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Abstract. In this work we consider the nonlocal stationary nonlinear
problem (J ∗ u)(x) − u(x) = −λu(x) + a(x)up(x) in a domain Ω, with
the Dirichlet boundary condition u = 0 in RN \ Ω and p > 1. The
kernel J involved in the convolution (J ∗ u)(x) =

R
RN J(x− y)u(y) dy is

a smooth, compactly supported nonnegative function with unit integral,
while the weight a(x) is assumed to be nonnegative and is allowed to
vanish in a smooth subdomain Ω0 of Ω. Both when a(x) is positive and
when it vanishes in a subdomain, we completely discuss the issues of
existence and uniqueness of positive solutions, as well as their behavior
with respect to the parameter λ.

1. Introduction

In this paper we deal with the following stationary nonlocal diffusion
problem:

(1.1)

{
(J ∗ u)(x)− u(x) = −λu(x) + a(x)up(x) x ∈ Ω,

u = 0 x ∈ RN \ Ω.

Here Ω is a bounded domain of RN , p > 1 and λ is a real parameter.
The operator J ∗ u − u is a nonlocal diffusion operator that has been used
in biological models, see [20]. The kernel J is assumed to be a smooth,
compactly supported nonnegative function (see precise assumptions below),
and J ∗ u is the usual convolution, that is,

(J ∗ u)(x) =
∫

RN

J(x− y)u(y) dy.

In (1.1) the condition u = 0 in RN \ Ω is the nonlocal analogue to the
usual Dirichlet boundary condition u|∂Ω = 0 imposed when one considers
the usual Laplacian as the diffusion operator.

Problems related to (1.1) have been widely treated in the literature. The
general problem

(1.2)

{
(J ∗ u)(x)− u(x) = f(x, u(x)) x ∈ Ω,

u = 0 x ∈ RN \ Ω,

and its parabolic counterpart have been the subject of several works. In
most of them, Ω = RN , so that the Dirichlet condition is not present. We
quote for instance [3], [5], [6], [8], [15], [16], [18], [19], [32] and [33], devoted
to travelling front type solutions to the parabolic problem when Ω = R, and
[4], [9], [10], [17], [31], which dealt with the study of problem (1.2) with a
logistic type, bistable or power-like nonlinearity. The particular instance of
the parabolic problem in RN when f = 0 is considered in [7], [27], while
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the “Neumann” boundary condition for the same problem is treated in [1],
[13] and [14]. See also [28] for the appearance of convective terms and [11],
[12] for interesting features in other related nonlocal problems. We finally
mention the paper [26], where some logistic equations and systems of Lotka-
Volterra type are studied.

It is easy to see that solutions to (1.2) are critical points of the functional

(1.3)
H(u) =

1
4

∫

RN

∫

RN

J(x− y)(u(x)− u(y))2 dx dy

−
∫

Ω
F (x, u(x)) dx,

where all functions are assumed to vanish in RN \Ω and F (·, u) =
∫ u
0 f(·, s).

When the first integral in (1.3) is expanded in a Taylor series and only the
first term is taken into account, we obtain the “approximate energy”

H̃(u) = c

∫

Ω

∫

Ω
|∇u(x)|2dx−

∫

Ω
F (x, u(x))dx,

where c = 1/(4N)
∫
RN J(y)|y|2dy (see for instance [4]). Assuming with no

loss of generality that c = 1, the critical points of this energy are weak
solutions to the local problem

(1.4)
{ −∆u(x) = f(x, u(x)) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.

Thus it seems reasonable to expect that solutions to (1.2) share many prop-
erties with those of (1.4).

Hence before proceeding to the study of problem (1.1) is seems convenient
to briefly discuss its local analogue

(1.5)
{ −∆u(x) = λu(x)− a(x)up(x) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.

The structure of solutions to problem (1.5) is nowadays well understood.
When a(x) is strictly positive in Ω, there exists a unique positive solution
if and only if λ > λ1(Ω), where λ1(Ω) is the first Dirichlet eigenvalue of the
Laplacian in Ω. The situation changes drastically when the weight a(x) is
allowed to vanish in a smooth subdomain Ω0 of Ω. It is shown that positive
solutions can only exist when λ1(Ω) < λ < λ1(Ω0) (see [21], [22], [30]). In
this range, the positive solution is unique. Moreover, the exact behavior
of this solution as λ → λ1(Ω) is determined: it diverges to infinity in Ω0

while it remains bounded in D = Ω\Ω0, converging to the minimal positive
solution to

{ −∆u(x) = λ1(Ω0)u(x)− a(x)up(x) x ∈ Ω,

u(x) = +∞ x ∈ ∂Ω,

(see also [23] for the study of this problem).

We will prove in the present paper that problem (1.1) behaves like (1.5)
with respect to the existence and uniqueness issues, but it is completely
different with regard to the asymptotic behavior of solutions.
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We also mention that problem (1.5) has been frequently proposed to
model the diffusion of a single species in Ω whose density is given by the
function u. In that case, the coefficient λ represents the birth rate of the
species, while a(x) measures the intraspecific competition. In particular,
the case a = 0 in Ω0 means that Ω0 can be considered as a “refuge” for
the species, since it is free from competition there. In this regard, the main
difference between problems (1.5) and (1.1) is that in the former the effect
of diffusion is only local, while in the latter also long range effects are being
taken into account.

We now state the precise assumptions that we impose on J .

