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Abstract. We analyze the behaviour as p→∞ of the first eigenvalue
of the p−Laplacian with mixed boundary conditions of Dirichlet-Robin
type. We find a nontrivial limit that we associate to a variational prin-
ciple involving L∞-norms. Moreover, we provide a geometrical charac-
terization of the limit value as well as a description of it using optimal
mass transportation techniques. Our results interpolate between the
pure Dirichlet case and the mixed Dirichlet-Neumann case.

1. Introduction and description of the main results

Let U ⊂ Rn be a smooth, bounded, open and connected set. In order to
consider mixed boundary conditions, we split the boundary of U as ∂U =
Γ1 ∪ Γ2, with Γ1 ∩ Γ2 = ∅ and |Γ1| > 0. In this paper we deal with the first
eigenvalue, that we will call λp, of the p-Laplacian with Dirichlet condition
on Γ1 and Robin condition on Γ2 namely the smallest λ such that there is a
nontrivial solution to the following problem,

(1)

 −∆pu = λ|u|p−2u in U,
u = 0 on Γ1,
|∇u|p−2∂νu+ αp|u|p−2u = 0 on Γ2.

Here α is a non-negative parameter. Notice that when α = +∞, the bound-
ary condition become u = 0 in all ∂U (a pure Dirichlet condition) and when
α = 0 we have a mixed Dirichlet-Neumann boundary condition.

Our main goal is to compute the limit as p→∞ of this problem and look
at its dependence on the parameter α.

To start our analysis we remark that λp has the following variational
formulation:

λp = inf
u∈Xp

{∫
U
|∇u|p + αp

∫
Γ2

|u|p : u ∈W 1,p
Γ1

(U), ‖u‖Lp(U) = 1
}

(2)

where W 1,p
Γ1

(U) =
{
u ∈ W 1,p(U), u = 0 on Γ1

}
. Note that the infimum is

attained since we assumed that |Γ1| > 0. Also notice that if we regard λp
as a function of α, α ∈ [0,+∞)→ λp(α), then λp(α) is non-decreasing with
limα→+∞ λp = λp,D the first Dirichlet eigenvalue for the p−Laplacian in U .
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We expect the limit problem of (2) as p→∞ to be

λ∞ = inf
u∈W 1,∞

Γ1
(U), ‖u‖L∞(U)=1, u≥0

max
{
‖∇u‖L∞(U), α‖u‖L∞(Γ2)

}
(3)

where W 1,∞
Γ1

(U) =
{
u ∈ W 1,∞(U), u = 0 on Γ1

}
. Notice that when we let

α→ +∞ in (3) with Γ1 = ∂U we obtain

lim
α→+∞

λ∞(α) = λ∞,D = inf
u∈W 1,∞

0 (U), ‖u‖L∞(U)=1
‖∇u‖L∞(U)

that is the first eigenvalue of the infinity Laplacian, ∆∞u = DuD2uDu with
Dirichlet boundary conditions. This value, λ∞,D, turns out to be the limit
of (λp,D)1/p as p → ∞, see [14]. Our first result says that this kind of limit
can be also computed for any nonnegative α.

Theorem 1. There holds that

lim
p→+∞

(λp)
1/p = λ∞.

Moreover the positive, normalized extremals for λp, up converge uniformly in
Ū along subsequences pj →∞ to u ∈ X which is a minimizer for (3) and a
viscosity solution to min {|Du| − λ∞u, −∆∞u} = 0 in U,

u = 0 on Γ1,
min{|Du| − αu, ;−∂νu} = 0 on Γ2.

Our next goal is to characterize this limit value λ∞. The value of λ∞
results of the interplay between α, the geometry of U and the sets Γ1,Γ2.
We consider the (possibly empty) set

A :=
{
x ∈ Ū , d(x,Γ1) ≥ 1

α
+ d(x,Γ2)

}
.

Notice that if A 6= ∅ then the set

A′ :=
{
x ∈ Ū , d(x,Γ1) =

1

α
+ d(x,Γ2)

}
is also not empty. Indeed the function f(x) = 1

α + d(x,Γ2) − d(x,Γ1) is
continuous, less or equal to 0 on A, and greater or equal to 0 if d(x,Γ1) << 1
(we are using here the fact that U is connected to apply the mean value
theorem). Our next result gives a geometrical characterization of λ∞.

