− y
ε

)
(χBr(x0)(y)− χRN\Br(x0)(y))dy

= − 1

|Bε(0)|

∫
Bε(x)

(χBr(x0)(y)− χRN\Br(x0)(y))dy

= − 1

|Bε(0)|
(
|Bε(x) ∩Br(x0)| − |Bε(x) ∩ (RN \Br(x0))|

)
= − 1

|Bε(0)|
(2|Bε(x) ∩Br(x0)| − |Bε(x)|)

= −2|Bε(x) ∩Br(x0)|
|Bε(0)|

+ 1.



NONLOCAL PERIMETER, CURVATURE AND MINIMAL SURFACES 13

Now, for N = 2, a simple calculus gives, for x ∈ ∂Br(x0) and ε small,

|Bε(x) ∩Br(x0)| = ε2

[
− ε

2r

√
1−

( ε
2r

)2

+ arcsin
(
− ε

2r

)
+
π

2

]

+r2

π
2
− 2r2 − ε2

2r2

√
1−

(
2r2 − ε2

2r2

)2

− arcsin

(
2r2 − ε2

2r2

) .
Hence

HJε
∂Br(x0)(x) =

ε

πr

√
1−

( ε
2r

)2

+
2

π
arcsin

( ε
2r

)
−2r2

πε2

π
2
− 2r2 − ε2

2r2

√
1−

(
2r2 − ε2

2r2

)2

− arcsin

(
2r2 − ε2

2r2

) .
Now,

CJ =
2∫

R2

J(z)|z2|dz
=

2

1

|B1(0)|

∫
B1(0)

|z2|dz
=

3π

2
.

Therefore,

CJ
ε
HJε
∂Br(x0)(x) =

3

2r

√
1−

( ε
2r

)2

+
3

ε
arcsin

( ε
2r

)
−3r2

ε3

π
2
− 2r2 − ε2

2r2

√
1−

(
2r2 − ε2

2r2

)2

− arcsin

(
2r2 − ε2

2r2

) .
Then, since

lim
ε→0

3

ε
arcsin

( ε
2r

)
=

3

2r
and

lim
ε→0

3r2

ε3

π
2
− 2r2 − ε2

2r2

√
1−

(
2r2 − ε2

2r2

)2

− arcsin

(
2r2 − ε2

2r2

) =
2

r
,

we get

lim
ε→0

CJ
ε
HJε
∂Br(x0)(x) =

3

2r
+

3

2r
− 2

r
=

1

r
= H∂Br(x0)

Consider now E as the square E := {(x, y) ∈ R2 : ‖(x, y)‖∞ ≤ 1}. Then, for 0 < ε < 1 we have

CJ
ε
HJε
∂E(1, 1) = − 3

2ε3
(
|E ∩Bε(1, 1)| − |(R2 \ E ∩Bε(1, 1)|

)
=

3π

4ε
.

Therefore,

lim
ε→0

CJ
ε
HJε
∂E(1, 1) = +∞.

Theorem 3.7. Let E ⊂ RN a smooth set such that ∂E is of class C2. Then, for every x ∈ ∂E, we have

lim
ε↓0

CJ
ε
HJε
∂E(x) = (N − 1)H∂E(x), (3.2)

where H∂E(x) is the (local) mean curvature of ∂E at x.
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Proof. We can assume that x = 0 ∈ ∂E. It is well-known that curvature may be easily computed in
normal coordinates. Namely, suppose ∂E is described as a graph in normal coordinates, meaning that,
in an open ball Br0 , ∂E coincides with the graph of a C2 function ϕ : Br0 ∩ RN−1 → R with ϕ(0) = 0
and ∇ϕ(0) = 0 such that E ∩ Br0 = {(y1, . . . , yN ) : yN < ϕ(y1, . . . , yN−1)}. Since D2ϕ(0) is a real
symmetric matrix, it will admit N − 1 real eigenvalues λ1, . . . , λN−1. Minus the arithmetic mean of the
eigenvalues is called the mean curvature and we denote it by H∂E(0), namely

H∂E(0) := −λ1 + · · ·+ λN−1

N − 1

We can assume that r = 1 and r0 < 1, then

CJ
ε
HJε
∂E(0) := −CJ

ε

∫
RN

Jε(y)(χE(y)− χRN\E(y))dy = − CJ
εN+1

∫
Bε(0)

J
(y
ε

)
(χE(y)− χRN\E(y))dy

= − CJ
εN+1

(∫
{yN<ϕ(y1,...,yN−1)}∩Bε(0)

J
(y
ε

)
dy −

∫
{yN>ϕ(y1,...,yN−1)}∩Bε(0)

J
(y
ε

)
dy

)
.

Hence, changing variables as z = y
ε , we get

CJ
ε
HJε
∂E(0) = −CJ

ε

(∫
{zN< 1

εϕ(εz1,...,εzN−1)}∩B1(0)

J(z)dz −
∫
{zN> 1

εϕ(εz1,...,εzN−1)}∩B1(0)

J(z)dz

)
.

Now, by Taylor’s expansion, we have

ϕ(εz1, . . . , εzN−1) =
1

2
D2ϕ(0)(εz1, . . . , εzN−1) =

1

2

N−1∑
i=1

λiε
2z2
i +O(ε3).

Therefore,

lim
ε→0

CJ
ε
HJε
∂E(0) = − lim

ε→0

CJ
ε

(∫
{zN<ε 1

2

∑N−1
i=1 λiz2i }∩B1(0)

J(z)dz −
∫
{zN>ε 1

2

∑N−1
i=1 λiz2i }∩B1(0)

J(z)dz

)

= − lim
ε→0

CJ
ε

(∫
RN−1∩B1(0)

∫ ε 1
2

∑N−1
i=1 λiz

2
i

−
√

1−(z21+···+z2N−1)

J(z)dz −
∫
RN−1∩B1(0)

∫ √1−(z21+···+z2N−1)

ε 1
2

∑N−1
i=1 λiz2i

J(z)dz

)
.

Since the term between brackets goes to zero as ε→ 0 we can use L’Hopital’s rule to obtain

lim
ε→0

CJ
ε
HJε
∂E(0) = − lim

ε→0
CJ

(∫
RN−1∩B1(0)

J

(
z1, . . . , zN−1, ε

1

2

N−1∑
i=1

λiz
2
i

)
N−1∑
i=1

λiz
2
i dz1 . . . dzN−1

)
.

= −CJ
N−1∑
i=1

λi

∫
RN−1∩B1(0)

J(z1, . . . , zN−1, 0)z2
i dz1 . . . dzN−1

= −CJ
N−1∑
i=1

λi

∫
RN−1∩B1(0)

J(z1, . . . , zN−1, 0)z2
N−1dz1 . . . dzN−1,

where in the last equality we have used that J is a radial function.
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On the other hand, if we made the change of variables zi = zi, i = 1, . . . , N − 2, zN−1 = r cos θ,
zN = r sin θ, we have∫

RN
J(z)|zN |dz =

∫
|z|≤1

J(z)|zN |dz

=

∫
z21+···+z2N−2≤1

∫ √1−(z21+···+z2N−2)

0

∫ 2π

0

J(z1, . . . , zN−2, r cos θ, r sin θ)r2| sin θ|dz1 . . . dzN−2drdθ

= 4

∫
z21+···+z2N−2≤1

∫ √1−(z21+···+z2N−2)

0

J(z1, . . . , zN−2, r, 0)r2dz1 . . . dzN−2dr

= 2

∫
z21+···+z2N−2+r2≤1

J(z1, . . . , zN−2, r, 0)r2dz1 . . . dzN−2dr.

