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Abstract. Let J : R→ R be a nonnegative, smooth function with
R
R J(r)dr =

1, supported in [−1, 1], symmetric, J(r) = J(−r) and strictly increasing in
[−1, 0]. We consider the Neumann boundary value problem for a nonlocal
nonlinear operator that is similar to the porous medium, we study the equa-
tion

ut(x, t) =

Z L

−L

�
J

�
x− y

u(y, t)

�
− J

�
x− y

u(x, t)

��
dy, x ∈ [−L, L].

We prove existence and uniqueness of solutions and a comparison principle.
We find the asymptotic behaviour of the solutions as t →∞, they converge to
the mean value of the initial data. Next, we consider a discrete version of the
above problem. Under suitable hypotheses we prove that the discrete model
has properties analogous to the continuous one. Moreover solutions of the
discrete problem converge to the continuous ones when the mesh parameter
goes to zero. Finally, we perform some numerical experiments.

1. Introduction

Let J : R → R be a nonnegative, smooth function with
∫
R J(r)dr = 1. As-

sume also that J is supported in [−1, 1], is symmetric, J(r) = J(−r) and strictly
increasing in [−1, 0] (and hence strictly decreasing in [0, 1]). Equations of the form

(1.1) ut(x, t) = J ∗ u− u(x, t) =
∫

R
J(x− y)u(y, t)dy − u(x, t),

and variations of it, have been recently widely used to model diffusion processes, see
[2], [3], [5], [6], [8], [9], [11]. As stated in [8] if u(x, t) is thought of as a density at the
point x at time t and J(x−y) is thought of as the probability distribution of jumping
from location y to location x, then (J ∗ u)(x, t) is the rate at which individuals are
arriving to position x from all other places and −u(x, t) = − ∫

R J(y − x)u(x, t)dy
is the rate at which they are leaving location x to travel to all other sites. This
consideration, in the absence of external sources, leads immediately to the fact that
the density u satisfies equation (1.1). Equation (1.1), so called nonlocal diffusion
equation, shares many properties with the classical heat equation ut = ∆u such as:
a maximum principle holds for both of them and, even if J is compactly supported,
perturbations propagate with infinite speed.
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Another classical equation that has been used to model diffusion is the well
known porous medium equation, ut = ∆um with m > 1. This equation also shares
several properties with the heat equation but there is a fundamental difference, in
this case we are facing a nonlinear diffusion operator, diffusion depends on the den-
sity u. Properties of solutions for the porous medium equation have been largely
studied over the past years. See for example [1], [10] and the corresponding bibli-
ography.

A simple nonlocal nonlinear model for diffusion where the diffusion at a point
depends on the density, as happens for the porous medium equation, was introduced
in [7]. In this model the probability distribution of jumping from location y to
location x is given by J

(
x−y

u(y,t)

)
1

u(y,t) when u(y, t) > 0 and 0 otherwise. In this
case the rate at which individuals are arriving to position x from all other places
is

∫
R J

(
x−y

u(y,t)

)
dy and the rate at which they are leaving location x to travel to

all other sites is −u(x, t) = − ∫
R J

(
y−x

u(x,t)

)
dy. As before this consideration, in the

absence of external sources, leads immediately to the fact that the density u has to
satisfy

ut(x, t) =
∫

R
J

(
x− y

u(y, t)

)
dy − u(x, t).

It is proved in [7] that this problem shares with the porous medium equation the
finite speed of propagation property. Compactly supported initial data develop a
free boundary and eventually covers the whole R.

Our main concern in this paper is to look for Neumann boundary conditions for
this nonlocal nonlinear diffusion operator.

We study the problem

(1.2) ut(x, t) =
∫ L

−L

(
J

(
x− y

u(y, t)

)
− J

(
x− y

u(x, t)

))
dy,

in [−L,L]×[0,∞) with an initial datum u(x, 0) = u0(x). In this model it is assumed
that no individuals can jump inside nor outside the domain [−L,L], therefore the
integrals are considered in [−L,L] instead of in the whole R. This says that the flux
of individuals leaving or entering the domain is null, this is what is usually known
as Neumann boundary conditions. We use ideas from [7] to prove the following
result, but the details are technically different.