Theorem 2. It holds that

(4) λ∞ =


min
x∈Ū

1

d(x,Γ1)
, if A = ∅,

min
x∈A

1
1
α + d(x,Γ2)

= min
x∈A′

1
1
α + d(x,Γ2)

, if A 6= ∅.

Notice that when α = +∞, which corresponds to pure Dirichlet boundary
conditions on the whole ∂U , then A = A′ = ∅ and we recover the result of
[14], λ−1

∞ = λ−1
∞,D = maxx∈Ū d(x, ∂U). In the case of Neumann boundary

conditions i.e. Γ1 = ∅ and α = 0 then A = ∅ and d(x,Γ1) = d(x, ∅) = +∞
for any x ∈ Ū so that λ∞ = 0 which is consistent with the fact the 1st
eigenvalue of ∆p with Neumann boundary conditions is 0.
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We will first give a simple proof in the case where U is convex by using
a test-function argument based proof which we were not able to extend to
the general case. In fact the result for a arbitrary connected domain will be
a consequence of an optimal mass transport formulation of λ∞ that we now
introduce.

To continue our analysis we have to recall some notions and notations from
optimal mass transport theory. Recall that the Monge-Kantorovich distance
W1(µ, ν) between two probability measures µ and ν over Ū is defined by

(5) W1(µ, ν) = max
v∈W 1,∞(U), ‖∇v‖∞≤1

∫
U
v (dµ− dν).

Recently the authors in [7] relate λ∞,D with the Monge-Kantorovich distance
W1. They proved that

(6) λ−1
∞,D = max

µ∈P (U)
W1(µ, P (∂U)),

where P (U) and P (∂U) denotes the set of probability measures over Ū and
∂U . Notice that the maximum is easily seen to be reached at δx where x ∈ U
is a most inner point.

In our case we are also able to give a characterization for λ∞ in terms of
a maximization problem involving W1 but this time we get an extra term
involving the total variation of a measure on Γ2.

Theorem 3. It holds that

(7)
1

λ∞
= max

σ∈P (Ū)
inf

ν∈P (∂U)

{
W1(σ, ν) +

1

α
ν(Γ2)

}
.

Moreover, the measures up−1
p dx weakly converge (up to a subsequence) as

p→ +∞ to a probability measure f∞ which attains the maximum in (7).

Notice that when α = +∞, which corresponds to Dirichlet boundary
conditions, then we recover the result of [7], who showed that (6) holds.

As a corollary of this characterization in terms of optimal transportation,
we can extend the result stated in Theorem 2 for the value of λ∞ to the case
where U is not convex. We prefer to present our results in this order (even if
Theorem 2 is not initially proved in its full generality) for readability of the
whole paper (the proof of Theorem 2 in the convex case is much simpler).

Let us end the introduction with a brief description of the previous bibli-
ography and the main ideas and techniques used to prove our results. First,
as by now classical results, we mention that the limit as p→∞ of the first
eigenvalue λp,D of the p-Laplacian with Dirichlet boundary condition was
studied in [15], [14] (see also [4] for an anisotropic version). For its depen-
dence with respect to the domain we refer to [17]. The limit operator that
appears here, the infinity-Laplacian is given by the limit as p → ∞ of the
p−Laplacian, in the sense that solutions to ∆pvp = 0 with a Dirichlet data
vp = f on ∂Ω converge as p → ∞ to the solution to ∆∞v = 0 with v = f
on ∂Ω in the viscosity sense (see [2], [5] and [8]). This operator appears
naturally when one considers absolutely minimizing Lipschitz extensions in
Ω of a boundary data f (see [1], [2], and [13]).
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The case of a Steklov boundary condition (here the eigenvalue appears
in the boundary condition) has also been investigated recently. Indeed in
[11] (see also [16] for a slightly different problem) it is studied the behaviour
as p → +∞ of the so-called variational eigenvalues λk,p,S , k ≥ 1, of the
p-Laplacian with a Steklov boundary condition. In particular it is proved
that

lim
p→+∞

λ
1/p
1,p,S = 1 and λ2,∞,S := lim

p→+∞
λ

1/p
2,p,S =

2

diam(U,Rn)
,

where here diam(U,Rn) denotes the diameter of U for the usual Euclidean
distance in Rn.