Hypotheses: The kernel J will be assumed to be a C1 function with a
compact support, which, with no loss o generality, we always take to be the
unit ball of RN . We moreover suppose that J > 0 in B1, that J is even, i.e.
J(−x) = J(x) for every x, and that

∫
RN J(x) dx = 1.

Without further mention, we are always assuming that J verifies these
hypotheses.

Before coming to the statements of our theorems, let us make some com-
ments on solutions of (1.1). By a solution to (1.1) we mean a function
u ∈ L1(RN ) which verifies (1.1) almost everywhere. However, we remark
that with u ∈ L1(RN ) it always follows J ∗u ∈ C(Ω) thanks to the regularity
of J , so that (1− λ)u + a(x)up ∈ C(Ω). We will show that it is possible to
invert u and then obtain that u ∈ C(Ω) for all possible positive solutions.
This is not always the situation for nonlocal problems, since – at least for
some bistable-like nonlinearities – discontinuous front-wave solutions for the
associated evolution problem can be constructed (see [5]). We mention in
passing that the solutions are strictly positive in Ω, and hence there is a
jump discontinuity across ∂Ω.

We can now state our results for problem (1.1). In all our subsequent
results, the eigenvalue problem

{
(J ∗ u)(x)− u(x) = −λu(x) x ∈ Ω,

u = 0 x ∈ RN \ Ω,

whose properties will be analyzed in Section 2 (see Theorem 9) will play an
important role. We only mention for the moment that there exists a unique
principal eigenvalue, which will be denoted by λ1(Ω). Moreover, we have
that 0 < λ1(Ω) < 1.

We begin with the case a(x) > 0 in Ω, which is somehow easier.

Theorem 1. Assume a ∈ C(Ω) is strictly positive, and let p > 1. Then
problem (1.1) admits a positive solution uλ if and only if λ > λ1(Ω). In
that case, uλ ∈ C(Ω), it is unique, increasing with respect to λ and verifies
uλ → 0 uniformly in Ω as λ ↓ λ1(Ω). In addition, we have for λ ≥ 1:

(1.6)
(

λ− 1
a(x)

) 1
p−1

≤ uλ ≤
(

λ

infΩ a

) 1
p−1

,

and hence uλ →∞ uniformly in Ω as λ →∞.
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As the estimates (1.6) show, the solution behaves essentially as λ
1

p−1 when
λ → +∞. It would be of course desirable to know the exact asymptotic be-
havior as λ → +∞. This exact behavior is the content of the next theorem.

Theorem 2. Assume a ∈ C(Ω) is strictly positive, and let p > 1. Let uλ

be the unique positive solution to (1.1) with λ > λ1(Ω) given by Theorem 1.
Then

uλ(x) ∼
(

λ

a(x)

) 1
p−1

as λ →∞,

uniformly in Ω.

Next, we consider problem (1.1) when the weight a(x) is allowed to vanish
in a subdomain of Ω. We assume

(A) a(x) vanishes in a smooth subdomain Ω0,

and we always denote D = Ω \ Ω0. As in the local problem, the range of
existence of solutions is now bounded above by a critical value, which can
be characterized as a principal eigenvalue for the operator J ∗ u− u.

Theorem 3. Assume a ∈ C(Ω) verifies (A), and let p > 1. Then (1.1)
has a positive solution uλ if and only if λ1(Ω) < λ < λ1(Ω0). In that case,
uλ ∈ C(Ω), it is unique, increasing with respect to λ and verifies uλ → 0
uniformly in Ω as λ ↓ λ1(Ω) and uλ →∞ uniformly in Ω as λ ↑ λ1(Ω0).

Notice that the behavior of uλ as λ ↑ λ1(Ω0) differs from the one that
holds for the local equation (1.5) where solutions are bounded above in a
subdomain of Ω.

As in the situation where a does not vanish, we could ask for the asymp-
totic behavior of uλ as λ ↑ λ1(Ω0). As was to be expected, the behavior is
more subtle than in Theorem 2. We first compare the solution uλ with its
maximum Mλ. It turns out that the behavior of uλ depends on the “domain
of influence” of the convolution with J . Since the support of J is assumed
to be the unit ball, the sets

B0 := Ω0, Bn = {x ∈ Ω \Bn−1 : dist(x,Bn−1) < 1},
and

Γ0 = ∂Ω0 ∩ Ω, Γn = {x ∈ Ω \Bn−1 : dist(x,Bn−1) = 1},
will be important. Notice that, since Ω is bounded, there are only finitely
many – say k – nonempty such sets. The solution uλ diverges to infinity
with a different rate in each set Bn.

Theorem 4. Let Mλ = maxΩ uλ, so that Mλ → +∞ as λ ↑ λ1(Ω0). Then

(1.7)
uλ(x)
Mλ

∼ φ(x) uniformly in Ω0

where φ is the positive eigenfunction associated to λ1(Ω0) normalized so
that ‖φ‖∞ = 1. Moreover, there exists functions Ψ1(x),Ψ2(x), . . . , Ψk(x)
such that Ψi > 0 in Bn for n = 1, . . . , k and for n = 1, 2, . . . , k,

(1.8)
uλ(x)

M
1/pn

λ

∼ Ψn(x) uniformly in compacts of Bn ∪ Γn.
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Remark 1. It is clear from the change of rate of divergence of solutions in
each Bn that Ψn = 0 on ∂Bn ∩ ∂Bn+1 while Ψn = ∞ on ∂Bn ∩ ∂Bn−1.