Hence

CJ =
2∫

RN
J(z)|zN |dz

=
1∫

RN−1∩B1(0)

J(z1, . . . , zN−1, 0)z2
N−1dz1 . . . dzN−1

.

Therefore,

lim
ε→0

CJ
ε
HJε
∂E(0) = (N − 1)H∂E(0).

2

In the next example we will see that the assumption ∂E is of class C2 in the above result is necessary.

Example 3.8. Assume that J(x) = 1
|B1(0)|

χ
B1(0), with B1(0) ⊂ R2. Let ϕ : R→ R the function defined

by

ϕ(x) :=

{
x2 if x ≥ 0,

−x2 if x < 0,

and consider the set

E := {(x, y) ∈ R2 : y < ϕ(x)}.
Then by symmetry we have HJε

∂E(0, 0) = 0, and consequently

lim
ε↓0

CJ
ε
HJε
∂E(0, 0) = 0.

Now, H∂E(0, 0) = 2 (here the curvature is understood as one over the largest radius of a tangent ball).
Therefore, (3.2) is not true in this case.

4. Nonlocal operators. A characterization of nonlocal perimeter

Following Gilboa-Osher [26] (see also [12]) we introduce the following nonlocal operators. For a function
u : RN → R, we define its nonlocal gradient as the function ∇Ju : RN × RN → R defined by

(∇Ju)(x, y) := J(x− y)(u(y)− u(x)), x, y ∈ RN .

And for a function z : RN × RN → R, its nonlocal divergence divJz : RN → R is defined as

(divJz)(x) :=
1

2

∫
RN

(z(x, y)− z(y, x))J(x− y)dy.
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Remark 4.1. A possible interpretation of divJz is the following. Suppose that RN represents a continu-
ous network, with a source uniformly distributed in Ω ⊂ RN and being RN \Ω a sink. If the transportation
activity is described by z, in such a way that at each point x ∈ Ω, z(x, y)J(x−y) is the incoming quantity
of flow from y ∈ RN and z(y, x)J(x− y) is the outcoming flow at y ∈ RN , then

2(divJz)(x) :=

∫
RN

(z(x, y)− z(y, x))J(x− y)dy,

represents the total flow at x.

For p ≥ 1, we define the space

Xp
J(RN ) :=

{
z ∈ L∞(RN × RN ) : divJz ∈ Lp(RN )

}
.

Observe that X∞J (RN ) = L∞(RN ×RN ). For u ∈ BVJ(RN )∩Lp′(RN ) and z ∈ Xp
J(RN ), 1 ≤ p ≤ ∞, we

have the following Green formula∫
RN

u(x)(divJz)(x)dx = −1

2

∫
RN×RN

(∇Ju)(x, y)z(x, y)dxdy. (4.1)

In the next result we characterize FJ and the nonlocal perimeter using the nonlocal divergence operator.
Let us denote by sign0(r) the usual sign function and by sign(r) the multivalued sign function for which
sign(0) = [−1, 1].

Proposition 4.2. Let 1 ≤ p ≤ ∞. For u ∈ BVJ(RN ) ∩ Lp′(RN ), we have

FJ(u) = sup

{∫
RN

u(x)(divJz)(x)dx : z ∈ Xp
J(RN ), ‖z‖∞ ≤ 1

}
. (4.2)

If u 6∈ BVJ(RN ) then sup

{∫
RN

u(x)(divJz)(x)dx : z ∈ Xp
J(RN ), ‖z‖∞ ≤ 1

}
= +∞.

In particular, for any measurable set E ⊂ RN , we have

PJ(E) = sup

{∫
E

(divJz)(x)dx : z ∈ X1
J(RN ), ‖z‖∞ ≤ 1

}
.

Proof. Let u ∈ L1(RN )∩Lp′(RN ). Given z ∈ Xp
J(RN ) with ‖z‖∞ ≤ 1, applying Green formula (4.1), we

have ∫
RN

u(x)(divJz)(x)dx =
1

2

∫
RN×RN

(∇Ju)(x, y)z(x, y)dxdy

≤ 1

2

∫
RN×RN

|u(y)− u(x)|J(x− y)dxdy = FJ(u).

Therefore,

sup

{∫
RN

u(x)(divJz)(x)dx : z ∈ Xp
J(RN ), ‖z‖∞ ≤ 1

}
≤ FJ(u).
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On the other hand, if we define zn(x, y) := sign0(u(y) − u(x))χBn(0,0)(x, y), then zn ∈ Xp
J(RN ) with

‖zn‖∞ ≤ 1 and

FJ(u) =
1

2

∫
RN×RN

|u(y)− u(x)|J(x− y)dxdy = lim
n→∞

1

2

∫
Bn(0,0)

|u(y)− u(x)|J(x− y)dxdy

= lim
n→∞

1

2

∫
RN×RN

(∇Ju)(x, y)zn(x, y)dxdy = lim
n→∞

∫
RN

u(x)(divJzn)(x)dx

≤ sup

{∫
RN

u(x)(divJz)(x)dx : z ∈ Xp
J(RN ), ‖z‖∞ ≤ 1

}
.

2

Remark 4.3. Observe that for u ∈ L1(RN ) we are saying that

FJ(u) = sup

{∫
RN

u(x)(divJz)(x)dx : z ∈ L∞(RN × RN ), ‖z‖∞ ≤ 1

}
.

In particular, for any measurable set E ⊂ RN with finite measure, we have

PJ(E) = sup

{∫
E

(divJz)(x)dx : z ∈ L∞(RN × RN ), ‖z‖∞ ≤ 1

}
. (4.3)

5. The nonlocal 1-Laplacian

Nonlocal evolution equations of the form

ut(x, t) =

∫
RN

J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t))dy, p ≥ 1

and variations of it, have been recently widely used to model diffusion processes (see [11] and the references
therein).

For p = 1, using the nonlocal calculus from Section 4, we have formally

divJ

(
∇Ju
|∇Ju|

)
(x) =

1

2

∫
RN

J(x− y)

(
∇Ju
|∇Ju|

(x, y)− ∇Ju
|∇Ju|

(y, x)

)
dy

=
1

2

∫
RN

J(x− y)

(
(u(y)− u(x))J(x− y)− (u(x)− u(y))J(x− y)

J(x− y)|u(y)− u(x)|

)
dy

=

∫
RN

J(x− y)
u(y)− u(x)

|u(y)− u(x)|
dy,

that we have called nonlocal 1–Laplacian operator in [8] and [9]:

∆J
1u(x) :=

∫
RN

J(x− y)
u(y)− u(x)

|u(y)− u(x)|
dy for u ∈ L1(RN ), x ∈ RN .

Also, if p > 1, we have

divJ1/p

(
|∇J1/pu|p−2∇J1/pu

)
(x) =

∫
RN

J(x− y)|u(y)− u(x)|p−2(u(y)− u(x))dy,

that we have called nonlocal p–Laplacian operator. In [8] and [9] we have studied these nonlocal operators
with different boundary conditions, from these works we take the following definition.
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Definition 5.1. Given v ∈ L1(RN ) we say that u ∈ L1(RN ) is a solution of

−∆J
1u 3 v in RN

if there exists g ∈ L∞(RN × RN ) with ‖g‖∞ ≤ 1 verifying

g(x, y) = −g(y, x) for (x, y) a.e in RN × RN ,

J(x− y)g(x, y) ∈ J(x− y)sign(u(y)− u(x)) a.e (x, y) ∈ RN × RN ,

and

−
∫
RN

J(x− y)g(x, y) dy = v(x) a.e x ∈ RN .

We point out that, in general, the operator ∆J
1 is multivalued (see Remark 6.8).