For pure Neumann eigenvalues, we quote [10] and [19]. In those references
it is considered the limit for the second eigenvalue (the first one is zero). It is
proved that in this case λ∞ := limp→+∞ λ

1/p
p = 2/diam(U), where diam(U)

denotes the diameter of U with respect to the geodesic distance in U . In
addition, the regularity of λ∞ as a function of the domain U is studied in
[19] and in [10] it is proved that there are no nonzero eigenvalues below λ∞,
so that λ∞ is indeed the first nontrivial eigenvalue for the infinity-Laplacian
with Neumann boundary conditions.

Concerning ideas and methods used in the proofs we use classical varia-
tional ideas to obtain the limit of (λp)

1/p and viscosity techniques and to
find the limit PDE problem we use viscosity techniques as in [14] (we re-
fer to [8] for the definition of a viscosity solution). The characterization of
λ∞ given in Theorem 2 follows using cones as test functions in the varia-
tional formulation. Finally, mass transport techniques (we refer to [20]) and
gamma-convergence of functionals are used to show the more general char-
acterization of λ∞ given in Theorem 3, see [7] and [19] for similar arguments
in different contexts.

The paper is organized as follows. In Section 2 we deal with the limit
as p → ∞ and prove Theorem 1. in Section 3 we prove Theorem 2 that
characterizes λ∞ in geometrical terms in the cases of a convex domain U .
In Section 4 we use optimal transport ideas to obtain Theorem 3. As a
corollary, we eventually prove Theorem 2 for a general connected domain in
the last section.

2. Proof of Theorem 1

For the proof of Theorem 1 we will use the following lemma.

Lemma 1. For any f, g ∈ L∞(U) there holds

lim
p→+∞

(
‖f‖Lp(U) + ‖g‖Lp(U)

) 1
p

= max {‖f‖L∞(U), ‖g‖L∞(U)}.

Proof. The result is a direct consequence of the inequalities

max {‖f‖pLp(U), ‖g‖
p
Lp(U)}

≤ ‖f‖pLp(U) + ‖g‖pLp(U)

≤ 2 max {‖f‖pLp(U), ‖g‖
p
Lp(U)}.
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In fact, from the previous inequalities, we get

lim
p→+∞

max {‖f‖Lp(U), ‖g‖Lp(U)}

≤ lim
p→+∞

(
‖f‖Lp(U) + ‖g‖Lp(U)

) 1
p

≤ lim
p→+∞

2
1
p max {‖f‖Lp(U), ‖g‖Lp(U)}.

We conclude using that

lim
p→+∞

‖f‖Lp(U) = ‖f‖L∞(U)

and
lim

p→+∞
‖g‖Lp(U) = ‖g‖L∞(U).

�

Now let us proceed with the proof of Theorem 1.

Proof of Theorem 1. Let u ∈ X then u ∈ ∩pXp. From the variational char-
acterization of λp we have

(λp)
1/p ≤ 1

‖u‖Lp(U)

(∫
U
|∇u|p + αp

∫
Γ2

|u|p
)1/p

.

Hence, using the previous Lemma we get

lim sup
p→∞

(λp)
1/p ≤ max

{
‖∇u‖L∞(U), α‖u‖L∞(Γ2)

}
for any u ∈ X. Therefore, we conclude that

lim sup
p→∞

(λp)
1/p ≤ λ∞.

In addition, we get that, for up an eigenfunction associated to λp in Xp it
holds that

lim sup
p→∞

‖∇up‖Lp(U) ≤ λ∞.

Therefore, we have that {up} is uniformly bounded (independently of p) in
W 1,p(U). Then, for any fixed q we obtain

‖∇up‖Lq(U) ≤ ‖∇up‖Lp(U)|U |
p−q
qp ≤ C

with C independent of p. Hence, by a diagonal procedure, we can extract a
subsequence pj →∞ such that

upj → u

uniformly in U and weakly in every W 1,q(U), q ∈ N. This limit u verifies
that

‖∇u‖Lq(U) ≤ lim sup
p→∞

≤ ‖∇up‖Lq(U) ≤ lim sup
p→∞

‖∇up‖Lp(U)|U |
p−q
qp ≤ λ∞|U |

1
q

and then we get
‖∇u‖L∞(U) ≤ λ∞.