Theorem 1.1. For every u0 ∈ L1([−L,L]) with u0 ≥ 0 there exists a unique
solution u of (1.2) such that u ∈ C([0,∞); L1([−L,L])). Continuous solutions
have a comparison property, if u0(x) ≤ v0(x) ∈ C([−L,L]) then u(x, t) ≤ v(x, t) in
[−L,L]× [0,∞) and preserve the total mass in [−L,L], that is,

∫ L

−L

u(y, t) dy =
∫ L

−L

u0(y) dy.

Moreover, if u0 ∈ C1([−L,L]) is strictly positive, the following asymptotic behavior
takes place

u(x, t) → 1
2L

∫ L

−L

u0(x)dx, as t → +∞, uniformly in [−L, L].
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This result is analogous to the well known result for the porous medium equa-
tion, ut = (um)xx, with Neumann boundary conditions, (um)x(±L, t) = 0, where
solutions are known to preserve the total mass and converge to the mean value of
the initial datum.

Next, we study a discrete version of the previous equation. A discrete analogous
to (1.1) is considered for example in [4]. We consider a set of nodes −L = x−N <
.. < xi = hi < .. < xN = L, i = −N, ..., N , and discretize the integrals involved.
We obtain

(1.3) (ui)′(t) =
N∑

j=−N

hJ

(
h(i− j)
uj(t)

)
−

N∑

j=−N

hJ

(
h(i− j)

ui(t)

)

with h > 0 and initial datum ui(0) = u0(xi). We use the discrete analogous to
the L1, the space l1h = {(ui)} with the norm ‖ui‖l1h

:=
∑N

i=−N h|ui| to obtain the
following result.

Theorem 1.2. For every u0 ≥ 0 there exists a unique solution in C([0,∞); l1h)
of (1.3) which depends continuously on the initial datum. A comparison principle
holds, if ui(0) ≤ vi(0) then ui(t) ≤ vi(t) for all i = −N, . . . , N , t > 0. The solution
preserves the total mass, i.e.,

N∑

i=−N

ui(t) =
N∑

i=−N

ui(0)

and satisfies

ui(t) → 1
2N + 1

N∑

i=−N

ui(0), as t → +∞.

Moreover if u(x, t) is a positive C1 solution of (1.2) and ui(t) is the solution of
(1.3), then there exists a constant C such that

max
0<t<T

N∑

i=−N

h|u(xi, t)− ui(t)| ≤ Ch.

The paper is organized as follows: in Section 2 we deal with the continuous
problem, in Section 3 with the discrete one and finally in the last section we show
some numerical experiments.

2. The continuous problem.

The existence and uniqueness result will be a consequence of a fixed point the-
orem. Fix t0 > 0 and consider the Banach space C([0, t0];L1([−L,L])) with the
norm

|‖w‖| = max
0≤t≤t0

‖w(·, t)‖L1([−L,L]).

Let
Xt0 =

{
w ∈ C([0, t0];L1([−L, L])) / w ≥ 0

}

which is a closed subset of C([0, t0];L1([−L, L])). We will obtain the solution as a
fixed point of the operator Tw0 : Xt0 → Xt0 defined by

Tw0(w)(x, t) =
∫ t

0

∫ L

−L

(
J

(
x− y

w(y, s)

)
− J

(
x− y

w(x, s)

))
dyds + w0(x).
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The following lemma is the main ingredient of our proof.

Lemma 2.1. Let w0, z0 non negative functions such that w0, z0 ∈ L1([−L, L]) and
w, z ∈ Xt0 , then there exists a constant C such that

(2.1) |||Tw0(w)− Tz0(z)||| ≤ Ct0|||w − z|||+ ||w0 − z0||L1([−L,L]).