In order to study the Cauchy problem associated with the nonlocal 1–Laplacian, we will see that
we can consider it as the gradient flow in L2(RN ) of the functional FJ . For that we consider now the
functional FJ1 : L2(RN )→]−∞,+∞] defined by

FJ1 (u) :=

 FJ(u) if u ∈ L2(RN ) ∩BVJ(RN ),

+∞ if u ∈ L2(RN ) \BVJ(RN ),

which is convex and lower semi-continuous. Following the method used in [7] to get the characterization
of the subdifferential of the total variation, we get the following characterization of the subdifferential of
the functional FJ1 .

Given a functional Φ : L2(RN )→ [0,∞], we define Φ̃ : L2(RN )→ [0,∞] as

Φ̃(v) := sup


∫
RN

v(x)w(x)dx

Φ(w)
: w ∈ L2(RN )


with the convention that 0

0 = 0
∞ = 0. Obviously, if Φ1 ≤ Φ2, then Φ̃2 ≤ Φ̃1.

Theorem 5.2. Let u ∈ L1(RN ) ∩ L2(RN ) and v ∈ L2(RN ). The following assertions are equivalent:

(i) v ∈ ∂FJ1 (u);

(ii) there exists z ∈ X2
J(RN ), ‖z‖∞ ≤ 1 such that

v = −divJz (5.1)

and ∫
RN

u(x)v(x)dx = FJ1 (u);

(iii) there exists z ∈ X2
J(RN ), ‖z‖∞ ≤ 1 such that (5.1) hold and

FJ1 (u) =
1

2

∫
RN×RN

∇Ju(x, y)z(x, y)dxdy;
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(iv) −∆J
1u 3 v in RN ;

(v) there exists g ∈ L∞(RN × RN ) antisymmetric with ‖g‖∞ ≤ 1 such that

−
∫
RN

J(x− y)g(x, y) dy = v(x) a.e x ∈ RN , (5.2)

and

−
∫
RN

∫
RN

J(x− y)g(x, y)dy u(x)dx = FJ1 (u).

Proof. Since FJ1 is convex, lower semi-continuous and positive homogeneous of degree 1, by [7, Theorem
1.8], we have

∂FJ1 (u) =

{
v ∈ L2(RN ) : F̃J1 (v) ≤ 1,

∫
RN

u(x)v(x)dx = FJ1 (u)

}
. (5.3)

We define, for v ∈ L2(RN ),

Ψ(v) := inf
{
‖z‖∞ : z ∈ X2

J(RN ), v = −divJz
}
. (5.4)

Observe that Ψ is convex, lower semi-continuous and positive homogeneous of degree 1. Moreover, it
is easy to see that, if Ψ(v) < ∞, the infimum in (5.4) is attained i.e., there exists some z ∈ X2

J(RN ),
v = −divJz and Ψ(v) = ‖z‖∞.

Let us see that

Ψ = F̃J1 .

If Ψ(v) =∞, then we have F̃J1 (v) ≤ Ψ(v). Thus, we may assume that Ψ(v) <∞. Let z ∈ L∞(RN ×RN )
such that v = −divJz. Then, for w ∈ L2(RN ), we have∫

RN
w(x)v(x)dx =

1

2

∫
RN×RN

(∇Jw)(x, y)z(x, y)dxdy ≤ ‖z‖∞FJ1 (w).

Taking supremun in w we obtain that F̃J1 (v) ≤ ‖z‖∞. Now, taking infimun in z, we get F̃J1 (v) ≤ Ψ(v).
To prove the opposite inequality, let us denote

D := {divJz : z ∈ X2
J(RN )}.

Then, by (4.2), we have, for v ∈ L2(RN ),

Ψ̃(v) = sup


∫
RN

w(x)v(x)dx

Ψ(w) : w ∈ L2(RN )

 ≥ sup


∫
RN

w(x)v(x)dx

Ψ(w) : w ∈ D


= sup


∫
RN

divJz(x)v(x)dx

‖z‖∞
: z ∈ X2

J(RN )

 = FJ1 (v).
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Observe that the last term is equal to +∞ if v ∈ L2(RN ) \ BVJ(RN ). Thus, FJ1 ≤ Ψ̃, which implies by

[7, Proposition 1.6], that Ψ =
˜̃
Ψ ≤ F̃J1 . Therefore, Ψ = F̃J1 , and consequently from (5.3), we get

∂FJ1 (u) =

{
v ∈ L2(RN ) : Ψ(v) ≤ 1,

∫
RN

u(x)v(x)dx = FJ1 (u)

}
=

{
v ∈ L2(RN ) : ∃z ∈ X2

J(RN ), v = −divJz, ‖z‖∞ ≤ 1,

∫
RN

u(x)v(x)dx = FJ1 (u)

}
,

from where it follows the equivalence between (i) and (ii).
To get the equivalence between (ii) and (iii) we only need to apply the Green formula (4.1).
By the antisimetry of g it is easy to see that (iv) and (v) are equivalent. On the other hand, to see

that (iii) imply (v), it is enough to take g(x, y) = 1
2 (z(x, y)− z(y, x)). Finally, to see that (v) imply (ii),

it is enough to take z(x, y) = g(x, y) (observe that, from (5.2), −divJ(g) = v, so g ∈ X2
J(RN )). 2

Remark 5.3. Observe that if v ∈ ∂FJ1 (u), then any function z satisfying the characterization of
Theorem 5.2 also satisfies

J(x− y)z(x, y) ∈ J(x− y)sign((u(y)− u(x)) a.e. in RN × RN .

But, moreover, we can choose one being antisymmetric.

By Theorem 5.2 and following [11, Theorem 7.5] it is easy to prove the following result.

Lemma 5.4. ∂FJ1 is a m-completely accretive operator in L2(RN ).

As consequence of Theorem 5.2 and Lemma 5.4 we can give the following existence and uniqueness
result for the Cauchy problem {

ut −∆J
1u 3 0 in (0, T )× RN

u(0, x) = u0(x) x ∈ RN .
(5.5)

Theorem 5.5. For every u0 ∈ L2(RN ) there exists a unique solution of the Cauchy problem (5.5) in
(0, T ) for any T > 0, in the following sense: u ∈ W 1,1(0, T ;L2(RN )), u(0, ·) = u0, and for almost all
t ∈ (0, T )

ut(t, ·)−∆J
1u(t) 3 0.

Moreover, we have the following contraction principle in any Lq(RN )–space, 1 ≤ q ≤ ∞:

‖u(t)− v(t)‖q ≤ ‖u0 − v0‖q ∀ 0 < t < T,

for any pair of solutions, u, v, of problem (5.5) with initial data u0, v0 respectively.

Proof. By the theory of maximal monotone operators (see [15]), and having in mind the characterization
of the subdifferential of FJ1 , for every u0 ∈ L2(Ω) there exists a unique strong solution of the abstract
Cauchy problem {

u′(t) + ∂FJ1 (u(t) 3 0, t ∈ (0, T ),

u(0) = u0,

that is exactly the concept of solution given. The contraction principle is consequence of being the
operator completely accretive. 2
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6. Nonlocal Cheeger and Calibrable sets

For any measurable set E ⊂ RN with |E| > 0, we define

λJE :=
PJ(E)

|E|
.

As a consequence of (2.1), we have that λJE ≤ 1.
Given a non–null, measurable and bounded set Ω ⊂ RN we define its J-Cheeger constant by

hJ1 (Ω) := inf
{
λJE : E ⊂ Ω, E measurable with |E| > 0

}
. (6.1)

We have that hJ1 (Ω) ≤ 1. A measurable set EΩ ⊂ Ω achieving the infimun in (6.1) is said to be a
J-Cheeger set of Ω. Also we say that Ω is J-calibrable if it is a J-Cheeger set of itself, that is, if Ω is a
non–null measurable bounded set and

hJ1 (Ω) =
PJ(Ω)

|Ω|
.