It seems desirable to obtain the exact behavior of the solution uλ in terms
of λ rather than Mλ. However, we content ourselves with a lower bound,
assuming that the function a(x) has a convenient decay near ∂D. We believe
that the information provided by a is not enough to get a similar upper
bound. We denote Dδ = {x ∈ D : dist(x, ∂D) < δ}. Then we have

Theorem 5. Assume a ∈ C(Ω) verifies (A) and supDδ
a(x) = O(δ1+γ) as

δ → 0 for some γ > 0. Then there exists a positive constant C such that the
unique positive solution uλ to (1.1) verifies

(1.9) uλ(x) ≥ C(λ1(Ω0)− λ)−
γ

p−1 in Ω0.

Moreover, there exist positive functions c1(x), . . . , ck(x) such that

(1.10) uλ(x) ≥ cn(x)(λ1(Ω)− λ)−
γ

pn(p−1) in Bn

for n = 1, 2, . . . , k.

For the proof of this result we need in particular an important property
of the principal eigenvalue λ1(Ω) of the operator J ∗ u− u in the domain Ω,
which will be considered in Section 2: λ1(Ω) is differentiable with respect
to differentiable perturbations of the domain. We refer to [24] for complete
proofs.

Most of our results are also valid when the kernel J is assumed to be
strictly positive in RN instead of having compact support. One of the main
differences being the asymptotic behavior of solutions as λ ↑ λ1(Ω0) in
Theorems 4 and 5.

Finally, we remark that with the same methods it is possible to deal with
more general “logistic type” problems like

{
(J ∗ u)(x)− u(x) = −λu(x) + a(x)f(u(x)) x ∈ Ω,

u = 0 x ∈ RN \ Ω,

where a(x) is as before (strictly positive or vanishing in a whole subdomain
Ω0) and f(u) is a C1 function which verifies:

(i)
f(t)

t
is increasing.

(ii) lim
t→0+

f(t)
t

= 0, lim
t→+∞

f(t)
t

= +∞.

The paper is organized as follows: in Section 2 we state and prove some
auxiliary results which deal with the maximum principle, the sweeping prin-
ciple and the eigenvalue problem for the nonlocal operator. Section 3 is
dedicated to prove Theorems 1 and 2, while the proofs of Theorems 3 and 4
will be carried out in Section 4. We finally include and Appendix with the
method of sub and supersolutions for nonlocal problems like (1.2).
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2. Preliminaries

We devote this section to collect some results which will be needed in
the proofs of our theorems. We begin by briefly considering the maximum
principle for the operator

LMu(x) = (J ∗ u)(x)− (1 + M)u(x),

where M ≥ 0 (for simplicity we denote LM := L when M = 0). An impor-
tant consequence of the maximum principle will be the sweeping principle,
which we also consider. We include proofs for completeness (see [15], [16];
and also [26] for a parabolic version).

Theorem 6. Let u ∈ C(Ω) ∩ L1(RN ) verify LMu ≤ 0 in Ω with u ≥ 0 in
RN \ Ω. Then either u > 0 or u ≡ 0 in Ω.

Proof. Let m = infΩ u, and assume m < 0. If u attains the infimum in
x0 ∈ Ω, then

(2.1)
0 = u(x0)−m ≥ 1

1 + M

∫

Ω
J(x0 − y)u(y) dy −m

≥ m

(
1

1 + M

∫

Ω
J(x0 − y) dy − 1

)
.

This implies that
∫
Ω J(x0 − y) dy ≥ 1 + M , which is a clear contradiction if

M > 0. When M = 0 we have
∫
Ω J(x0 − y) dy = 1, that is, the ball B1(x0)

is contained in Ω. Thus the infimum of u cannot be attained on ∂Ω, and in
particular u is not constant. Hence we can choose x0 so that u(x0) = m but
u(x0) 6≡ m in B1(x0). Going back to (2.1) we obtain∫

Ω
J(x0 − y)(u(y)−m) dy = 0

and hence u ≡ m in B1(x0), a contradiction. Thus m ≥ 0, that is, u ≥ 0.
Furthermore, if u(x1) = 0 for some x1 ∈ Ω, then∫

RN

J(x1 − y)u(y) dy = 0

which implies that u ≡ 0 in a neighborhood of x1. A standard connectedness
argument gives u ≡ 0 in Ω. ¤
Remark 2. As an immediate corollary to the maximum principle, if u ∈
L2(RN ) verifies LMu = 0 in Ω with u = 0 in RN \ Ω then u ≡ 0. Thus it is
standard to conclude that the problem{

(J ∗ u)(x)− (1 + M)u(x) = f(x) x ∈ Ω,

u = h(x) x ∈ RN \ Ω,

admits a unique solution u ∈ L2(RN ) for every f ∈ L2(Ω) and h ∈ L2(RN ).

We consider next the sweeping principle for problem (1.1). It will be
applied to prove uniqueness of positive solutions to (1.1). We state it in a
slightly more general form, for supersolutions to the problem

(2.2)

{
(J ∗ u)(x)− u(x) = f(x, u(x)) x ∈ Ω,

u = 0 x ∈ RN \ Ω,
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where f is locally Lipschitz with respect to u uniformly in x ∈ Ω. Let us
introduce the definition of a supersolution.

