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Abstract. We find the behavior of the solution of the optimal transport problem for the
Euclidean distance (and its approximation by p−Laplacian problems) when the involved
measures are supported in a domain that is contracted in one direction.

1. Introduction.

In this paper we study the behaviour of the solutions (Kantorovich potentials and mass
transport plans) for the Monge-Kantorovich mass transport problem when the involved
masses (that we assume to be absolutely continuous with respect to the usual Lebesgue
measure) are contained in a domain that is contracted (and therefore thin) in one direction.

Thin domains occur in applications as they can be found in problems in mechanics. For
example, in ocean dynamics, one is dealing with fluid regions which are thin compared
to the horizontal length scales. Other examples include lubrication, meteorology, blood
circulation, etc.; they are a part of a broader study of the behaviour of various PDEs on
thin n−dimensional domains, where n ≥ 2 (for a review see [24]).

In order to formulate precise statements as well as to put this work in context, we first
need to introduce some notations, concepts and results from the Monge-Kantorovich Mass
Transport Theory (we refer to [1], [13], [25] and [26] for details) that will be used in the
rest of the paper.

1.1. Monge-Kantorovich Mass Transport Theory. We denote by M(Ω) the set of
Radon measures on Ω and by M+(Ω) the non-negative elements of M(Ω). Given µ, ν ∈
M+(Ω) satisfying the mass balance condition µ(Ω) = ν(Ω) we denote by A(µ, ν) the set
of transport maps pushing µ to ν, that is, the set of Borel maps T : Ω → Ω such that
T#µ = ν, that is, µ(T−1(E)) = ν(E) for all E ⊂ Ω Borel.

The Monge problem. The Monge problem, associated with the measures µ and ν, is
to find a map T ∗ ∈ A(µ, ν) which minimizes the cost functional

(1.1) F̃(T ) :=

∫
Ω

|x− T (x)| dµ(x)

in the set A(µ, ν). When µ and ν are absolutely continuous with respect to the Lebesgue
measure, µ = fLN Ω and ν = gLN Ω, there exists such an optimal map T . A map
T ∗ ∈ A(µ, ν) satisfying F̃(T ∗) = min{F̃(T ) : T ∈ A(µ, ν)}, is called an optimal transport
map of µ to ν.
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In general, the Monge problem is ill-posed. To overcome the difficulties of the Monge
problem, in 1942, L. V. Kantorovich in [17] proposed a relaxed version of the problem
and introduced a dual variational principle. Let πt(x, y) := (1− t)x + ty. Given a Radon
measure γ in Ω× Ω, its marginals are defined by projx(γ) := π0#γ, projy(γ) := π1#γ.

The Monge-Kantorovich problem. The Monge-Kantorovich problem, [17], is the
minimization problem

min

{∫
Ω×Ω

|x− y| dγ(x, y) : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) := {Radon measures γ in Ω× Ω : π0#γ = µ, π1#γ = ν}. The elements γ ∈
Π(µ, ν) are called transport plans between µ and ν, and a minimizer γ∗ an optimal transport
plan. A minimizer always exists.

The Monge-Kantorovich problem has a dual formulation that can be stated in this case
as follows (see for instance [25, Theorem 1.14]).

Kantorovich-Rubinstein Theorem. It holds the following duality result,

(1.2) min

{∫
Ω×Ω

|x− y| dγ(x, y) : γ ∈ Π(µ, ν)

}
= max

{∫
Ω

u d(µ− ν) : u ∈ K1(Ω)

}
,

where K1(Ω) := {u : Ω→ R : |u(x)− u(y)| ≤ |x− y| ∀x, y ∈ Ω} is the set of 1-Lipschitz
functions in Ω. The maximizers u∗ of the right hand side of (1.2) are called Kantorovich
potentials.

Kantorovich potentials can be obtained taking the limit as p → ∞ in a p−Laplacian
problem. Assume that µ = fLN Ω and ν = gLN Ω and consider

(1.3)


−∆pup = f − g in Ω,

|∇up|p−2 ∂up
∂η

= 0 on ∂Ω,

up(0) = 0.

The condition up(0) = 0 is just a normalization (we assume here that 0 ∈ Ω). We have the
following result, see [14] and Section 5 in this paper.

Evans-Gangbo Theorem. The solutions to (1.3) converge, along subsequences, uni-
formly in Ω,

lim
p→∞

up = u∗,

where u∗ is a Kantorovich potential, that is, a maximizer for the right hand side of (1.2). In
fact, this limit procedure gives much more since it allows to construct an optimal transport
map.

For later reference, we will call TC(f, g)Ω the total cost of the transport of fLN Ω to
gLN Ω, that is given by the minimum or the maximum in (1.2).

1.2. The Monge-Kantorovich problem in a thin domain. We consider a product
domain Ω1 × Ω2 = Ω ⊂ Rn, with Ω1 ⊂ Rk, Ω2 ⊂ Rl and, for simplicity, we assume that
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|Ω1| = |Ω2| = 1 and that (0, 0) ∈ Ω1 × Ω2. We are given two nonnegative L1 functions
f+(x, y) and f−(x, y), with x ∈ Rk, y ∈ Rl, supported in Ω, with the same total mass,

(1.4)

∫
Ω

f+(x, y) dxdy =

∫
Ω

f−(x, y) dxdy := M.

Now we take ε > 0 small and contract the second variable, y, that is, we consider

Ωε = Ω1 × εΩ2 = {(x, εy) : x ∈ Ω1, y ∈ Ω2}.

In this set Ωε we define

f ε+ (x̄, ȳ) = f+

(
x̄,
ȳ

ε

) 1

εl
, and f ε−(x̄, ȳ) = f−

(
x̄,
ȳ

ε

) 1

εl
, for (x̄, ȳ) ∈ Ωε.