As a consequence of the Poincaré type inequality given in [11, Proposition 6.25], in the case that J is
continuous (the continuity of J is not needed in what follows but only at this point) and radial and Ω is
a bounded domain, we have that there exists a positive constant 0 < λ = λ(J,Ω) such that

λ

∫
RN
|u(x)|dx ≤

∫
RN

∫
RN

J(x− y)|u(y)− u(x)|dxdy

for all u ∈ L1(RN ) such that u = 0 in RN \ Ω. Then,

λ|E| ≤ 2PJ(E) for all measurable E ⊂ Ω,

and consequently hJ1 (Ω) ≥ λ
2 .

Let us now define

λJ1 (Ω) := inf
{
FJ(u) : u ∈ BVJ(RN ), u = 0 in RN \ Ω, ‖u‖1 = 1

}
= inf

{
FJ(u)

‖u‖1
: u ∈ BVJ(RN ), u = 0 in RN \ Ω, u 6= 0

}
.

Note that by the lack of compactness it is not clear if we can change inf by min.
It is well known (see [23]) that the classical Cheeger constant

h1(Ω) := inf

{
Per(E)

|E|
: E ⊂ Ω, |E| > 0

}
,

for Ω a bounded smooth domain, is an optimal Poincaré constant, namely, it coincides with the first
eigenvalue of the 1-Laplacian:

h1(Ω) = λ1(Ω) := inf


∫

Ω

|Du|+
∫
∂Ω

|u|dHN−1

‖u‖L1(Ω)
: u ∈ BV (Ω), u 6= 0

 .

It is also characterized (see [25]) as

h1(Ω) = sup
{
h ∈ R : ∃V ∈ L∞(Ω,RN ), ‖V ‖∞ ≤ 1, divV ≥ h

}
,

which is usually referred to as a continuous version of the Min Cut Max Flow Theorem. In the next result
we obtain nonlocal versions of these two characterizations of the J–Cheeger constant given in (6.1).



22 J. M. MAZÓN, J. D. ROSSI AND J. TOLEDO

Theorem 6.1. Let Ω be a non-null, measurable and bounded set of RN , then

hJ1 (Ω) = λJ1 (Ω), (6.2)

and

hJ1 (Ω) = sup
{
h ∈ R+ : ∃z ∈ X∞J (RN ), ‖z‖∞ ≤ 1, divJz ≥ h in Ω

}
= sup

{
1
‖z‖∞ : divJz = χ

Ω

}
= sup

{
1
‖z‖∞ : divJz = 1 in Ω

}
.

(6.3)

Proof. Given a measurable subset E ⊂ Ω with |E| > 0, we have

FJ(χE)

‖χE‖1
=
PJ(E)

|E|
.

Therefore, λJ1 (Ω) ≤ hJ1 (Ω). On the other hand, by the coarea formula (2.4) and Cavalieri formula, given
u ∈ BVJ(RN ), with u = 0 in RN \ Ω and u 6= 0, we have

FJ(u)

‖u‖1
=

∫ +∞

−∞
PJ(Et(u)) dt∫ +∞

−∞
|Et(u)| dt

≥ hJ1 (Ω)

and taking infimum we get λJ1 (Ω) ≥ hJ1 (Ω). Therefore (6.2) holds true.
Let

A :=
{
h ∈ R+ : ∃z ∈ X∞J (RN ), ‖z‖∞ ≤ 1, divJz ≥ h in Ω

}
and α := supA (observe that 0 ≤ α ≤ 1). Given h ∈ A and E ⊂ Ω with |E| > 0, applying (4.3), we get

h|E| =
∫
E

h dx ≤
∫
E

divJz(x)dx ≤ PJ(E).

Hence,

h ≤ PJ(E)

|E|
,

and, taking supremum in h and infimum in E, we obtain that α ≤ hJ1 (Ω).
By (6.2), we have

1

hJ1 (Ω)
= sup

{
‖u‖1
FJ(u)

: u ∈ BVJ(RN ), u = 0 in RN \ Ω, u 6= 0

}

= sup

{
‖u‖1
FJ(u)

: u ∈ BVJ(RN ), u ≥ 0, u = 0 in RN \ Ω, u 6= 0

}

= sup

{∫
Ω

u(x)dx : FJ(u) ≤ 1, u ∈ BVJ(RN ), u = 0 in RN \ Ω

}

= sup
{
〈u, χΩ〉 − Ξ(L(u)) : u ∈ L1(RN )

}
,
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being L : L1(RN )→ L1(RN × RN ) the linear map

L(u)(x, y) :=
1

2
(u(x)− u(y))J(x− y),

and Ξ : L1(RN × RN )→ [0,+∞] the convex function

Ξ(w) :=

{
0 if ‖w‖L1(RN×RN ) ≤ 1,

+∞ otherwise.

By the Frenchel-Rockafeller duality Theorem ([16, Th. 1.12]) and having in mind [22, Prop. 5], we have

sup
{
〈u, χΩ〉 − Ξ(L(u)) : u ∈ L1(RN )

}
= inf {Ξ∗(z) : L∗(z) = χ

Ω} .
Now,

Ξ∗(z) = sup

{∫
RN×RN

z(x, y)w(x, y)dxdy − Ξ(w) : w ∈ L1(RN × RN )

}
= ‖z‖∞.

On the other hand,

〈L∗(z), u〉 = 〈z, L(u)〉 =

∫
RN×RN

z(x, y)
1

2
(u(x)− u(y))J(x− y)dxdy

=
1

2

∫
RN×RN

(z(x, y)− z(y, x))J(x− y)u(x)dxdy = 〈divJz, u〉,

that is, L∗(z) = divJz. Consequently,

1

hJ1 (Ω)
= inf {‖z‖∞ : divJz = χ

Ω} ,

from where it follows that

hJ1 (Ω) = sup

{
1

‖z‖∞
: divJz = χ

Ω

}
≤ sup

{
1

‖z‖∞
: divJz = 1 in Ω

}
≤ α,

and we finish the proof of (6.3). 2

Remark 6.2. It is well know that every bounded domain Ω ⊂ RN with Lipschitz boundary contains a
classical Cheeger set E, that is, a set E ⊂ Ω such that

h1(Ω) =
Per(E)

|E|
.

Furthermore, in [3] it is proved that there is a unique Cheeger set inside any non–trivial convex body in
RN , being this Cheeger set convex.

On the other hand, in [14] it is proved that for any s ∈ (0, 1), every open and bounded set Ω ⊂ RN
admits and s-Cheeger set, that is, a set E ⊂ Ω such that

Ps(E)

|E|
= inf

{
Ps(F )

|F |
: F ⊂ Ω, |F | > 0

}
.

But we will show in Remark 6.11 that there are convex sets without a J-Cheeger set. This is due to
the lack of compactness which is consequence to the fact that we are considering non-singular kernels.

As a consequence of the Isoperimetric Inequality (Theorem 2.4), we show that any ball is J-calibrable.

Proposition 6.3. Let J be a nonnegative radially nonincreasing function. Then, any ball BR(x0) ⊂ RN
is J-calibrable.
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Proof. We can take x0 = 0 as the center of the ball. First we prove that a ball BR(0) ⊂ RN is J-calibrable
if and only if the function

Θ(r) = λJBr(0) =
PJ(Br(0))

|Br(0)|
verifies that

Θ(r) ≥ Θ(R), ∀r ∈ (0, R). (6.4)

Obviously, the condition is necessary. On the other hand, given E ⊂ BR(x0), by the isoperimetric
inequality we have that

PJ(E)

|E|
≥ PJ(Br(0))

|Br(0)|
= Θ(r)

where Br(0) is a ball such that |Br(0)| = |E|. Hence, since we are assuming that the function Θ(r)
verifies (6.4), we have

PJ(E)

|E|
≥ Θ(r) ≥ Θ(R) =

PJ(BR(0))

|BR(0)|
,

and consequently BR(0) is J-calibrable.
By the above characterization we need to show that (6.4) holds. In fact, from (1.2),

PJ(Br(0)) = |Br(0)| −
∫
Br(0)

∫
Br(0)

J(x− y)dydx.