Definition 7. We say that a function u ∈ L1(RN ) is a supersolution if{
(J ∗ u)(x)− u(x) ≤ f(x, u(x)) a.e. x ∈ Ω,

u ≥ h(x) a.e. x ∈ RN \ Ω.

Subsolutions are defined by reversing the above inequalities. We are assum-
ing throughout that the subsolutions and supersolutions are bounded.

We say that u is a strict supersolution if it is not a solution to (1.1).
Then we have the standard sweeping principle for supersolutions (of course,
a similar statement holds for subsolutions).

Theorem 8. Let {ut}t≥t0 be a family of continuous strict supersolutions to
(1.1) such that the function t 7→ ut is continuous considered with values in
C(Ω). Assume that u is a continuous solution to (1.1) with u < ut1 in Ω for
some t1 > t0, and that f(x, u) is locally Lipschitz in u uniformly in x ∈ Ω.
Then u ≤ ut0 in Ω.

Proof. Notice that the continuity of ut(x) with respect to x in Ω and t
in [t0, t1] implies that ut is uniformly bounded in Ω. Hence thanks to the
regularity of f we can take M > 0 such that the function g(x, u) = f(x, u)−
Mu is decreasing in the interval [infΩ u, supt0≤t≤t1(supΩ ut)].

Now set t̄ = inf{t > t0 : u < ut in Ω}. We have t0 ≤ t̄ ≤ t1, and we prove
next that t̄ = t0. Thus assume t̄ > t0. By continuity we have u ≤ ut̄. Then

LMu = g(x, u) ≥ g(x, ut̄) ≥ LMut̄.

Theorem 6 implies then u ≡ ut̄ or u < ut̄ in Ω. Since ut̄ is a strict supersolu-
tion, the first possibility is ruled out. But thanks to the continuity of ut in
t, we can assert that u < ut for t < t̄, t ∼ t̄, which contradicts the definition
of t̄ as an infimum. Hence t̄ = t0, and u ≤ ut0 , as was to be proved. ¤

We close this section by considering an eigenvalue problem which will be
a fundamental tool when constructing solutions to (1.1), and also for the
study of their behavior with varying λ. The eigenvalue problem is

(2.3)

{
(J ∗ u)(x)− u(x) = −λu(x) x ∈ Ω,

u = 0 x ∈ RN \ Ω,

where the minus sign in the right-hand side is used for convenience. We refer
to [26] or [17] for existence of the principal eigenvalue in related situations
and to [24] for details on differentiability with respect to perturbations of
the domain.

Theorem 9. Problem (2.3) admits an eigenvalue λ1(Ω) associated to an
eigenfunction φ ∈ C(Ω) which is positive in Ω. Moreover, it is simple and
unique, and it verifies 0 < λ1(Ω) < 1. In addition it can be variationally
characterized as

(2.4) λ1(Ω) = 1− sup
u∈L2(Ω)

u 6=0

∫

Ω

∫

Ω
J(x− y)u(x)u(y) dy dx

∫

Ω
u(x)2 dx

.
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This eigenvalue λ1(Ω) is decreasing with respect to the domain, that is, if
Ω ( Ω′, then λ1(Ω) > λ1(Ω′). On the other hand, if we let Ωδ = Ω ∪ {x ∈
RN : dist(x, ∂Ω) < δ}, then λ1(Ωδ) is differentiable with respect to δ at
δ = 0 and

(2.5)
∂λ1(Ωδ)

∂δ
∣∣∣δ=0

= −(1− λ1(Ω))
∫

∂Ω
u0(x)2dS(x) < 0.

Sketch of the proof. It is clear that λ is an eigenvalue of (2.3) if and only if
µ = 1− λ is an eigenvalue of Lu = J ∗ u in L2(Ω). Since L is self-adjoint, it
follows by standard spectral theory (see for example [2]) that µ1 = ‖L‖ is an
eigenvalue of L (moreover notice that L is positive). On the other hand, the
eigenvalue problem can also be considered in C(Ω), and an application of the
Krein-Rutman theorem (see Theorem 6.2 in [29]) gives that µ1 possesses the
properties stated in the theorem. Note that the operator L is not strongly
positive, but it has the property that, for a given u ∈ C(Ω), nonnegative
and nontrivial, there exists a positive integer n so that Lnu > 0 in Ω.

The monotonicity property is a consequence of the variational characteri-
zation (2.4), since for Ω ( Ω′, every function in u ∈ L2(Ω) can be considered
in L2(Ω′) when extended to be zero in RN \ Ω. Thus λ1(Ω) ≥ λ1(Ω′). The
strict inequality follows from the maximum principle.

We now briefly sketch the proof of the differentiability with respect to δ
(we refer to [24] for a detailed proof). In fact, we consider Ωδ as a pertur-
bation of Ω in the sense that Ωδ = Tδ(Ω), where Tδ = I + δΦ and Φ is a
suitable smooth function. By means of a change of variables in (2.4), we
obtain

1− λ1(Ωδ) =
∫

Ω

∫

Ω
Jδ(z, w)uδ(z + δΦ(z))uδ(w + δΦ(w)) ∆(z)∆(w) dz dw

where Jδ(z, w) = J(z −w + δ(Φ(z)−Φ(w))), ∆(z) = det(I + δDΦ(z)), and
uδ is the associated positive eigenfunction, normalized by

∫

Ωδ

uδ(x)2dx = 1.