Proof. We have
∫ L

−L

|Tw0(w)(x, t)− Tz0(z)(x, t)| dx

≤
∫ t

0

∫ L

−L

∣∣∣∣∣
∫ L

−L

(
J

(
x− y

w(y, s)

)
− J

(
x− y

z(y, s)

))
dy

∣∣∣∣∣ dx ds

+
∫ t

0

∫ L

−L

∣∣∣∣∣
∫ L

−L

(
J

(
x− y

w(x, s)

)
− J

(
x− y

z(x, s)

))
dy

∣∣∣∣∣ dx ds

+
∫ L

−L

|w0 − z0|(y) dy.

To study the first term, we consider the sets A+(s) = {y ∈ [−L, L] / w(y, s) ≥
z(y, s)} and A−(s) = {y ∈ [−L,L] /w(y, s) < z(y, s)}. We have

∫ L

−L

∣∣∣∣∣
∫ L

−L

(
J

(
x− y

w(y, s)

)
− J

(
x− y

z(y, s)

))
dy

∣∣∣∣∣ dx

≤
∫ L

−L

∫

A+(s)

(
J

(
x− y

w(y, s)

)
− J

(
x− y

z(y, s)

))
dy dx

+
∫ L

−L

∫

A−(s)

(
J

(
x− y

z(y, s)

)
− J

(
x− y

w(y, s)

))
dy dx.

Since the integrands are non negative we can apply Fubini’s theorem to get
∫ L

−L

∫

A+(s)

(
J

(
x− y

w(y, s)

)
− J

(
x− y

z(y, s)

))
dy dx

=
∫

A+(s)

(
w(y, s)

∫ −y+L
w(y,s)

−y−L
w(y,s)

J(r)dr − z(y, s)
∫ −y+L

z(y,s)

−y−L
z(y,s)

J(r)dr

)
dy

≤
∫

A+(s)

(w(y, s)− z(y, s))

(∫ −y+L
z(y,s)

−y−L
z(y,s)

J(r) dr

)
dy

≤
∫

A+(s)

|w(y, s)− z(y, s)| dy.

We argue similarly with the integral over A−(s). Therefore we obtain
∫ L

−L

∣∣∣∣∣
∫ L

−L

(
J

(
x− y

w(y, s)

)
− J

(
x− y

z(y, s)

))
dy

∣∣∣∣∣ dx ≤
∫ L

−L

|w(y, s)− z(y, s)| dy.

The second term can be handled in the same way. Hence we get (2.1). ¤

Theorem 2.3. For every nonnegative u0 ∈ L1([−L,L]) there exists a unique solu-
tion of (1.2) u ∈ C([0,∞); L1([−L,L])). Moreover, the solution preserves the total
mass, that is

∫ L

−L
u(y, t)dy =

∫ L

−L
w0(y)dy.
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Proof. From Lemma 2.1 we obtain that Tu0 is a contraction in Xt0 for t0 small.
Therefore there exists a unique fixed point of Tu0 in Xt0 . This provides us with
a solution in [0, t0]. To continue we may take as initial data u(x, t0) and obtain a
solution in [0, 2t0]. We continue this procedure to obtain a solution defined for all
t > 0. We finally prove that the integral in x of u is preserved. We have,

u(x, t)− u0(x) =
∫ t

0

∫ L

−L

(
J

(
x− y

u(y, t)

)
− J

(
x− y

u(x, t)

))
dy ds.

We can integrate in x and apply Fubini’s theorem to obtain
∫ L

−L

u(x, t)dx−
∫ L

−L

u0(x)dx =
∫ t

0

∫ L

−L

∫ L

−L

J

(
x− y

u(y, t)

)
dx dy ds

−
∫ t

0

∫ L

−L

∫ L

−L

J

(
x− y

u(x, t)

)
dy dx ds = 0.

This ends the proof of the theorem. ¤

Remark 2.1. Solutions of (1.2) depend continuously on the initial condition in
the following sense: if u and v are solutions of (1.2), then there exists a constant
C = C(t0, J, L) such that

max
0≤t≤t0

‖u(·, t)− v(·, t)‖L1([−L,L]) ≤ C||u(·, 0)− v(·, 0)||L1([−L,L]).