Hence (6.4) is true if and only if

F (r) ≤ F (R) for every 0 < r < R,

where

F (r) :=
1

|Br(0)|

∫
Br(0)

(∫
Br(0)

J(x− y)dy

)
dx.

Take 0 < r < R. Then, changing variables z = R
r x, we have

F (r) =
1

|Br(0)|

∫
Br(0)

(∫
Br(0)

J(x− y)dy

)
dx =

1

|BR(0)|

∫
BR(0)

(∫
Br(0)

J
( r
R
z − y

)
dy

)
dz

≤ 1

|BR(0)|

∫
BR(0)

(∫
BR(0)

J(z − y)dy

)
dz = F (R),

since, for any z ∈ BR(0), Br(
r
Rz) ⊂ BR(z), which implies∫

Br(0)

J
( r
R
z − y

)
dy =

∫
Br( rR z)

J(y)dy ≤
∫
BR(z)

J(y)dy =

∫
BR(0)

J(z − y)dy.

2

Remark 6.4. For J radially nonincreasing we have that Θ is indeed continuously differentiable in ]0,+∞[.
A simple calculation shows that

d

dr
PJ(Br(0)) = HJ

∂Br(0)(y)Per(Br(0)),
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with y ∈ ∂Br(0). Then,

Θ′(r) =
HJ
∂Br(0)(y)Per(Br(0))|Br(0)| − Per(Br(0))PJ(Br(0))

|Br(0)|2
,

with y ∈ ∂Br(0) arbitrary.
Therefore, by the characterization given in the proof of Proposition 6.3 and having in mind that clearly

ess sup
x∈Br(0)

HJ
∂Br(0)(x) is attained on any point of the boundary of Br(0), we get

Br(0) is J-calibrable ⇐⇒ ess sup
x∈Br(0)

HJ
∂Br(0)(x) ≤ λJBr(0).

The next result shows that any measurable and non null set inside a ball of radius 1
2 is J-calibrable

when J := 1
|B1(0)|

χ
B1(0).

Proposition 6.5. Let J = 1
|B1(0)|

χ
B1(0). If Ω ⊂ B 1

2
(0) with |Ω| > 0, then Ω is J-calibrable.

Proof. Let E ⊂ Ω non null. For x ∈ E,

E ⊂ B1(x).

Then,

PJ(E) =

∫
E

∫
R\E

J(x− y) dy dx =
1

|B1(0)|

∫
E

∫
RN\E

χ
B1(0)(x− y)dydx

=
1

|B1(0)|

∫
E

∫
RN\E

χ
B1(x)(y)dydx =

1

|B1(0)|

∫
E

|B1(x) \ E|dx

=
1

|B1(0)|

∫
E

(|B1(x)| − |E ∩B1(x)|)dx = |E|
(

1− |E|
|B1(0)|

)
,

and
PJ(E)

|E|
=

(
1− |E|
|B1(0)|

)
,

that is decreasing with |E|. Hence the Cheeger constant of Ω is given by

hJ1 (Ω) =

(
1− |Ω|
|B1(0)|

)
=
PJ(Ω)

|Ω|
,

as we wanted to show. 2

Remark 6.6. For the local usual perimeter, when Ω is the union of two intervals in R, Ω = (a, b)∪ (c, d),
then the set is calibrable if and only if the two intervals have the same length (otherwise the Cheeger set
inside Ω is the bigger interval). For the nonlocal perimeter with J = 1

2
χ

[−1,1] we have the following facts.
Assume c− b ≥ 1.

We want to compare PJ (Ω)
|Ω| with the quotient of PJ (E)

|E| for E ⊂ (a, b) ∪ (c, d). We decompose E as

E = E1 ∪ E2 with E1 = E ∩ (a, b) and E2 = E ∩ (c, d). For the case in which the two intervals that
compose Ω have the same length we have

PJ(Ω)

|Ω|
≤ PJ(E)

|E|
iff

PJ((a, b))

b− a
≤ PJ(E1) + PJ(E2)

|E1|+ |E2|
,
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which is true since, if |Ei| 6= 0 then, by the Isoperimetric Inequality,

PJ((a, b))

b− a
≤ PJ(Ei)

|Ei|
.

On the other hand, if b− a > d− c then

PJ((a, b))

|b− a|
<
PJ(Ω)

|Ω|

and therefore we have that Ω is not J–calibrable.

Let us recall that that, in the local case, a set Ω ⊂ RN is called calibrable if

Per(Ω)

|Ω|
= inf

{
Per(E)

|E|
: E ⊂ Ω, E with finite perimeter, |E| > 0

}
.

In [2] it is proved the following characterization of convex calibrable set.

Theorem 6.7. ([2]) Given a bounded convex set Ω ⊂ RN of class C1,1, the following facts are equivalent:

(a) Ω is calibrable.

(b) χ
Ω satisfies −∆1

χ
Ω = Per(Ω)

|Ω|
χ

Ω, being ∆1u := div
(
Du
|Du|

)
.

When Ω is convex these statements are also equivalent to

(c) (N − 1)ess sup
x∈∂Ω

H∂Ω(x) ≤ Per(Ω)

|Ω|
.

We are going to study the validity of a similar result to the above theorem for the nonlocal case. In
the following remark we will introduce the main idea that is behind the proof for the nonlocal case.

Remark 6.8. Let Ω ⊂ RN be a Borel set and assume there exists a constant λ > 0 and a function τ
with τ(x) = 1 in Ω such that

−λτ ∈ ∆J
1
χΩ in RN .

Then, there exists g ∈ L∞(RN × RN ), g(x, y) = −g(y, x) for almost all (x, y) ∈ RN × RN , ‖g‖∞ ≤ 1,
satisfying ∫

RN
J(x− y)g(x, y) dy = −λτ(x) a.e x ∈ RN .

with

J(x− y)g(x, y) ∈ J(x− y)sign(χΩ(y)− χΩ(x)) a.e. (x, y) ∈ RN × RN .
Then,

λ|Ω| =
∫
RN

λτ(x)χΩ(x)dx = −
∫
RN

(∫
RN

J(x− y)g(x, y) dy

)
χ

Ω(x)dx = FJ(χΩ) = PJ(Ω),

and consequently

λ = λJΩ :=
PJ(Ω)

|Ω|
.

On the other hand, we observe again that the operator ∆J
1
χΩ is multivalued. Let us take, for example,

J := 1
2
χ

[−1,1]. We have that

−f ∈ ∆J
1
χ

]−1,1[ ⇐⇒ ∃g antisymmetric, ‖g‖∞ ≤ 1
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satisfying ∫
R
J(x− y)g(x, y) dy = −f(x) a.e x ∈ R.

and

J(x− y)g(x, y) ∈ J(x− y)sign(χ[−1,1[(y)− χ]−1,1[(x)) a.e. (x, y) ∈ R× R.
Then, by taking for instance g(x, y) = sign0(χ]−1,1[(y)− χ]−1,1[(x)) we have, if x ∈ [−1, 1],

f(x) =
1

2
|x|,

and, if x 6∈ [−1, 1],

f(x) =


−1

2
(x+ 2) if − 2 ≤ x ≤ −1,

−1

2
(2− x) if 1 ≤ x ≤ 2,

0 if x ≤ −2 or x ≥ 2.