Performing an expansion in δ in the previous identity, we obtain

1−λ1(Ωδ) = 2
(∫

Ω

∫

Ω
DJ(x− y)Φ(x)u0(x)u0(y) dx dy

+
∫

Ω

∫

Ω
J(x− y)Φ(x)∇u0(x)u0(y) dx dy

+
∫

Ω

∫

Ω
J(x− y)u0(x)u0(y)div Φ(x) dx dy

)
δ

−(1− λ1(Ω))
(

2
∫

Ω
u0(x)Φ(x)∇u0(x) dx +

∫

Ω
u0(x)2div Φ(x) dx

)
δ

+o(δ).
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By means of an integration by parts in the integrals containing the diver-
gence we arrive at

1− λ1(Ωδ) =
(

2
∫

Ω

∫

∂Ω
J(x− y)u0(x)u0(y)Φ(x)ν(x) dS(x) dy

−(1− λ1(Ω))
∫

∂Ω
u0(x)2Φ(x)ν(x) dS(x)

)
δ + o(δ)

= (1− λ1(Ω))
(∫

∂Ω
u0(x)2Φ(x)ν(x) dS(x)

)
δ + o(δ),

where we have used Fubini’s theorem and the equation satisfied by u0. Here
we have denoted by ν the outward pointing unit normal vector field.

It follows that
∂λ1(Ωδ)

∂δ
∣∣∣δ=0

= −(1− λ1(Ω))
∫

∂Ω
u0(x)2Φ(x)ν(x) dS(x).

It is now possible to select the perturbation term Φ such that Φ = ν on ∂Ω
(see [25]) and this gives (2.5). This concludes the proof. ¤

3. Strictly positive weights

We dedicate this section to problem (1.1) when the weight a(x) is assumed
to be strictly positive in Ω.

Proof of Theorem 1. We first prove that if a nontrivial solution to (1.1)
exists, then λ > λ1(Ω). To this aim, assume u ∈ L1(Ω) is a positive solution
to (1.1) and let φ be a positive eigenfunction associated to λ1(Ω). If we
multiply (1.1) by φ and integrate in Ω, we arrive at

(3.1)

∫

Ω
φ(x)

∫

Ω
J(x− y)u(y) dy dx−

∫

Ω
u(x)φ(x) dx

= −λ

∫

Ω
u(x)φ(x) dx +

∫

Ω
a(x)up(x)φ(x) dx.

If we apply Fubini’s theorem in the first integral, and use that φ is an
eigenfunction associated to λ1(Ω) (the symmetry of J is needed here), then
(3.1) becomes

−λ1(Ω)
∫

Ω
u(y)φ(y) dy = −λ

∫

Ω
u(x)φ(x) dx +

∫

Ω
a(x)up(x)φ(x) dx.

It follows from this equation that necessarily λ > λ1(Ω).
Now assume λ > λ1(Ω), and let us show that there exists a positive

solution to (1.1) by means of the method of sub and supersolutions (see the
Appendix). We claim that u = εφ, u = M are a pair of ordered sub and
supersolutions if ε is small enough and M large enough. Indeed, u will be a
subsolution provided

J ∗ (εφ)− εφ ≥ −λ(εφ) + a(x)(εφ)p,

that is λ1(Ω) ≤ λ − a(x)(εφ)p−1, which can be achieved by taking ε suffi-
ciently small since p > 1. On the other hand, u is a supersolution if

J ∗M −M = 0 ≤ −λM + a(x)Mp
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and this can also be clearly fulfilled by selecting a large M , since a > 0 in Ω.
Hence thanks to the method of sub and supersolutios we obtain that (1.1)
admits a positive (bounded) weak solution.

Let us prove next that all possible positive weak solutions u ∈ L1(Ω)
are indeed continuous in Ω. To this aim we first prove that the leftmost
inequality in (1.6) holds for λ > 1, that is (λ − 1) ≤ a(x)up−1 almost
everywhere in Ω. However, this is immediate since the integral term in (1.1)
is positive.

On the other hand, we have

(3.2) (1− λ)u + aup =
∫

Ω
J(· − y)u(y) dy ∈ C(Ω).

We now observe that (1 − λ) + paup−1 > (1 − λ) + aup−1, and this last
quantity is positive in Ω, both for λ1(Ω) < λ ≤ 1 and for λ > 1 thanks to
the recently proved lower bound. This implies that the function (1−λ)t+atp

is invertible (with respect to t) in the range of u and thus u ∈ C(Ω) by (3.2).
Having shown that all solutions are continuous in Ω, we now prove the

upper bound in (1.6). Let x0 ∈ Ω be a point where u achieves its maximum.
If a(x0)up−1(x0) > λ, then we would have the contradiction

u(x0) <

∫

Ω
J(x0 − y)u(y) dy ≤ u(x0)

∫

Ω
J(x0 − y) dy ≤ u(x0).

Hence a(x0)up−1(x0) ≤ λ, and this shows in particular the rightmost in-
equality in (1.6).

We now prove uniqueness. Let u, v be (continuous) solutions to (1.1). It
is not hard to see that vt = tv is a strict supersolution to (1.1) for t > 1.
Since vt is continuous in t and u < vt in Ω for large t, it follows from the
sweeping principle (Theorem 8) that u ≤ v. A symmetric argument gives
u = v, and hence uniqueness follows.