Remark 2.2. If u0 ≥ δ is Ck then the solution u(·, t) ∈ Ck for all t ≥ 0. Moreover
there exists a constant C = C(δ, J, u0) such that |ut|, |ux| ≤ C. This follows arguing
as before but using the space C([0, t0]; Ck[−L,L]) instead of C([0, t0];L1[−L,L]).

Now we prove a comparison principle valid for continuous solutions.

Theorem 2.4. Let u and v be continuous solutions of (1.2). If u(x, 0) ≤ v(x, 0)
for all x ∈ [−L,L], then u(x, t) ≤ v(x, t) for all (x, t) ∈ [−L, L]× [0,∞).

Proof. We assume first that u(x, 0)+δ < v(x, 0). Moreover we assume for a moment
that u(x, 0) and v(x, 0) are C1 functions. If the conclusion does not hold, we have
that there exists a time t0 > 0 and a point x0 ∈ [−L,L] such that u(x0, t0) =
v(x0, t0) and u(x, t) ≤ v(x, t) for all (x, t) ∈ [−L, L]× [0, t0].

Let us consider the set B = {x ∈ [−L, L] / u(x, t0) = v(x, t0)}. Clearly B is non
empty and closed. Let x1 ∈ B. We have then

0 ≤ (u− v)t(x1, t0) =
∫ L

−L

(
J

(
x1 − y

u(y, t0)

)
− J

(
x1 − y

v(y, t0)

))
dy ≤ 0

which implies u(y, t0) = v(y, t0) for all y ∈ B(x1, r). Hence B is open. It follows
that B = [−L, L] which is the desired contradiction.

We now get rid of the extra hypothesis that w(x, 0) and z(x, 0) are C1 functions.
In order to do this let wn(x, 0) and zn(x, 0) be sequences of C1 functions such that
wn(x, 0) → w(x, 0) and zn(x, 0) → z(x, 0) in L1([−L, L]) as n →∞ and, moreover,
un(x, 0) = wn(x, 0) < vn(x, 0) = zn(x, 0). Let un and vn be the solutions with
initial data un(x, 0) and vn(x, 0) respectively. By the previous argument one has
un ≤ vn an the result follows by letting n → ∞ in view of Remark 2.1 and the
monotone convergence theorem. ¤
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We end this section studying the asymptotic behaviour. We prove that the
solution converges to a constant and since the total mass is preserved this constant
must be the mean value of the initial datum. Observe that the only steady states
of the problem are constants. Also remark that this equation does not have any
regularizing effect (see [7]) and moreover we can not find a Lyapunov functional.
Therefore the asymptotic behaviour is not straightforward.

Theorem 2.5. Let u0 be a positive C1 function, then

u(x, t) → 1
2L

∫ L

−L

u0(x)dx, as t → +∞, uniformly in [−L, L].

Proof. Let

M(t) = max
x∈[−L,L]

u(x, t), m(t) = min
x∈[−L,L]

u(x, t) and P =
1

2L

∫ L

−L

u0(x)dx.

From a comparison argument (constants are solutions of our problem) we get that
M is decreasing and bounded below by P (by the conservation of mass). Therefore,

lim
t→∞

M(t) = M∞ ≥ P.

We claim that M∞ = P . Assume that this is not the case. By our regularity
assumptions on the initial datum the solution is bounded in C1 and from the
conservation of the total mass for each k there exists an interval Ik ⊂ [−L,L] with
|Ik| ≥ c where u(x, k) ≤ P for x ∈ Ik. Let xk be the midpoint of the interval
Ik. By taking a subsequence if necessary we may assume that xk → x0. Let
I0 = (x0 − c/2, x0 + c/2) ∩ [−L, L] and let z(x, t) be the solution of the problem
with initial datum z(x, 0) a continuous function such that M∞ > z(x, 0) ≥ P for
x ∈ I0 and z(x, 0) = M∞ for x ∈ [−L, L] \ I0. We have that maxx z(x, 1) < M∞.
To prove this fact, just argue as in the proof of Theorem 2.4.

Now, we consider zn(x, t) the solution with initial datum zn(x, 0) = z(x, 0)+1/n.
From continuous dependence of solutions with respect to the initial data we have
that for n0 large enough maxx zn0(x, 1) < M∞.