These functions still satisfy the mass balance condition in Ωε, indeed, it holds that,∫
Ωε

f ε+(x̄, ȳ) dx̄dȳ =

∫
Ωε

f ε−(x̄, ȳ) dx̄dȳ = M.

We will keep the notation (x, y) for the variables in the reference domain, Ω1 ×Ω2, and
(x̄, ȳ) for the variables in the contracted domain, Ω1 × εΩ2, along the whole paper.

Now we consider the Monge-Kantorovich problem for the measures f ε+ and f ε− in the
thin domain Ωε.

From previous results (see [1], [13], [25] and [26]) we know that there exist µ̄ε an optimal
transport plan and ūε a Kantorovich potential for this problem defined in Ωε. In addition
if we consider the p−Laplacian approximation given by (1.3) with f = f ε+ and g = f ε− in
the thin domain Ωε we know that the solutions ūεp to the p−Laplacian type problems (1.3)
in Ωε provide an approximation to a Kantorovich potential.

Main goal. Our main concern in this paper is to study the behaviour as ε → 0 of all
the relevant variables for this problem; the total costs TC(f ε+, f

ε
−)Ωε , the optimal transport

plans, µ̄ε, the Kantorovich potentials, ūε, and the p−Laplacian approximations, ūεp.

We find that when ε→ 0 the limit problem that appears is the mass transport problem
in Ω1 where the involved masses are given by the projections of f+ and f− in the x variable,
that is,

(1.5) g+(x) =

∫
Ω2

f+(x, y)dy and g−(x) =

∫
Ω2

f−(x, y)dy.

Associated with the mass transport problem for the projections we have optimal trans-
port plans (denoted by η in the sequel) and Kantorovich potentials (denoted by u) and
approximating sequences of solutions to p−Laplacians (denoted by up).

Our main results can be summarized as follows:
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Theorem 1.1. With the above notations we have the following commutative diagram (for
all the involved functions rescaled to the fixed reference domain Ω)

uεp −→ uε

↓ � ↓ (ε→ 0).
up −→ u

(p→∞)

This means that Kantorovich potentials (and their p−Laplacian approximations) for the
problem in the thin domain converge to a Kantorovich potential (and to the p−Laplacian
approximation) for the problem for the projections of the involved measures.

Concerning optimal plans, it holds that the optimal plans in the thin domain µ̄ε rescaled
back to Ω× Ω converge weakly-* in the sense of measures to a measure, ν, that allows us
to construct an optimal plan for the projections, η.

In addition, we find that the error is of order ε, in the sense that the difference of the
total cost of transporting f ε+ to f ε− and the total cost of transporting the projections g+ to
g− is less or equal to 2Mdiam(Ω2)ε.

Remark 1.1. With the same methods and ideas we can handle the case of Ω being a
general domain in Rk+l (not necessarily a product domain). In this case we just consider

Ωε = {(x, εy) : (x, y) ∈ Ω},
f ε± are defined as above and the projections are given by g±(x) =

∫
Rl f±(x, y) dy. All

our results (and their proofs) can be obtained for this more general case. The only place
at which there is a difference is when we take the limit as ε → 0 of the approximations
sequence ūεp (with fixed p). In this case there appears a weight in the limit PDE (that is
the constant |Ω2| for a product domain, but that depends on x in the general case). We
include a remark on this point when appropriate (in Section 5). We prefer to present our
results for a product domain to clarify the arguments involved.

Remark 1.2. The same ideas can be used to handle the situation in which the measures
are contained in a domain that lies between two parallel hyperplanes that are close one to
each other. We don’t include the details for simplicity. Also, the methods used here could
be extended with domains that concentrate along a surface, that is, domains of the form
Ωε = S +B(0, ε) where S is a k-dimensional surface in Rn.

Remark 1.3. In general, the transport problem for the projections is simpler than the
original one (since it involves measures in a smaller dimension). This fact together with the
bound for the error allows us to build approximate transport maps when the projections
are one-dimensional, that is, Ω1 = (a, b) ⊂ R. We provide examples in Section 6.

To finish the introduction we briefly comment on the previous bibliography and the
methods and ideas involved in the proofs. Optimal transport problems is by now a classical
subject that still deserves attention. We refer to [2], [3], [4], [6], [21], [22], [23] and the
surveys and books [1], [13], [25] and [26]. It has many applications, for example in economics
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(matching problems), [5], [7], [8], [9], [10], [11], [20]. Closely related to this article is the
case in which the involved measures are concentrated in a small strip around the boundary
of a fixed domain. This has been considered in [15] (see also [16] for singular measures
supported on the boundary). In [19] the role of boundary conditions (Dirichlet and/or
Newmann) in the p−Laplacian approximation was clarified (note that in our case we use
Newmann boundary conditions since no mass is to be taken/bringed to/from outside of
the domain). The first paper that uses the approximation by p−Laplacian type problems
is [14] where the authors use Dirichlet boundary conditions in a sufficiently large ball, we
can not use Dirichlet boundary conditions here since, as we want to contract the domain
in one direction, is it likely that some mass will be taken to/from the boundary of the
domain if we impose Dirichlet boundary conditions (we will elaborate more on this issue
in Section 7).

Concerning the methods used in the proofs we have: to pass to the limit in the Kan-
torovich potentials, we first rescale back to Ω and then, using that Kantorovich potentials
are Lipschitz functions to gain compactness and that they are solutions to a variational
formulation we find that any possible uniform limit is a solution to a maximization limit
problem. Then we find that the limit function is independent of the y variable and just ob-
serve that integration in y gives the projections of f±. The proof of the convergence of the
optimal transport plans is similar but we have to work in the space of Borel measures. To
obtain convergence of the p−Laplacian approximations we use mainly the variational char-
acterization of the solutions to the p−Laplacian as minimizers of an adequate functional in
the Sobolev space W 1,p. We include here the details of the approximation of a Kantorovich
potential with solutions to the p−Laplacian problems as p→∞ for completeness.