We prove next that uλ is increasing in λ. For this notice that if λ < µ, then
uµ is a supersolution to (1.1). As there are arbitrarily small subsolutions, it
follows that uλ ≤ uµ, and by the strong maximum principle uλ < uµ in Ω,
as was to be shown.

To conclude the proof of the theorem, it only remains to show that uλ → 0
uniformly in Ω as λ ↓ λ1(Ω). Indeed, by the monotonicity of uλ, the limit
u0 = limλ↓λ1(Ω) uλ exists, and it is a bounded function. Passing to the limit
in (1.1) with the aid of dominated convergence theorem, we obtain that u0

is a nonnegative solution to (1.1) with λ = λ1(Ω). Hence u0 = 0, and since
the convergence is monotonic we obtain that it is uniform thanks to Dini’s
theorem. This finishes the proof. ¤
Remark 3. As can be seen from the proof, the upper bound in (1.6) continues
to hold for λ1(Ω) < λ < 1 (the lower bound being trivial in this case).

Proof of Theorem 2. Thanks to the lower bound in (1.6), it suffices to prove
that

lim sup
λ→∞

uλ(x)

λ
1

p−1

≤ a(x)−
1

p−1

uniformly in Ω. To see this we construct a supersolution for large λ. We
claim that u = λ

1
p−1 (a(x) − ε)−

1
p−1 is a supersolution provided λ is large
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enough and ε < infΩ a. Indeed, since

(3.3) −λu + a(x)up = λ
p

p−1 ε(a(x)− ε)−
p

p−1

and J ∗ u − u = λ
1

p−1 c(x) for a certain fixed function c(x), it follows that
J ∗ u− u < −λu + a(x)up in Ω for large λ. By uniqueness, uλ ≤ u and this
immediately implies (3.3). ¤

4. Vanishing weights

We now consider problem (1.1) when the weight a(x) is assumed to vanish
in a whole smooth subdomain Ω0 of Ω. The proof of Theorem 3 is similar
in some respects to that of Theorem 1, and we are only stressing the main
differences.

Proof of Theorem 3. It follows as in Theorem 1 that positive solutions can
only exist if λ > λ1(Ω). Let us show next that λ < λ1(Ω0) is also necessary
for existence. Let ψ be an eigenfunction associated to λ1(Ω0). Multiplying
(1.1) by ψ and integrating in Ω0, we arrive at

(4.1)

∫

Ω0

∫

Ω
J(x− y)u(y)ψ(x) dy dx−

∫

Ω0

u(x)ψ(x) dx

= −λ

∫

Ω0

u(x)ψ(x) dx.

We apply Fubini’s theorem in the first integral and split the integration with
respect to y in two parts, corresponding to Ω0 and Ω \ Ω0:∫

Ω0

∫

Ω
J(x− y)u(y)ψ(x) dy dx =

∫

Ω0

∫

Ω0

J(x− y)u(y)ψ(x) dx dy

+
∫

Ω\Ω0

∫

Ω0

J(x− y)u(y)ψ(x) dx dy

>

∫

Ω0

∫

Ω0

J(x− y)u(y)ψ(x) dx dy

= (1− λ1(Ω0))
∫

Ω0

u(y)ψ(y) dy.

Going back to (4.1) we obtain that λ < λ1(Ω0), as we wanted to see.
We now assume that λ1(Ω) < λ < λ1(Ω0). To prove the existence of a

positive solution we employ again the method of sub and supersolutions. The
subsolution can be taken as u = εφ, where φ is the eigenfunction associated
to λ1(Ω) and ε is small enough, exactly as in Theorem 1. The construction
of the supersolution, however, is slightly different, and is inspired in [21].

Let δ > 0 be small, and define Ωδ = Ω0 ∪ {x ∈ Ω : dist(x, ∂Ω0) < δ}.
Thanks to the continuity and monotonicity of λ1 with respect to the domain,
Theorem 9, we have λ < λ1(Ωδ) < λ1(Ω0) for sufficiently small δ. Let φδ be
a positive eigenfunction associated to λ1(Ωδ), and extend φδ as a positive
continuous function to the whole Ω (we recall that φδ > 0 on ∂Ωδ, so this
extension is possible). We claim that u = Mφδ is a supersolution provided
M is large enough. Indeed, in Ωδ

J ∗ (Mφδ)−Mφδ = −λ1(Ωδ)Mφδ ≤ −λMφδ ≤ −λMφδ + a(x)(Mφδ)p
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since a ≥ 0 and λ < λ1(Ωδ). On the other hand, since a ≥ a0 > 0 in Ω \Ωδ,
u will be a supersolution provided that

J ∗ φδ − φδ ≤ −λφδ + a0M
p−1φp

δ ,

in Ω \ Ωδ, which holds for large enough M . Thus the method of sub and
supersolutions yields the existence of a positive bounded weak solution u
to (1.1).

All positive weak solutions u ∈ L1(Ω) are indeed continuous in Ω. To see
this, it suffices to show as before that (1− λ) + pa(x)up−1 > 0 in Ω. Notice
however that in the present situation pa(x) > a(x) is no longer true in Ω0.
Nevertheless, we still have (1 − λ) + pa(x)up−1 > 0 for all solutions, since
1− λ > 1− λ1(Ω0) > 0, according to Theorem 9.

Hence all weak solutions are continuous in Ω, and uniqueness is proved
exactly as in Theorem 1. The assertions about the monotonicity of uλ and
the uniform convergence to zero as λ ↓ λ1(Ω) are also shown in the same
way.