On the other hand, for k large enough we obtain that u(x, k) ≤ zn0(x, 0), then
by a comparison argument we obtain

M(k + 1) = max
x

u(x, k + 1) ≤ max
x

zn(x, 1) < M∞,

a contradiction that proves that M(t) → P as t → ∞. Analogously, it can be
proved that m(t) → P as t →∞. Hence,

|u(x, t)− P | ≤ max{M(t)− P, P −m(t)} → 0, t →∞,

as we wanted to prove. ¤

3. The discrete problem.

In this section we propose and analyze a discrete models for our nonlocal nonlin-
ear diffusion operator. As we mentioned in the introduction we consider a uniform
mesh of the interval [−L,L] composed by xi = ih, i = −N, . . . , N and approximat-
ing the integrals in (1.2) we obtain

(3.1) (ui)′(t) =
N∑

j=−N

hJ

(
h(i− j)
uj(t)

)
−

N∑

j=−N

hJ

(
h(i− j)

ui(t)

)
.
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As initial datum we restrict u0 to the mesh, ui(0) = u0(xi).
As in the continuous case existence and uniqueness of the ODE’s system (3.1)

will be a consequence of Banach’s fixed point theorem. Fix t0 > 0 and consider the
Banach space C([0, t0]; l1h) with the norm |‖w‖| = max0≤t≤t0

∑N
i=−N h|wi|(t). We

also consider the closed subset Xh
t0 =

{
w ∈ C([0, t0]; l1h) / wi ≥ 0

}
and the operator

Th
w0

: Xh
t0 → Xh

t0 defined by

(
Th

w0
(w)

)
i
(t) =

∫ t

0

N∑

i=−N

h

(
J

(
h(i− j)
wj(s)

)
− J

(
h(i− j)
wi(s)

))
ds + (w0)i.

Now we prove a Lemma similar to Lemma 2.1.

Lemma 3.2. For every h > 0 there exists a constant C = C(h) such that

(3.2) |||Th
w0

(w)− Th
z0

(z)||| ≤ Ct0|||w − z|||+ ||w0 − z0||l1h .

Proof. The proof is similar to the one of Lemma 2.1. However a mayor difference
appears, we do not have a change of variables formula like the one used in that
proof. We overcome this difficulty by looking carefully at the size of the involved
quantities. We have to deal with terms of the form

N∑

i=−N

h

∣∣∣∣∣∣

N∑

j=−N

h

(
J

(
h(i− j)
wj(s)

)
− J

(
h(i− j)
zj(s)

))∣∣∣∣∣∣
.

Let A+(s) = {j / wj(s) ≥ zj(s)} and A−(s) = {j / wj(s) < zj(s)}. We can de-
compose the sum according to j ∈ A+(s) or j ∈ A−(s). Let us analyze the case
j ∈ A+(s). Let (i − j) = k and assume that wj(s) > zj(s) > h|k|, we obtain an
upper bound for this part of the sum as follows,

∑

j∈A+(s)

h

N−j∑

k=−N−j

h

(
J

(
hk

wj(s)

)
− J

(
hk)
zj(s)

))

=
∑

j∈A+(s)

h

N−j∑

k=−N−j

hJ ′(ξ)h|k|
(

zj(s)− wj(s)
wj(s)zj(s)

)

≤ C

(
2N∑

k=−2N

1
|k|

) 
 ∑

j∈A+(s)

h(wj(s)− zj(s))


 .

If wj(s) > h|k| ≥ zj(s) we have J
(

hk
zj(s)

)
= 0 and as J(1) = 0, we obtain the

bound
∑

j∈A+(s)

h

N−j∑

k=−N−j

h

(
J

(
hk

wj(s)

)
− J(1)

)
=

∑

j∈A+(s)

h

N−j∑

k=−N−j

hJ ′(ξ)
h|k| − wj(s)

wj(s)

≤ C

(
2N∑

k=−2N

1
|k|

) 
 ∑

j∈A+(s)

h(wj(s)− zj(s))


 .