The paper is organized as follows: In Section 2 we prove the existence of Kantorovich
potentials ūε and study their limit as ε→ 0; in Section 3 we study the behaviour of the op-
timal transport plans; in Section 4 we show estimates for the difference of the total costs of
the ε−problem and the limit problem; in Section 5 we deal with the p−Laplacian approxi-
mations and their behaviour as ε→ 0; in Section 6 we collect some examples that show that
we can construct approximate transport maps when the limit problem is one-dimensional;
finally in Section 7 we comment on the possibility of considering other boundary conditions
than homogeneous Neumann ones in the p−Laplacian approximations.

2. Behavior of the Kantorovich potentials.

Lemma 2.1. Given f+, f− and Ω, for each ε there exists a Kantorovich potential, ūε, that
is, a solution to

(2.1) max
|∇v̄(x̄, ȳ)| ≤ 1
v̄(0, 0) = 0

∫
Ωε

v̄(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ)) dx̄dȳ.



6 J. C. NAVARRO-CLIMENT, J. D. ROSSI AND R. C. VOLPE

Proof. Let K =
{
v̄ : Ωε → R : |∇v̄| ≤ 1, v(0, 0) = 0

}
, and, for v̄ ∈ K, consider

L(v̄) =

∫
Ωε

v̄(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ))dx̄dȳ.

If we take (x̄, ȳ) , (z̄, w̄) ∈ Ωε we have,

(2.2) |v̄(x̄, ȳ)− v̄(z̄, w̄)| ≤ |∇v̄(ξ̄)| |(x̄, ȳ)− (z̄, w̄)| ≤ |(x̄, ȳ)− (z̄, w̄)| ≤ diam(Ωε),

where ξ̄ lies on the segment between (x̄, ȳ) and (z̄, w̄). Now, (1.4) implies

L(v̄) =

∫
Ωε

v̄(x̄, ȳ)f ε+(x̄, ȳ)dx̄dȳ −
∫

Ωε

v̄(x̄, ȳ)f ε−(x̄, ȳ) dx̄dȳ

≤ 2diam(Ωε)

∫
Ωε

f ε+(x̄, ȳ)dx̄dȳ = 2Mdiam(Ωε),

for all v̄ ∈ K. Hence L is bounded above in K. Let (v̄j)j∈N be a sequence in K such that

L(v̄j)↗ sup
v̄∈K

L(v̄).

This sequence is equicontinuos and equibounded by (2.2), using the condition v̄(0, 0) = 0.
So we can extract a subsequence (v̄jk)k∈N such that v̄jk ⇒ ūε in Ω̄ε, uniformly. We have,

lim
k→∞

∫
Ωε

v̄jk(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ))dx̄dȳ = L(ūε) = sup
v̄∈K

L(v̄).

To conclude we need to check that ūε ∈ K. This follows from the fact that v̄jk(0, 0) = 0
and that, from (2.2) we get, |v̄jk(x̄, ȳ) − v̄jk(z̄, w̄)| ≤ |(x̄, ȳ) − (z̄, w̄)|. When we take the
limit as k → ∞, we obtain, ūε(0, 0) = 0 and |ūε(x̄, ȳ) − ūε(z̄, w̄)| ≤ |(x̄, ȳ) − (z̄, w̄)|. So
ūε ∈ K and then it is the desired maximizer. �

Now we can state the following theorem concerning the behaviour as ε → 0 of the
Kantorovich potentials.

Theorem 2.1. Let ūε be a maximizer of (2.1) defined in Ωε and rescale it to Ω as

uε(x, y) = ūε(x, εy).

Then

(2.3) uε (x, y) ⇒ u(x), when ε→ 0,

uniformly in Ω along subsequences. The limit u only depends on x and is a Kantorovich
potential for the projections of f+ and f−, that is, u is a maximizer for

(2.4) max
|∇xv(x)| ≤ 1
v(0) = 0

∫
Ω1

v(x)(g+(x)− g−(x)) dx,

with g+ and g− given by (1.5).
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Proof. We have that ūε is defined in Ωε and we want to rescale it to Ω, we let x̄ = x,
ȳ = εy, and we obtain, using that ūε is a Kantorovich potential that
(2.5)∫

Ωε

ūε(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ)) dx̄dȳ = εl
∫

Ω

ūε(x, εy)(f ε+(x, εy)− f ε−(x, εy)) dxdy

≥ εl
∫

Ω

v(x)(f ε+(x, εy)− f ε−(x, εy)) dxdy,

for any v such that |∇xv(x)| ≤ 1 and v(0) = 0. The function uε verifies uε(0, 0) = ūε(0, 0) =
0 and

|∇xu
ε(x, y)| = |∇xū

ε (x, εy)| ⇒ |∇xu
ε(x, y)| ≤ 1,

|∇yu
ε(x, y)| = |∇yū

ε (x, εy)| ε ⇒ |∇yu
ε(x, y)| ≤ ε.

Hence uε ia a equicontinuos and equibounded family and therefore we can extract a uni-
formly convergent subsequence, that is, there is (εj)j∈N, with εj → 0 such as uεj ⇒ u,
uniformly in Ω. Now we check that u only depends on x. First we have,

|uε(x, y1)− uε(x, y2)| ≤ |∇yu
ε(x, ξ)||y1 − y2| ≤ εdiam(Ω2)

where ξ lies on the segment between y1 and y2. Now if εj → 0 we conclude

|u(x, y1)− u(x, y2)| ≤ 0.