We finally show that uλ → +∞ uniformly in Ω as λ ↑ λ1(Ω0). We first
prove that

(4.2)
∫

Ω
uλ(x) dx → +∞

as λ ↑ λ1(Ω0). Indeed, assume that (4.2) does not hold. Since uλ is in-
creasing in λ, thanks to monotone convergence theorem, it follows that
w = supuλ ∈ L1(Ω), and hence w < ∞ almost everywhere in Ω. Pass-
ing to the limit in (1.1) it follows that w is a weak solution to (1.1) with
λ = λ1(Ω0), which is impossible, as has been already shown. Hence (4.2)
holds.

Now let Q be a partition of Ω into cubes of diameter h < 1/4 (recall
that we are assuming the support of J to be the unit ball). Thanks to the
monotonicity of uλ, there exists a cube Q0 such that

∫

Q0

uλ(x) dx → +∞.

Now if x ∈ Ω is such that dist(x,Q0) ≤ 1/4 it follows that
∫

Ω
J(x− y)uλ(y) dy ≥ inf

B2/3

J

∫

Q0

uλ(y) dy

and thus the first integral tends to infinity as λ ↑ λ1(Ω0). Since a ≥ 0 and
λ1(Ω0) < 1, passing to the limit in (1.1) it follows that uλ(x) → +∞ for x
such that dist(x,Q0) ≤ 1/4.

This argument shows that uλ →∞ not only in Q0, but in all neighboring
cubes. After finitely many steps we arrive at uλ → +∞, and it is clear that
the limit is uniform in Ω. ¤

We now prove Theorem 4. The proof is completely different from that of
Theorem 2.

Proof of Theorem 4. Let vλ = uλ/Mλ. Then vλ verifies

(4.3) J ∗ vλ − vλ = −λvλ + a(x)Mp−1
λ vp

λ in Ω.
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Take an arbitrary sequence λn → λ1(Ω0). Since vλn is bounded in L2(Ω),
we may assume (passing to a subsequence) that vλn → v0 weakly in L2(Ω)
for some v0 ∈ L2(Ω). Hence J ∗ vλn → J ∗ v0 strongly in L2(Ω) and then
(1−λn)vλn +a(x)Mp−1

λn
vp
λn

converges to J ∗v0 in L2(Ω). In particular, since
Mλn →∞, it follows that vλn → 0 almost everywhere in D and hence v0 = 0
almost everywhere in D.

On the other hand, J ∗vλn = (1−λn)vλn in Ω0, and thus vλn converges in
L2(Ω0) to v0 which then verifies J ∗ v0 = (1− λ1(Ω0))v0 in Ω0. Notice that
this implies, together with the previous discussion, that vλn → v0 in L2(Ω).
Hence (1− λn)vλn + a(x)vp

n converges uniformly in Ω, and this implies that
vλn converges to v0 uniformly in Ω0 and vλn → 0 uniformly in compact
subsets of D.

The proof of (1.7) will be concluded if we show that ‖v0‖∞ = 1, since in
that case v0 will be a normalized eigenfunction associated to λ1(Ω0).

It is clear that ‖v0‖∞ ≤ 1. Now take points xn ∈ Ω such that vλn(xn) = 1,
and assume with no loss of generality that xn → x0. Notice that from (4.3)
we have

(4.4) 1− λn + a(xn)Mp−1
λn

→ (J ∗ v0)(x0),

and this immediately leads to a(x0) = 0, i. e. x0 ∈ Ω0, for otherwise the
right-hand side of (4.4) is unbounded. Thus (J∗v0)(x0) = (1−λ1(Ω0))v0(x0).
We then have from (4.4) that

a(xn)Mp−1
n → (1− λ1(Ω0))(v0(x0)− 1),

and since the left-hand side is nonnegative while the right-hand side is non-
positive, it follows that v0(x0) = 1, i. e. ‖v0‖∞ = 1, as we wanted to
prove.

To verify (1.8), observe that thanks to the convergence in L2(Ω) of any
subsequence vλn to v0, we get

J ∗ vλn → J ∗ v0 =: Φ1

uniformly in Ω, and since vλn → 0 uniformly in compacts of B1 ∪ Γ1, (4.3)
implies that a(x)Mp−1

λ vp
λ → Φ1(x) uniformly in compacts of B1 ∪ Γ1, and

a(x)Mp−1
λ vp

λ → 0 uniformly in B2 ∪ · · · ∪Bk. Hence

uλ(x)

M
1/p
λ

∼
(

Φ1(x)
a(x)

)1/p

=: Ψ1(x) uniformly in compacts of B1 ∪ Γ1,

which proves (1.8) for n = 1, and

uλ(x)

M
1/p
λ

→ 0 uniformly in B2 ∪ . . . ∪Bk.

We now introduce wλ = uλ/M1/p. It follows that wλ → Ψ1 uniformly in
compacts of B1 and wλ → 0 uniformly in B2 ∪ . . .∪Bk, while wλ solves the
equation

(4.5) J ∗ wλ − wλ = −λwλ + a(x)M1− 1
p wp

λ in Ω.

We then obtain that
J ∗ wλ → J ∗Ψ1 =: Φ2
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uniformly in compacts of B2∪Γ2, so that (4.5) gives that a(x)M1− 1
p wλ(x)p →

Φ2(x) uniformly in compacts of B2 ∪ Γ2, that is

uλ(x)

M
1/p2

λ

∼
(

Φ2(x)
a(x)

)1/p

=: Ψ2(x) uniformly in compacts of B2 ∪ Γ2,

which proves (1.8) for n = 2. The rest of the proof follows in the same
way. ¤

We finally prove Theorem 5.