In case h|k| ≥ zj(s), wj(s) the terms that appear in the sum vanish and there is
nothing to deal with. From this point the rest of the proof runs as before. ¤

With the inequality (3.2) is easy to prove existence and uniqueness of a solution.
Moreover, the same arguments used in the continuous case provide a comparison
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principle and the asymptotic behaviour which is similar to the continuous one. That
is, solutions converge to the mean value of the initial data.

Theorem 3.6. For every positive u0 ∈ l1h there exists a unique solution of (3.1)
in C([0,∞); l1h) which depends continuously on the initial datum. The solution
preserves the total mass, that is

N∑

i=−N

ui(t) =
N∑

i=−N

ui(0).

Moreover, solutions have a comparison principle, if ui(0) ≤ vi(0) then ui(t) ≤ vi(t)
for all i = −N, . . . , N , t > 0, and satisfy

ui(t) → 1
2N + 1

N∑

i=−N

ui(0), t → +∞.

To end this subsection we study the convergence of the discrete solutions to the
continuous ones as the mesh parameter h goes to zero. We will restrict ourselves
to strictly positive C1 solutions.

Theorem 3.7. Let u(x, t) be a positive C1 solution of (1.2) and ui(t) the solution
of (3.1). Then, there exists a constant C = C(J, T, L) such that

(3.3) ‖|u(xi, t)− ui(t)‖| ≤ Ch, ∀t ∈ [0, T ].

Proof. Since the initial datum is positive, a comparison argument shows that there
exists δ > 0 such that

(3.4) u(x, t), uh(x, t) ≥ δ > 0.

First, let us prove that the approximate scheme is consistent. to do that we only
observe that for a C1 function f ,

∫ xj+1

xj

f(y) dy = hf(xj) + O(h2).

Notice that, as J , u ∈ C1 and (3.4), the function f(y) = J
(

x−y
u(y,t)

)
is a C1 function,

then vi(t) = u(xi, t) verifies

v′i(t) =
N∑

j=−N

hJ

(
h(i− j)

vj(t)

)
−

N∑

j=−N

hJ

(
h(i− j)

vi(t)

)
+ O(h).

Therefore,
∫ t

0

(ui − vi)′ds =
∫ t

0

N∑

j=−N

h

(
J

(
h(i− j)
uj(s)

)
− J

(
h(i− j)
vj(s)

))
ds

−
∫ t

0

N∑

j=−N

h

(
J

(
h(i− j)
ui(s)

)
− J

(
h(i− j)
vi(s)

))
ds + O(h)

From the mean value theorem, the regularity of J and (3.4) we obtain
∣∣∣∣∣∣

N∑

j=−N

h

(
J

(
h(i− j)
uj(s)

)
− J

(
h(i− j)
vj(s)

))∣∣∣∣∣∣
≤ C

N∑

j=−N

h|uj − vj |,
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where the constant C = C(J, δ) does not depend on h. A similar argument applied
to the second term, gives us

‖|u− v‖| − ‖u(0)− v(0)‖l1h
≤ C1t0‖|u− v‖|+ C2t0h.

Since Ci does not depend on h we select t0 also independent on h such that C1t0 =
1/2. A continuation argument gives (3.3) for all 0 < t < T . ¤

4. Numerical experiments.

In this section we show some numerical experiments. We integrate (1.3) with an
adaptive ODE solver using Matlab. We choose L = 2, u0(x) = max{0,−x} and
N = 100. We observe the evolution of the free boundary until the support reaches
x = L and the convergence to the mean value of the initial datum as t → ∞. In
figure 1, the first picture shows the evolution of ui(t) and the second one the profiles
of the solution at different times.
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p− 1
m+1

2

Existencia global

Figure 1.

Finally, to see the convergence rate, we compute the difference between two
discrete solutions for different values of N . We choose a strictly positive initial
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datum u0(x) = 5− x2, T = 5 and the norm

‖uN − u400‖l1h
(T ) =

∑

i

h|(uN )i(T )− (u400)i(T )|.

We obtain the following table

N 25 50 100 200

‖uN − u400‖ 0.1358 0.0162 0.0044 6.3786e-004

As it can observed the error decreases with N .
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