Hence, u(x, y) only depends on x. So we write u(x) and next we show that u is a Kan-
torovich potential for the projections of f+ and f−. We need to check that u(x) satisfy
|∇xu(x)| ≤ 1. We have

|uε(x1, y)− uε(x2, y)| ≤ |∇xu
ε(ξ, y)||x1 − x2| ≤ |x1 − x2|

where ξ lies on the segment between x1 and x2. Now taking εj → 0 we conclude that

|u(x1)− u(x2)| ≤ |x1 − x2|.
So |∇xu(x)| ≤ 1 and, therefore the limit u is 1−Lipschitz. To see that u is a Kantorovich
potential for the projections of f+ and f− we argue as follows:

εl
∫

Ω

ūεj(x, εy)(f ε+(x, εy)− f ε−(x, εy)) dxdy =

∫
Ω

uεj(x, y)(εlf ε+(x, εy)− εlf ε−(x, εy)) dxdy.

Using (2.5) we obtain

εl
∫

Ω

ūεj(x, εy)(f ε+(x, εy)− f ε−(x, εy)) dxdy

=

∫
Ω

uεj(x, y)(f+(x, y)− f−(x, y)) dxdy ≥ εl
∫

Ω

v(x)(f ε+(x, εy)− f ε−(x, εy)) dxdy

=

∫
Ω

v(x)(f+(x, y)− f−(x, y)) dxdy =

∫
Ω1

v(x)

∫
Ω2

(f+(x, y)− f−(x, y)) dydx,

for all v such that |∇xv(x)| ≤ 1 and v(0) = 0. Now we take limits as εj → 0, using that
uεj ⇒ u, and (1.5), we get,∫

Ω1

u(x)(g+(x)− g−(x)) dxdy ≥
∫

Ω1

v(x)(g+(x)− g−(x)) dx,
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for all v such that |∇xv(x)| ≤ 1 and v(0) = 0. �

Also from the previous proof we obtain the following result:

Corollary 2.1. Under the same hypothesis of Theorem 2.1 we have,

lim
ε→0

∫
Ωε

ūε(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ)) dx̄dȳ =

∫
Ω1

u(x)(g+(x)− g−(x)) dx.

That is, we have that
lim
ε→0

TC(f ε+, f
ε
−)Ωε = TC(g+, g−)Ω1 .

3. Behaviour of the transport plans.

We consider measures µ̄ε in Ωε × Ωε that are solutions to the minimization problem

(3.1) min
proj(x̄,ȳ)(µ̄) = f ε+
proj(θ̄,ξ̄)(µ̄) = f ε−

∫
Ωε

∫
Ωε

|(x̄, ȳ)− (θ̄, ξ̄)|dµ̄((x̄, ȳ), (θ̄, ξ̄)).

Now, for F ⊂ Ω we let Sε(F ) = {(θ, εξ) : (θ, ξ) ∈ F} and we define the rescaled measure
as

(3.2) µε(E × F ) = µ̄ε(Sε(E)× Sε(F )).

Concerning the limit as ε→ 0 of optimal transport plans we have the following result:

Theorem 3.1. Let µε be the measure in Ω× Ω given by (3.2) where µ̄ε is a minimizer of
(3.1). Then

µε → ν

weakly-* as ε→ 0 along a subsequence. If we let

(3.3) η(x, θ) =

∫
Ω2

∫
Ω2

dν((x, y), (θ, ξ)),

it holds that η depends only on the first coordinates (x, θ) and is an optimal transport plan
for the projections of f+ and f−, that is, η is a minimizer of

min
projx(η) = g+

projθ(η) = g−

∫
Ω1

∫
Ω1

|x− θ|dη(x, θ).

Proof. First, let us compute the projections of µε. We have

µε(Ω× F ) = µ̄ε(Ω1 × εΩ2 × Sε(F )) =

∫
Sε(F )

f ε−(θ̄, ξ̄) dθ̄dξ̄ =

∫
F

f−(θ, ξ) dθdξ.

Therefore, we have that projθ,ξ(µ
ε) = f−. Analogously, we obtain projx,y(µ

ε) = f+. Hence,
µε are nonnegative measures with bounded total mass,

µε(Ω× Ω) =

∫
Ω

f+ = M,
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and therefore there exists a sequence εj → 0 such that

µεj ⇀ ν

weakly-* in the sense of measures. It follows that projθ,ξ(ν) = f−, and projx,y(ν) = f+.
Now we observe that, taking into account (3.2),∫

Ωεj

∫
Ωεj

|(x̄, ȳ)− (θ̄, ξ̄)|dµ̄εj((x̄, ȳ), (θ̄, ξ̄)) =

∫
Ω

∫
Ω

|(x, εjy)− (θ, εjξ)|dµεj((x, y), (θ, ξ)).

Hence, the limit as εj → 0 is given by∫
Ω

∫
Ω

|x− θ|dν((x, y), (θ, ξ)).

Finally, we easily obtain that the measure η given by (3.3) is a minimizer for

min
projx(η) = g+

projθ(η) = g−

∫
Ω1

∫
Ω1

|x− θ|dη(x, θ).

�

4. A bound for the error.

In this section our main goal is to estimate the error committed in the total cost when we
replace the optimal transport problem in Ωε with the transport problem of the projections,
that is, we want to obtain a bound for∣∣TC(f ε+, f

ε
−)Ωε − TC(g+, g−)Ω1

∣∣ =

∣∣∣∣∫
Ωε

ūε(f ε+ − f ε−)−
∫

Ω1

u(g+ − g−)

∣∣∣∣
in terms of ε. Our main result in this direction is the following:

Theorem 4.1. There exists a constant C := 2Mdiam(Ω2) independent of ε such that∣∣∣∣∫
Ωε

ūε(f ε+ − f ε−)−
∫

Ω1

u(g+ − g−)

∣∣∣∣ ≤ Cε.

Proof. Changing variables as before x̄ = x, ȳ = εy and ūε(x̄, ȳ) = uε(x, y) we get∫
Ωε

ūε(f ε+ − f ε−)(x̄, ȳ) dx̄dȳ =

∫
Ω

uε(f+ − f−)(x, y) dxdy

with uε verifying |∇xu
ε|2 + ε−2|∇yu

ε|2 ≤ 1. As u depends only on x and verifies |∇xu| ≤ 1
it competes with uε in the maximization problem, hence we have∫

Ωε

ūε(f ε+ − f ε−) ≥
∫

Ω1

u(g+ − g−).