But, by taking

g(x, y) =



1 if y ∈ [−1, 1], x 6∈ [−1, 1],

−1 if x ∈ [−1, 1], y 6∈ [−1, 1],

1

2
in {0 < y < x < 1} ∪ {−1 < x < y < 0} ∪ {1 < y < x} ∪ {y < x < −1},

−1

2
in {0 < x < y < 1} ∪ {−1 < y < x < 0} ∪ {1 < x < y} ∪ {x < y < −1},

0 otherwise,

we get a different but interesting representation for ∆J
1
χ

]−1,1[. We get that

−λJ]−1,1[τ ∈ ∆J
1
χ

]−1,1[ in RN

with

τ(x) =

{
1 if x ∈ [−1, 1],

−(|x| − 2)−, otherwhise,

being the value of λJ]−1,1[, as seen above, equal to 1
4 . Note that this function τ verifies that

τ = 1 in ]− 1, 1[,

and this gives, as we will see in the next theorem, that ]− 1, 1[ is J–calibrable. Of course, in this simple
case, this was obtained previously by more elementary methods.

The next result is the nonlocal version of the fact that (a) is equivalent to (b) in Theorem 6.7.

Theorem 6.9. Let Ω ⊂ RN be a non-null measurable bounded set.

(i) Assume that
∫

Ω
J(x− y)dy > 0 for all x ∈ Ω. If Ω is J-calibrable then there exists a function τ

equal to 1 in Ω such that

−λJΩτ ∈ ∆J
1
χ

Ω in RN . (6.5)

(ii) If there exists a function τ equal to 1 in Ω and satisfying (6.5) then Ω is J-calibrable.
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Proof. We first prove (ii): By hypothesis, there exists, g(x, y) = −g(y, x) for almost all (x, y) ∈ RN×RN ,
‖g‖∞ ≤ 1, satisfying ∫

RN
J(x− y)g(x, y) dy = −λJΩτ(x) a.e x ∈ RN .

with

J(x− y)g(x, y) ∈ J(x− y)sign(χΩ(y)− χΩ(x)) a.e. (x, y) ∈ RN × RN ,

and τ is a function such that

τ = 1 in Ω.

Then, if F is a bounded measurable set, F ⊂ Ω, we have

λJΩ|F | = λJΩ

∫
RN

τ(x)χF (x)dx = −
∫
RN

∫
RN

J(x− y)g(x, y)χF (x) dydx

=
1

2

∫
RN

∫
RN

J(x− y)g(x, y)(χF (y)− χF (x)) dydx ≤ PJ(F ),

Therefore, hJ1 (Ω) = λJΩ, and consequently Ω is J-calibrable.
Let us now prove (i): Let g̃ ∈ L∞(RN × RN ) be defined as

g̃(x, y) :=


0 if x ∈ RN \ Ω, y ∈ RN \ Ω,

−1 if x ∈ Ω, y ∈ RN \ Ω,

1 if x ∈ RN \ Ω, y ∈ Ω,

ĝ(x) if x, y ∈ Ω,

being ĝ a function to be determined. We define

τ(x) := − 1

λJΩ

∫
RN

J(x− y)g̃(x, y)dy, x ∈ RN .

For x ∈ Ω, we have

τ(x) =
1

λJΩ

∫
RN\Ω

J(x− y)dy − ĝ(x)
1

λJΩ

∫
Ω

J(x− y)dy.

Then, taking

ĝ(x) :=

−λJΩ +

∫
RN\Ω

J(x− y)dy∫
Ω

J(x− y)dy

, x ∈ Ω,

we have that τ(x) = 1 for all x ∈ Ω. Moreover, for x ∈ RN \ Ω,

τ(x) = − 1

λJΩ

∫
Ω

J(x− y)dy ≤ 0.

We claim now that

λJΩτ ∈ ∂FJ1 (0). (6.6)

Take w ∈ L2(RN ) with FJ(w) < +∞. Since

w(x) =

∫ ∞
0

χ
Et(w)(x)dt−

∫ 0

−∞
(1− χEt(w))(x)dt,
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we have

∫
RN

λJΩτ(x)w(x)dx =

∫
RN

λJΩτ(x)

(∫ ∞
−∞

χ
Et(w)(x)dt

)
dx

= λJΩ

∫ +∞

−∞

∫
RN

τ(x)χEt(w)(x)dxdt.

Now, using that Ω is J-calibrable we have that

λJΩ

∫ +∞

−∞

∫
RN

τ(x)χEt(w)(x)dxdt = λJΩ

∫ +∞

−∞
|Et(w) ∩ Ω|dt+ λJΩ

∫ +∞

−∞

∫
Et(w)\Ω

τ(x)dxdt

≤
∫ +∞

−∞
PJ(Et(w) ∩ Ω)dt+ λJΩ

∫ +∞

−∞

∫
Et(w)\Ω

τ(x)dxdt.

By Proposition 2.2 and the coarea formula given in Theorem 2.6 we get

∫ +∞

−∞
PJ(Et(w) ∩ Ω)dt+ λJΩ

∫ +∞

−∞

∫
Et(w)\Ω

τ(x)dxdt

=

∫ +∞

−∞
PJ(Et(w) ∩ Ω)dt+

∫ +∞

−∞
PJ(Et(w) \ Ω)dt−

∫ +∞

−∞
2LJ(Et(w) \ Ω, Et(w) ∩ Ω)dt

−
∫ +∞

−∞
PJ(Et(w) \ Ω)dt+

∫ +∞

−∞
2LJ(Et(w) \ Ω, Et(w) ∩ Ω)dt+ λJΩ

∫ +∞

−∞

∫
Et(w)\Ω

τ(x)dxdt

=

∫ +∞

−∞
PJ(Et(w))dt+ I = FJ(w) + I,

with

I := −
∫ +∞

−∞
PJ(Et(w) \ Ω)dt+

∫ +∞

−∞
2LJ(Et(w) \ Ω, Et(w) ∩ Ω)dt+ λJΩ

∫ +∞

−∞

∫
Et(w)\Ω

τ(x)dxdt.

Hence, if we prove that I ≤ 0, we get

∫
RN

λJΩτ(x)w(x)dx ≤ FJ(w). (6.7)

Now, since

PJ(Et(w) \ Ω) = LJ(Et(w) \ Ω,RN \ (Et(w) \ Ω)) = LJ(Et(w) \ Ω, (Et(w) ∩ Ω)
.
∪ (RN \ Et(w))),
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we have

I = −
∫ +∞

−∞
PJ(Et(w) \ Ω)dt+

∫ +∞

−∞
2LJ(Et(w) \ Ω, Et(w) ∩ Ω)dt+ λJΩ

∫ +∞

−∞

∫
Et(w)\Ω

τ(x)dxdt

= −
∫ +∞

−∞
LJ(Et(w) \ Ω,RN \ Et(w))dt+

∫ +∞

−∞
LJ(Et(w) \ Ω, Et(w) ∩ Ω)dt

+λJΩ

∫ +∞

−∞

∫
Et(w)\Ω

τ(x)dxdt

=

∫ +∞

−∞

(∫
Et(w)\Ω

(∫
RN\Et(w)

−J(x− y)dy +

∫
Et(w)∩Ω

J(x− y)dy + λJΩτ(x)

)
dx

)
dt

=

∫ +∞

−∞

(∫
Et(w)\Ω

(∫
RN\Et(w)

(−g̃(x, y)− 1)J(x− y)dy

)
dx

)
dt

+

∫ +∞

−∞

(∫
Et(w)\Ω

(∫
Et(w)∩Ω

(−g̃(x, y) + 1)J(x− y)dy

)
dx

)
dt

−
∫ +∞

−∞

(∫
Et(w)\Ω

(∫
Et(w)\Ω

J(x− y)g̃(x, y)dy

)
dx

)
dt.