Proof of Theorem 5. Since the inequalities (1.10) follow from (1.9) as (1.8)
in Theorem 4, we only show (1.9).

First we construct a subsolution to (1.1) for λ close to λ1(Ω0). As in the
proof of Theorem 3, let Ωδ = Ω0 ∪ {x ∈ Ω : dist(x, ∂Ω0) < δ} for small
positive δ, and choose the positive eigenfunction φδ associated to λ1(Ωδ)
with the normalization ‖φδ‖∞ = 1.

Now take λ such that λ1(Ωδ) < λ1(Ωδ/2) < λ < λ1(Ωδ/4) < λ1(Ω0) for
small δ (cf. Theorem 9). It is not hard to see that εφδ is a subsolution in Ω
with the “optimal” choice

(4.6) ε =
(

λ− λ1(Ωδ)
supDδ

a

) 1
p−1

,

where Dδ = Ωδ \ Ω0. By uniqueness of solutions we have uλ ≥ εφδ in Ω.
Now thanks to Theorem 9, λ1(Ωδ) is differentiable with respect to δ, so

that there exists a constant C > 0 such that

λ− λ1(Ωδ) > λ1(Ωδ/2)− λ1(Ωδ) ≥ Cδ

for small enough δ. Since, by the hypothesis on a(x), supDδ
a ≤ Cδ1+γ ,

we arrive using (4.6) at uλ(x) ≥ Cδ
− γ

p−1 in Ω0. Moreover, λ1(Ω0) − λ >
λ1(Ω0)− λ1(Ωδ/4) ≥ Cδ, so we arrive at

uλ(x) ≥ C(λ1(Ω0)− λ)−
γ

p−1 in Ω0,

which establishes (1.9). As we have already pointed out, the proof of (1.10)
follows from (1.9) as in Theorem 4. ¤

Appendix: the method of sub and supersolutions

The purpose of this appendix is to develop the well-known method of sub
and supersolutions for stationary nonlocal problems

(A.1)

{
(J ∗ u)(x)− u(x) = f(x, u(x)) x ∈ Ω,

u = h(x) x ∈ RN \ Ω.

We provide complete proofs for completeness, although the method has been
used before in the context of nonlocal problems for instance in [17].

Recall that in Definition 7 we have defined a supersolution as follows: a
function u ∈ L1(RN ) is a supersolution to (A.1) if

{
(J ∗ u)(x)− u(x) ≤ f(x, u(x)) x ∈ Ω,

u ≥ h(x) x ∈ RN \ Ω.
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Subsolutions are defined by reversing the above inequalities. We are assum-
ing throughout that the subsolutions and supersolutions are bounded.

Theorem 10. Assume h ∈ L∞(Ω), f is locally Lipschitz with respect to
u, uniformly for x ∈ Ω, and that there exists a bounded subsolution u and
a bounded supersolution u of problem (A.1) such that u ≤ u in Ω. Then
problem (A.1) admits a minimal solution u− and a maximal solution u+ in
the interval [u, u].

Proof. Since f is locally Lipschitz with respect to u, uniformly for x ∈ Ω, we
can choose M > 0 so that the function g(x, u) = f(x, u)−Mu is decreasing
in [inf u, supu]. Let u1 be the unique solution of the problem

(A.2)

{
(J ∗ u)(x)− (1 + M)u(x) = g(x, u(x)) x ∈ Ω,

u = h(x) x ∈ RN \ Ω,

(see Remark 2). We claim that u ≤ u1 ≤ u. Indeed, we have LMu1 =
g(x, u) ≤ LMu in Ω with u1 ≥ u in RN \Ω. Thus by the maximum principle
u1 ≥ u. Similarly, LMu1 = g(x, u) ≥ g(x, u) ≥ LMu in Ω, with u1 ≤ u in
RN \ Ω implies u1 ≤ u.

We now define u2 to be the solution to (A.2) with u replaced by u1. It
follows in the same way that u ≤ u1 ≤ u2 ≤ u. We continue in this way and
define an increasing sequence of functions {un} which verify u ≤ un ≤ u and

(A.3)

{
(J ∗ un)(x)− (1 + M)un(x) = g(x, un−1(x)) x ∈ Ω,

un = h(x) x ∈ RN \ Ω.

Let u−(x) = supun(x). It is clear that u ≤ u− ≤ u. Moreover, we can
pass to the limit in (A.3) using the monotone convergence theorem and the
continuity of g, and obtain that u− is a solution to (A.1).

To show that u− is the minimal solution in [u, u], let u be another solution
verifying u ≤ u ≤ u. It is easily checked as before that un ≤ u, and hence
u− ≤ u.

In a similar fashion, we construct a decreasing sequence of functions {vn}
such that u ≤ vn ≤ u and vn → u+ = inf vn, which is the maximal solution
to (A.1) in [u, u]. ¤

Remark 4. (a) As the above proof shows, if the function f is decreasing
with respect to u, or if f is globally Lipschitz, the subsolution and the
supersolution need not be bounded.

(b) If the function u− (resp. u+) is continuous, then it follows thanks to
Dini’s theorem that the convergence of un (resp. vn) is uniform in Ω.
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