Let

hε(x) =

∫
Ω2

uε(x, y)dy.
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Now, we observe that, from the fact that |∇xu
ε| ≤ 1 we get that this function hε competes

with u in its maximization problem, then,∫
Ω1

hε(g+ − g−) ≤
∫

Ω1

u(g+ − g−).

In addition, we have

|uε(x, y)− hε(x)| ≤ diam(Ω2)ε.

It follows that (recall that we assumed |Ω2| = 1)∣∣∣∣∫
Ω1

u(g+ − g−)−
∫

Ωε

ūε(f ε+ − f ε−)

∣∣∣∣ ≤ ∫
Ω1

∫
Ω2

|hε − uε|(f+ + f−) ≤ 2Mdiam(Ω2)ε.

This ends the proof. �

Remark 4.1. The bound depends in a sharp way of the relevant quantities as it can
be seen taken two masses concentrated near points (x1, y1) and (x1, y2) with |y1 − y2| ∼
diam(Ω2). Note that since both concentration points have the same first coordinate, we
have TC(g+, g−)Ω1 ∼ 0 and for the total cost TC(f ε+, f

ε
−)Ωε ∼ ε|y1−y2|M ∼ diam(Ω2)Mε.

We can also characterize when we have equality of the total cost for the original functions
and the projections.

Theorem 4.2. There is a Kantorovich potential for the transport of f ε+ to f ε− that depends
only in the x variable, that is, of the form ū(x̄, ȳ) = û(x̄), if and only if the total cost of
sending f ε+ to f ε− is the same as the total cost for the projections g+ to g−.

Proof. Using that û(x̄) is a Kantorovich potential for the transport of f ε+ to f ε− and the
previous proof we obtain that

max
|∇v̄(x̄, ȳ)| ≤ 1
v̄(0) = 0

∫
Ωε

v̄(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ)) dx̄ dȳ

=

∫
Ωε

û(x̄)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ)) dx̄ dȳ =

∫
Ω1

û(x)(g+(x)− g−(x)) dx

≤ max
|∇xv(x)| ≤ 1
v(0) = 0

∫
Ω1

v(x)(g+(x)− g−(x)) dx

≤ max
|∇v̄(x̄, ȳ)| ≤ 1
v̄(0) = 0

∫
Ωε

v̄(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ)) dx̄ dȳ,

and hence we conclude that the total costs for f ε+ to f ε− and for g+ to g− coincide.
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Conversely, if the costs coincide, then take û(x) a Kantorovich potential for the projec-
tions and observe that∫

Ω1

û(x)(g+(x)− g−(x)) dx = max
|∇xv(x)| ≤ 1
v(0) = 0

∫
Ω1

v(x)(g+(x)− g−(x)) dx

= max
|∇v̄(x̄, ȳ)| ≤ 1
v̄(0) = 0

∫
Ωε

v̄(x̄, ȳ)(f ε+(x̄, ȳ)− f ε−(x̄, ȳ)) dx̄ dȳ,

and we conclude that û is a Kantorovich potential for f ε+ to f ε− that depends only on x. �

5. A p−Laplacian approximation and its behaviour as ε→ 0.

We consider

(5.1) min
v̄ ∈ W 1,p(Ωε)
v̄(0) = 0

1

εl
1

p

∫
Ωε

|∇v̄|p −
∫

Ωε

v̄(f ε+ − f ε−).

Note that we have normalized the gradient term in the functional with 1
εl

. This is the right

scale to compensate the fact that |Ωε| ∼ εl. This scaling factor is not needed in the second
term since we have normalized f ε± in such a way that they have constant total mass M .

Lemma 5.1. There exists a unique minimizer of (5.1), that we will call ūεp.

Proof. We just observe that the functional

Lp(v̄) =
1

εl
1

p

∫
Ωε

|∇v̄|p −
∫

Ωε

v̄(f ε+ − f ε−)

is bounded below in W 1,p(Ωε). Indeed, for v̄ ∈ W 1,p(Ωε) with v̄(0, 0) = 0, calling f ε =
f ε+ − f ε− we have, ∫

Ωε

(v̄f ε) ≤ ‖v̄‖Lp(Ωε)‖f ε‖Lp′ (Ωε) ≤ C1‖∇v̄‖Lp(Ωε),

where C1 is a constant that depends on f ε. So

(5.2) Lp(v̄) =
1

εl
1

p

∫
Ωε

|∇v̄|p −
∫

Ωε

v̄(f ε+ − f ε−) ≥ 1

εl
1

p

∫
Ωε

|∇v̄|p − C1‖∇v̄‖Lp(Ωε).

Using Young’s inequality ab ≤ ap

p
+ bp

′

p′
with a = εl/pC1, b = ‖∇v̄‖Lp(Ωε), we get

Lp(v̄) ≥ 1

εl
1

p

∫
Ωε

|∇v̄|p − εl/(p−1)(C1)p
′

p′
−

(‖∇v̄‖Lp(Ωε))
p

εlp
= −ε

l/(p−1)(C1)p
′

p′
.

So Lp(v̄) ≥ C for all v̄ ∈ W 1,p(Ωε) with v̄(0, 0) = 0. Take v̄n a minimizing sequence. From
(5.2) and the fact that v̄n(0, 0) = 0 we get that v̄n is bounded in W 1,p(Ωε) and extracting a
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subsequence if necessary we can assume that v̄n → ūεp weakly in W 1,p(Ωε). From the lower
semicontinuity of Lp we conclude that ūεp is a minimizer of Lp.