Now, the first integral is negative since g̃(x, y) ≥ −1 for x ∈ RN \Ω, the second is zero since g̃(x, y) = 1
for x ∈ RN \ Ω and y ∈ Ω, and the last integral is zero since g̃ = 0 in (RN \ Ω) × (RN \ Ω). Therefore,
I ≤ 0, and consequently (6.7) holds. Now (6.7) implies that (6.6) is true. Then, by Theorem 5.4, we have
−λJΩτ ∈ ∆J

1 (0). Thus, there exists g ∈ L∞(RN×RN ), g(x, y) = −g(y, x) for almost all (x, y) ∈ RN×RN ,
‖g‖∞ ≤ 1, satisfying ∫

RN
J(x− y)g(x, y) dy = −λJΩτ(x) a.e x ∈ RN .

and

J(x− y)g(x, y) ∈ J(x− y)sign(0) a.e. (x, y) ∈ RN × RN .

Now, multiplying by χΩ and integrating by parts we get

λJΩ|Ω| = λJΩ

∫
RN

τ(x)χΩ(x)dx = −
∫
RN

∫
RN

J(x− y)g(x, y)χΩ(x)dxdy

=
1

2

∫
RN

∫
RN

J(x− y)g(x, y)(χΩ(y)− χΩ(x))dxdy ≤ PJ(Ω) = λJΩ|Ω|,

from where it follows that

J(x− y)g(x, y) ∈ J(x− y)sign(χΩ(y)− χΩ(x)) a.e. (x, y) ∈ RN × RN ,

and consequently,

−λJΩτ ∈ ∆J
1
χ

Ω in RN .

2

We now give a result that says that J-calibrability is related to the nonlocal curvature function HJ
∂E ,

which is the nonlocal version of one implication in the equivalence between (a) and (c) in Theorem 6.7.
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Theorem 6.10. Let Ω ⊂ RN be a bounded set and assume
∫

Ω
J(x− y)dy > 0 for all x ∈ Ω. Then,

Ω is J-calibrable ⇒ ess sup
x∈Ω

HJ
∂Ω(x) ≤ λJΩ.

Proof. By Theorem 6.9, there exists g ∈ L∞(RN ×RN ) antisymmetric with ‖g‖∞ ≤ 1 and a function τ ,
equal to 1 in Ω, such that

−
∫
RN

J(x− y)g(x, y) dy = λJΩτ(x) a.e x ∈ RN , (6.8)

and
J(x− y)g(x, y) ∈ J(x− y)sign((χΩ(y)− χΩ(x)) a.e. in RN × RN . (6.9)

Then, by (6.8), (6.9) and since τ = 1 in Ω, we have

HJ
∂Ω(x) =

∫
RN

J(x− y)(χRN\Ω(y)− χΩ(y))dy ≤ −
∫
RN

J(x− y)g(x, y) dy ≤ λJΩ for a.e. x ∈ Ω.

2

The reverse of Thyeorem 6.10 is not true in general, that is, condition (6.10) does not imply J–
calibrability in general. We don’t know if for convex sets it is sufficient. In the next remark we provide
some examples of non–J–calibrable sets and its interplay with (6.10).

Remark 6.11. 1. Observe that ess sup
x∈Ω

HJ
∂Ω(x) ≤ λJΩ if and only if

1

|Ω|

∫
Ω

∫
Ω

J(x− y)dydx ≤ 2 ess inf
x∈Ω

∫
Ω

J(x− y)dy. (6.10)

2. In general,
ess sup
x∈Ω

HJ
∂Ω(x) ≤ λJΩ does not imply Ω is J-calibrable.

In fact. Assume that supp(J) ⊂ BR(0). Let R1 = R2 + ε, and x1, x2 ∈ RN such that ‖x1 − x2‖ >
R1 + R2 + 2R. Consider Ω := BR1

(x1) ∪ BR2
(x2). Then, by Proposition 2.2 and the Isoperimetrical

Inequality, we have

λJΩ =
PJ(BR1

(x1)) + PJ(BR2
(x2))

|BR1(x1)|+ |BR2(x2)|
>
PJ(BR1

(x1))

|BR1(x1)|
.

Therefore, Ω is not J-calibrable. Now,

ess sup
x∈Ω

HJ
∂Ω(x) = ess sup

x∈Ω
HJ
∂BR2

(x2)(x) ≤ PJ(BR2
(x2))

|BR2
(x2)|

≤ λJΩ

if ε is small enough.
Note that in this example Ω is not connected. However, this fact is not relevant. We have that

the nonlocal perimeter and the nonlocal curvature are continuous with respect to the set in terms of
convergence in measure (if En → E in the sense that |En4E| → 0 then PJ(En)→ PJ(E) and HJ

∂En
(x)→

HJ
∂E(x)). Then we only have to connect the two balls with a thin bridge to obtain an example of a

connected domain such that

ess sup
x∈Ω

HJ
∂Ω(x) ≤ λJΩ but Ω is not J-calibrable.

3. Let Ω ⊂ RN be a bounded set and assume
∫

Ω
J(x− y)dy > 0 for all x ∈ Ω. One can ask if

sup
x∈∂Ω

HJ
∂Ω(x) ≤ λJΩ. (6.11)
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implies J-calibrability. The following example shows that, in general, this is not the case. For N = 1,
and for J(z) = 1

2
χ

[−1,1](z) and

Ωε =
(
]− 3, 3[ \ [−1, 1]

)
∪]− ε, ε[, 0 < ε < 1/2,

one can check that

sup
x∈∂Ωε

HJ
∂Ωε(x) = (1− 3ε)

+
< HJ

∂Ωε(0) = 1− 2ε = sup
x∈Ω

HJ
∂Ωε(x),

and that

λJΩε =
1 + 2ε− 3ε2

4 + 2ε
.

Then, for for ε <
√

19− 4,

1− 2ε > λJΩε

and consequently Ω is not calibrable. Now, for 0.236 '
√

5− 2 ≤ ε <
√

19− 4 ' 0.359 it holds that,

sup
x∈∂Ωε

HJ
∂Ωε(x) ≤ λJΩε ,

and consequently condition (6.11) is not enough for J-calibrability.

4. Let J be a nonnegative radially nonincreasing function. It is easy to see that a large cube ]−L,L[N

is not J–calibrable, this is also true in the local case for any cube.
On the other hand, in the local case, the stadium given by the convex hull of two circles (N = 2),

L

r
x0

ΩLr := co
(
Br(−L2 , 0) ∪Br(L2 , 0)

)
,

with L, r > 0, is calibrable. Indeed,

ess sup
x∈∂ΩLr

H∂ΩLr
(x) =

1

r
<

2πr + 2L

πr2 + 2rL
=

Per(Ω)

|Ω|
,

and Theorem 6.7 gives the result. But ΩLr is not J–calibrable for J = 1
|B1(0,0)|

χ
B1(0,0)), r > 1 and L > 2

large enough. Let us prove this fact. To this end, by Theorem 6.10 and the statement 1 of this remark,
it is enough to show that, for L large enough,

1

|ΩLr |

∫
ΩLr

∫
ΩLr

J(x− y)dydx > 2 ess inf
x∈ΩLr

∫
ΩLr

J(x− y)dy.