Uniqueness follows from the strict convexity of Lp. �

From the fact that ūεp is a minimizer of (5.1) we have that ūεp is a weak solution to the
following PDE problem

(5.3)


− 1
εl

∆pū
ε
p = f ε+ − f ε− in Ωε,

1
εl
|∇ūεp|p−2 ∂ū

ε
p

∂η
= 0 on ∂Ωε,

ūεp(0) = 0.

Theorem 5.1. Let ūεp be a minimizer of (5.1). Then, extracting a subsequence if necessary,

ūεp → ūε

as p → ∞ uniformly in Ωε where ūε is a Kantorovich potential for the transport problem
of the mass f ε+ to the mass f ε−.

Proof. Along this proof ε is fixed and C denotes a constant that is independent of p but may
depend on ε and change from one line to another. Let ūε be a Kantorovich potential for the
transport of f ε+ to f ε− (its existence is guaranteed by Lemma 2.1). We have |∇ūε| ≤ 1 and
ūε(0) = 0 and hence ūε is bounded in Ωε and ūε ∈ W 1,p(Ωε). Using that ūεp is a minimizer
of Lp we get

(5.4)

1

εl
1

p

∫
Ωε

|∇ūεp|p −
∫

Ωε

ūεp(f
ε
+ − f ε−) ≤ 1

εl
1

p

∫
Ωε

|∇ūε|p −
∫

Ωε

ūε(f ε+ − f ε−)

≤ 1

εl
|Ωε|
p
−
∫

Ωε

ūε(f ε+ − f ε−) ≤ C.

It follows that

1

εl
1

p

∫
Ωε

|∇ūεp|p ≤ C +

∫
Ωε

ūεp(f
ε
+ − f ε−) ≤ C + C‖ūεp‖Lp(Ωε) ≤ C + CSp‖∇ūεp‖Lp(Ωε),

here Sp is the best Sobolev constant that can be bounded by Cp (see [12]). Therefore, we
get

‖∇ūεp‖Lp(Ωε) ≤ (Cp)1/p.

Now, fix q with n < q < p and observe that

‖∇ūεp‖Lq(Ωε) ≤ |Ωε|
p−q
pq ‖∇ūεp‖Lp(Ωε) ≤ |Ωε|

p−q
pq (Cp)1/p.

Hence, we have that (ūεp)p>q is bounded in W 1,q(Ωε). Therefore, by a diagonal procedure,
we can extract a subsequence (that we call ūεpn) such that

ūεpn → v̄ as pn →∞

weakly in every W 1,q(Ωε) and, therefore, uniformly in Ωε (we are using here the compact
embedding W 1,q(Ωε) ↪→ Cα(Ωε) when q > n). Since ūεpn(0) = 0 we get v̄(0) = 0. From
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the semicontinuity of the norm we get ‖∇v̄‖Lq(Ωε) ≤ |Ωε|1/q, and hence, taking q →∞, we
obtain

‖∇v̄‖L∞(Ωε) ≤ 1.

From (5.4) we have

−
∫

Ωε

ūεpn(f ε+ − f ε−) ≤ 1

εl
|Ωε|
pn
−
∫

Ωε

ūε(f ε+ − f ε−).

Now, taking p→∞ we obtain

−
∫

Ωε

v̄(f ε+ − f ε−) ≤ −
∫

Ωε

ūε(f ε+ − f ε−),

from where we conclude that v̄, the limit of ūεpn , as pn →∞ is a Kantorovich potential. �

Remark 5.1. With the arguments used in the previous proof we can obtain an alternative
proof of the existence of a Kantorovich potential for the transport of f ε+ to f ε−.

Now we study the limit as ε→ 0 of ūεp.

Theorem 5.2. Let

uεp(x, y) = ūεp (x̄, ȳ) , x = x̄, εy = ȳ,

where ūεp is a minimizer of (5.1). Then

uεp → up

as ε → 0 uniformly in Ω and weakly in W 1,p(Ω) where up depends only on x and is a
solution to the minimization problem

(5.5) min
v ∈ W 1,p(Ω1)
v(0) = 0.

1

p

∫
Ω1

|∇xv|p −
∫

Ω1

v(g+ − g−)

Proof. We have ∇x̄ū
ε
p(x̄, ȳ) = ∇xu

ε
p(x, y) and ε∇ȳū

ε
p(x̄, ȳ) = ∇yu

ε
p(x, y). Hence, uεp is a

minimizer of

1

p

∫
Ω1

∫
Ω2

(√
|∇xv|2 + ε−2|∇yv|2

)p
dxdy −

∫
Ω1

∫
Ω2

v(f+ − f−) dxdy

in W 1,p(Ω) with v(0) = 0.

By the same arguments used in Lemma 5.1 we obtain the existence of a unique minimizer
of (5.5) that we call up. As up ∈ W 1,p(Ω1) we can consider it as a function of W 1,p(Ω1×Ω2)
and then it competes with uεp. We get

(5.6)

1

p

∫
Ω1

∫
Ω2

(√
|∇xuεp|2 + ε−2|∇yuεp|2

)p
dxdy −

∫
Ω1

∫
Ω2

uεp(f+ − f−) dxdy

≤ 1

p

∫
Ω1

|∇xup|pdx−
∫

Ω1

up(g+ − g−) dx
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(we recall that, for simplicity, we have assumed that |Ω2| = 1). Therefore there exists a
constant C independent of ε such that

(5.7)
1

p

∫
Ω1

∫
Ω2

(√
|∇xuεp|2 + ε−2|∇yuεp|2

)p
dxdy ≤ C +

∫
Ω1

∫
Ω2

uεp(f+ − f−) dxdy.

Taking ε < 1 and arguing as in the proof of Theorem 5.1 we get that uεp is bounded in

W 1,p(Ω) uniformly in ε. Therefore, we can extract a subsequence such that

uεnp → v, as εn → 0,

weakly in W 1,p(Ω) and (using that p > n) uniformly in Ω. In addition we have

∇xu
εn
p → ∇xv and ∇yu

εn
p → ∇yv weackly in Lp(Ω).

Now we observe that from (5.7) we obtain that there exists a constant C independent
of ε such that (∫

Ω1

∫
Ω2

|∇yu
εn
p |pdxdy

)1/p

≤ Cεn.

Therefore,

∇yu
εn
p → 0 strongly in Lp(Ω)

and we obtain that the limit v is independent of y.

Now, from (5.6) we get

1

p

∫
Ω1

∫
Ω2

|∇xu
ε
p|pdxdy −

∫
Ω1

∫
Ω2

uεp(f+ − f−) dxdy

≤ 1

p

∫
Ω1

|∇xup|pdx−
∫

Ω1

up(g+ − g−) dx.

Taking εn → 0 and using that v is independent of y we conclude that

1

p

∫
Ω1

|∇xv|pdydx−
∫

Ω1

v(g+ − g−) dx ≤ 1

p

∫
Ω1

|∇xup|pdx−
∫

Ω1

up(g+ − g−) dx.

Hence the limit v is a minimizer. By uniqueness we must have v = up and then it holds
that limε→0 u

ε
p = up. �

Corollary 5.1. Under the same assumptions of Theorem 5.2 we have that

lim
ε→0

 min
v̄ ∈ W 1,p(Ωε)
v̄(0) = 0

1

εl
1

p

∫
Ωε

|∇v̄|p −
∫

Ωε

v̄(f ε+ − f ε−)


= min

v ∈ W 1,p(Ω1)
v(0) = 0.

1

p

∫
Ω1

|∇xv|p −
∫

Ω1

v(g+ − g−).



OPTIMAL MASS TRANSPORT IN THIN DOMAINS 15

Remark 5.2. The unique minimizer up of (5.5) is a weak solution to
−∆pup = g+ − g− in Ω1,

|∇up|p−2 ∂up
∂η

= 0 on ∂Ω1,

up(0) = 0.

Remark 5.3. When we deal with a general domain Ω (instead of a product domain) and
we take the limit as ε→ 0 the limit problem that appears involve the weight

ω(x) = |{y : (x, y) ∈ Ω}|.

In fact, with the same arguments used before, we get that the uniform limit of uεp as ε→ 0
is a weak solution to

−div(ω|∇up|p−2∇up) = g+ − g− in Ω1,

ω|∇up|p−2 ∂up
∂η

= 0 on ∂Ω1,

up(0) = 0.

Theorem 5.3. Let up be the unique minimizer of (5.5). Then

up → u

uniformly in Ω1 where u is Kantorovich potential for the transport of the projections, g+

to g−.

Proof. The proof is analogous to the one of Theorem 5.1 and hence we omit the details. �

6. Examples.

In this section we look for a method to define, using an optimal transport map from
the projections, an approximation for the original problem. The construction of such a
transport map is known in the literature as the Knothe map, [18].

To simplify let us suppose that we are in R2, and we have Ω1 = (a, b) and Ω2 = (c, d).
Hence the projections are defined as g+ : Ω1 = (a, b)→ R and g− : Ω1 = (a, b)→ R. Let us
assume that the support of the projections are also intervals, that is, supp(g+(x)) = [α, β]
and supp(g−(y)) = [γ, δ].

Now in one dimension we are going to see two ways to define an optimal transport map
for the projections T : [α, β] → [γ, δ]. This optimal transport map must satisfy for all
E ∈ (γ, δ), ∫

T−1(E)

g+(x)dx =

∫
E

g−(y)dy.

Therefore, assuming that T is differentiable, we get∫
T−1(E)

g+(x)dx =

∫
E

g−(y)dy =

∫
T−1(E)

g−(T (x))|T ′(x)|dx.
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Now we have two options, to consider T ′(x) ≥ 0 or T ′(x) ≤ 0. We will call this
possibilities applications as TD and TI . First we will take T ′(x) ≥ 0 and look for TD a
solution to the ODE problem,{

g+(x) = g−(TD(x))T ′D(x),

TD(α) = γ.

Observe that we move the mass ”directly”, it means TD preserves orientation. An alterna-
tive way to define TD for all x ∈ [α, β] is the following:

T (x) = inf

{
y ∈ [γ, δ] :

∫ x

α

g+ =

∫ y

γ

g−

}
.

The other choice to define T is to consider T ′(x) ≤ 0. We call it TI and have the ODE, g+(x) = −g−(TI(x))T ′I(x),

TI(α) = δ.

Observe that this time we move the mass reversing the orientation of the interval. An
alternative way to define TI for all x ∈ [α, β] is given by,

T (x) = sup

{
y ∈ [γ, δ] :

∫ x

α

g+ =

∫ δ

y

g−

}
.

The two options are optimal.

Now we go back to the original problem and show how we can use this optimal maps in
R2 to obtain a transport map S : supp(f+)→ supp(f−). Let us suppose further that exist
g11, g12, g21 and g22 functions which allow us to write: supp(f+) = {(x, y) ∈ R2 : g11(x) ≤
y ≤ g12(x)} and supp(f−) = {(x, y) ∈ R2 : g21(x) ≤ y ≤ g22(x)}. We will propose S to be
of the form S(x, y) = (T1(x), T2(x, y)) (with T1 equal to TD or TI). Hence we want for all
E ∈ Ω1 × Ω2,∫

E

f+(x, y)dxdy =

∫
S−1(E)

f−(x, y)dxdy =

∫
E

f− (S(x, y)) |det(DS(x, y))|dxdy.

Since S(x, y) = (T1(x), T2(x, y)) with T1 independent of y, we have,

DS =

 T ′1(x)
∂T2

∂x
(x, y)

0
∂T2

∂y
(x, y)

 .