Now this condition reads as follows:

1

|ΩLr |

∫
ΩLr

|ΩLr ∩B1(x)|dx > 2
∣∣B1(L2 + r, 0) ∩Br(L2 , 0)

∣∣, (6.12)
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since

ess inf
x∈ΩLr

∫
ΩLr

J(x− y)dy =

∫
ΩLr

J(x0 − y)dy

for x0 = (L2 + r, 0). Let us call a(r) := 2
∣∣B1(L2 + r, 0) ∩Br(L2 , 0)

∣∣,
a(r) = 2

(
arccos

(
1

2r

)
+ r2 arccos

(
1− 1

2r2

)
− 1

2

√
4r2 − 1

)
.

Now, if CLr =]− L
2 ,

L
2 [×]0, r − 1[ and DL

r =]1− L
2 ,

L
2 − 1[×]r − 1, r[ we have, by symmetry,

1

|ΩLr |

∫
ΩLr

|ΩLr ∩B1(x)|dx =
1

πr2 + 2rL

∫
ΩLr

|ΩLr ∩B1(x)|dx ≥ 2

πr2 + 2rL

∫
CLr ∪DLr

|ΩLr ∩B1(x)|dx

=
2

πr2 + 2rL

(
πL(r − 1) +

∫
DLr

|ΩLr ∩B1(x)|dx

)
.

Moreover, ∫
DLr

|ΩLr ∩B1(x)|dx = (L− 2)

∫ r

r−1

(π − βs)ds,

where βs is the circular segment of height h = 1− (r − s) of the circle of radius 1, that is,

βs = arccos(r − s)− (r − s)
√

1− (r − s)2.

Hence,∫
DLr

|ΩLr ∩B1(x)|dx = (L− 2)

∫ r

r−1

(
π − arccos(r − s) + (r − s)

√
1− (r − s)2

)
ds = (L− 2)(π − 2

3 ).

Therefore, we obtain

1

|ΩLr |

∫
ΩLr

|ΩLr ∩B1(x)|dx ≥ 2

πr2 + 2rL

(
πL(r − 1) + (L− 2)(π − 2

3 )
)

=
2

πr2 + 2rL

(
(πr − 2

3 )L− (π − 2
3 )2
)
> a(r)

if

L >
1
2a(r)πr2 + π − 2

3

r
(
π − 2

3r − a(r)
) ,

since π − 2
3r > a(r). That is, we get that (6.12) holds true for L large enough. Consequently, ΩLr is not

J–calibrable.
5. Let us see that the non J-calibrable set ΩLr does not contain a J-Cheeger set. Arguing by contra-

diction, assume that there exists E a J–Cheeger set of ΩLr . Then, since E is J–calibrable and having in
mind the calculation made in 4, we have

a(r) =
2

π

∣∣B1(L2 + r, 0) ∩Br(L2 , 0)
∣∣ < 1

|ΩLr |

∫
ΩLr

∫
ΩLr

J(x− y)dydx

<
1

|E|

∫
E

∫
E

J(x− y)dydx ≤ 2 inf
x∈E

∫
E

J(x− y)dy =
2

π
inf
x∈E
|B1(x) ∩ E|.

On the other hand, consider a ball Bs such that |Bs| = |E|. By the Isoperimetric Inequality and since
Bs is J-calibrable, we have

a(r) <
1

|E|

∫
E

∫
E

J(x− y)dydx ≤ 1

|Bs|

∫
Bs

∫
Bs

J(x− y)dydx ≤ a(s),
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from where it follows that s > r, and consequently E * Br(−L2 , 0). Hence, if we define

l+ := sup

{
l ∈
[
−L

2
,
L

2

]
: |Br(l, 0) ∩ E| > 0

}
,

we have l+ > −L2 . Therefore, for −L2 < l < l+, we have

a(r) <
2

π
ess inf
x∈E

|B1(x) ∩ E| ≤ 2

π
ess inf

{
|B1(x) ∩ E| : x ∈ E ∩ (Br(l

+, 0) \Br(l, 0))
}
≤ a(r) + o(l+ − l).

Then, letting l→ l+ we arive to a contradiction.

Our last aim is to relate local and nonlocal Cheeger constants and local and nonlocal calibrable sets
under rescaling. We will use the following result by A. Ponce (see also [17]) in the line of Theorem 2.9,
by J. Dávila, given above.

Theorem 6.12 (Ponce [32]). Let B ⊂ RN be open, bounded with a Lipschitz boundary, and let 0 ≤ ρε
radial functions satisfying (2.9). Let εn ↓ 0 as n → +∞. If {un}n ⊂ L1(Ω) is a bounded sequence such
that ∫

B

∫
B

|un(x)− un(y)|
|x− y|

ρεn(x− y)dxdy ≤ K1,NM,

where K1,N is given in (2.10) and M is a constant, then {un}n is relatively compact in L1(B). Moreover,
if unj → u in L1(B) then u ∈ BV (B) and ∫

B

|Du| ≤M.

Proposition 6.13. Let Ω be an open bounded set of RN , then

lim
ε↓0

CJ
ε
hJε1 (Ω) = h1(Ω).

Proof. Given δ > 0, there exists Eδ ⊂ Ω such that

h1(Ω) + δ ≥ Per(Eδ)

|Eδ|
.

Then, by Theorem 2.10, we have

h1(Ω) + δ ≥ lim
ε↓0

CJ
ε

PJε(Eδ)

|Eδ|
≥ lim sup

ε↓0

CJ
ε
hJε1 (Ω).

By the arbitrariness of δ, we get

lim sup
ε↓0

CJ
ε
hJε1 (Ω) ≤ h1(Ω).

Let us now suppose that

lim inf
ε↓0

CJ
ε
hJε1 (Ω) < h1(Ω). (6.13)

By (6.2), given ε > 0, there exists uε ∈ BVJε(Ω), uε = 0 in RN \ Ω, ‖uε‖ = 1, such that

hJε1 (Ω) ≤ FJε(uε) ≤ h
Jε
1 (Ω) + ε2.

Then, by (6.13),

lim inf
ε↓0

CJ
ε
FJε(uε) < h1(Ω).
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Therefore, there exists a sequence εn decreasing ot 0 such that

CJ
εn
FJεn (uεn) < h1(Ω).

Then, for a large ball B containing Ω,

CJ
εn
FJεn (uεn) =

1

K1,N

∫
B

∫
B

|uεn(x)− uεn(y)|
|x− y|

ρεn(x− y)dxdy < h1(Ω),

where

ρε(z) =
1

2
CJK1,N

|z|
ε
Jε(z).

Consequently, by Theorem 6.12 (in the proof of Theorem 2.10 we see that ρε satisty the hypothesis in
the theorem), we have that there exists a subsequence of εn, denoted equal, such that

uεn → u in L1(B),

u ∈ BV (B) and, since moreover u = uχΩ,∫
B

|Du| =
∫

Ω

|Du|+
∫
∂Ω

|u|dHN−1 < h1(Ω).

But we also get that ‖u‖L1(Ω) = 1 and consequently, from the above inequality, we get λ1(Ω) < h1(Ω),
which is a contradiction. Therefore, what we supposed in (6.13) is false and then

lim inf
ε↓0

CJ
ε
hJε1 (Ω) ≥ h1(Ω),

and the proof concludes. 2

Corollary 6.14. Let Ω be an open bounded set of RN . If Ω is Jεn–calibrable for a sequence εn → 0 as
n→ +∞ then Ω is calibrable.

Proof. Since Ω is Jεn–calibrable we have

CJ
εn
h
Jεn
1 (Ω) =

CJ
εn

PJεn (Ω)

|Ω|
.

Hence, by Theorem 2.10,

CJ
εn
h
Jεn
1 (Ω)→ Per(Ω)

|Ω|
as n→ +∞.

Then, by Proposition 6.13, we conclude that

Per(Ω)

|Ω|
= h1(Ω),

and consequently Ω is calibrable 2
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