Therefore,

|det(DS(x, y))| =
∣∣∣∣T ′1(x)

∂T2

∂y
(x, y)

∣∣∣∣ .
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And we obtain,

(6.1) f+(x, y) = f−(T1(x), T2(x, y))

∣∣∣∣T ′1(x)
∂T2

∂y
(x, y)

∣∣∣∣ .
This equation can be seen as an ODE for T2 as a function of y (here x plays the role of
a parameter). Now, again, we have two options for T2 given by consider T2 increasing
or decreasing as a function of y. In each case we choose as initial conditions to comple-
ment (6.1),  T2(x, g11(x)) = g21(x), if ∂T2

∂y
≥ 0,

T2(x, g12)(x) = g22(x), if ∂T2
∂y
≤ 0.

In this way we can construct a transport map S (that is in general not optimal) moving
f+ to f−.

Example 1. To start with, let us consider the simplest situation. In R2 consider f+

and f− two measures supported on two points with mass 1/2, that is

f+ =
1

2
δ(0,0) +

1

2
δ(1,0) and f− =

1

2
δ(1,1) +

1

2
δ(2,1).

So, for the projections we have the optimal transport maps TD = x+1 and TI = 2−x, and
then all possible transport maps S are given by all possible assignments of {(0, 0), (1, 0)} →
{(1, 1), (2, 1)}. We obtain,

S1(x, y) = (x+ 1, y + 1), and S2(x, y) = (2− x, y + 1).

Let us compute the total costs corresponding to these maps. We have,

F̃(S1) =
√

2 = 1, 4142 < F̃(S2) =
1

2
(1 +

√
5) = 1, 6180.

In the contracted domain Ω1 × εΩ2 we get

S1(x, y) = (x+ 1, ε(y + 1)), and S2(x, y) = (2− x, ε(y + 1)),

with approximate costs (up to the first nontrivial order in ε),

F̃(S1) ∼ 1 +
ε2

2
+ o(ε2) < F̃(S2) ∼ 1 +

ε

2
+ o(ε).

Example 2. As a second example we consider as f± the characteristic functions of the
triangles, C1 = conv{(0, 0), (1, 0), (1, 1)} and C2 = conv{(3, 0), (3, 1), (2, 1)}. So, for the
projections we have the optimal transport maps,

TD =
√
−(x2 − 2x) + 2, and TI = 3− x.



18 J. C. NAVARRO-CLIMENT, J. D. ROSSI AND R. C. VOLPE

Then we can obtain four different S(x, y) transport maps given by the construction that
we explained before, these are given by,

S1(x, y) = (
√
−(x2 − 2x) + 2, y

√
−(x2−2x)

−x+1
+ 3− x),

S2(x, y) = (
√
−(x2 − 2x) + 2, y

√
−(x2−2x)

−x+1
+ 1),

S3(x, y) = (3− x, y + x),

S4(x, y) = (3− x, 1− y).

Now, we approximate the total cost in the thin triangles E1 = conv{(0, 0), (1, 0), (1, ε)}
and E2 = conv{(3, 0), (3, ε), (2, ε)} with the transport maps

R1(x, y) = (3− x, ε(1− y

ε
)) = (3− x, ε− y),

R2(x, y) = (3− x, y + εx).

We estimate the cost as follows:

F̃(R1) =

∫ 1

0

∫ εx

0

‖(x, y)− (3− x, ε− y)‖f ε+(x, y)dydx,

=

∫ 1

0

∫ εx

0

‖(2x− 3, 2y − ε)‖ 1

ε
dydx,

=

∫ 1

0

∫ εx

0

√
(2x− 3)2 + (2y − ε)2

1

ε
dydx.

We take z = y
ε

and we obtain

F̃(R1) =

∫ 1

0

∫ x

0

√
(2x− 3)2 + ε2(2y − 1)2

1

ε
εdydx = A(ε2),

and hence

F̃(R1) = A(0) + A′(0) ε2 +O(ε4) =
5

6
+

1

78
(27 ln (3)− 26) ε2 +O(ε4).

We perform the same computations for R2(x, y) = (3− x, y + εx) and we obtain,

F̃(R2) =
5

6
+

27

32
(ln (3)− 1) ε2 +O(ε4).

Since 1
78

(27 ln (3)− 26) < 27
32

(ln (3)− 1), we see that F̃(R1) < F̃(R2) for ε small.

We just note that in this example we obtain that the two possible transport maps,
constructed as explained before, considering T1 increasing or decreasing, may have different
costs.
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7. Boundary conditions

In this last section we comment briefly on the possibility of using Dirichlet boundary
conditions instead of Neumann. Along this paper we have used Neumann boundary con-
ditions for the p−Laplacian approximations. This choice is due to the fact that we want
to transport the whole mass of f ε+ to cover the whole mass of f ε− inside Ωε. If we impose
Dirichlet boundary conditions we allow for some mass to be imported (created) at some
point on the boundary or exported (eliminated) at other points on the boundary, paying
in this case an extra import/export tax per unit of mass given by the value of the Dirich-
let datum in addition to the usual transport cost given by the Euclidean distance. This
problem was analyzed in detail in [19]. Here we contract the domain in one direction.
Therefore, if we impose Dirichlet boundary conditions on the boundary Ω1 × ∂εΩ2 it will
be more convenient to import/export some part of the mass trough the boundary than
to transport it inside Ωε (since the distance of our masses to that part of the boundary
is of order ε and hence negligible as ε → 0 while the distance between masses remains of
order one as ε → 0). Hence, the choice of homogeneous Neumann boundary conditions
on Ω1 × ∂εΩ2 seems natural. However, we can impose Dirichlet boundary conditions on
∂Ω1×εΩ2, but to pass to the limit as ε→ 0 we need to take a constant as Dirichlet datum.
If we do this we arrive to a limit problem that corresponds to an optimal mass transport
problem between the projections in Ω1 with import/export taxes at the boundary of Ω1

equal to the constant Dirichlet datum.

Acknowledgments: partially supported by MEC MTM2010-18128 and MTM2011-27998
(Spain).
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