Moreover, we have

α‖up‖Lq(Γ2) ≤
(
αp‖up‖pLp(Γ2)|Γ2|

p−q
q

)1/p
≤
(
λp|Γ2|

p−q
q

)1/p
,
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then

α‖u‖Lq(Γ2) ≤ lim sup
p→∞

α‖up‖Lq(Γ2) ≤ lim sup
p→∞

α‖up‖Lq(Γ2) ≤ λ∞|Γ2|
1
q

and we conclude that
α‖u‖L∞(Γ2) ≤ λ∞.

Hence
max

{
‖∇u‖L∞(U), α‖u‖L∞(Γ2)

}
≤ λ∞.

Now, we only have to observe that form the uniform convergence we get that
u ∈ X, and then we conclude that u is a minimizer of (3). In addition, our
previous calculations show that

λ∞ ≤ lim inf
p→∞

(λp)
1
p .

Now, concerning the equation verified by the limit of up, u, we have that,
from the fact that up are viscosity solutions to ∆pu = λp|u|p−2u and that
(λp)

1/p converges to λ∞ we conclude as in [14] that the limit u is a viscosity
solution to

min {|Du| − λ∞u, −∆∞u} = 0.

That u = 0 on Γ1 is immediate from uniform convergence in U and the
fact that up verify the same condition.

On Γ2 we have
|∇u|p−2∂νu+ αp|u|p−2u = 0,

therefore, passing to the limit in the viscosity sense as done in [12] we obtain

min{|Du| − αu, ;−∂νu} = 0.

This ends the proof. �

3. Proof of Theorem 2 for convex domains.

Along this section we assume that U is convex.

Proof of Theorem 2. Using the variational characterization (3) proved in the
previous section, we estimate λ∞ from above by using as test-function a
truncated cone of the form

u(x) =
(

1− a|x− x0|
)

+

where a > 0 and x0 ∈ Ū . Then

u ≡ 0 on Γ1 iff a ≥ 1

d(x0,Γ1)

‖∇u‖L∞(U) = a,

and ‖u‖L∞(Γ2) =
(

1− ad(x0,Γ2)
)

+
.

It follows that
λ∞ ≤ inf max {a, α[1− ad(x0,Γ2)]+}

where the infimum is taken over all the x0 ∈ Ū and a > 0 such that a ≥
1/d(x0,Γ1). Examining the two possibilities for the max, we obtain easily
the upper bound for λ∞.
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To prove the lower bound we argue as follows: for any x0 ∈ Ū , and any
Lipschitz function u ∈ X with u(x0) = 1, we have

1 ≥ ‖u‖L∞(Γ2) ≥
(

1− ‖∇u‖∞d(x0,Γ2)
)

+
.

Thus

λ∞ ≥ inf max
{
‖∇u‖L∞(U), α

(
1− ‖∇u‖L∞(U)d(x0,Γ2)

)
+

}
where the infimum is taken over all u ∈ W 1,∞(Ū) such that u = 0 in Γ1,
‖u‖L∞(U) = 1 and ‖∇u‖L∞(U) ≥ 1

d(x0,Γ1) for any x0 ∈ {u = 1}. From
this point the argument conclude as for the previous case just analyzing the
possibilities for the max. �

4. Proof of theorem 3

The proof follows the lines of [7] (see also [19] for the pure Neumann
boundary case).

We begin rewriting the variational formulation (2) of λp as

1 = sup
{∫

U
|u|p : u ∈W 1,p

Γ1
(U) s.t.

∫
U
|∇u|p + αp

∫
Γ2

|u|p = λp

}
.

We are thus lead to consider the functions Gp : C(Ū) ×M(Ū) → R, p ≥ 1,
defined by

Gp(v, σ) =


−
∫
v dσ if v ∈W 1,p

Γ1
(U),

∫
U
|∇v|p + αp

∫
Γ2

|v|p ≤ λpp,

and σ ∈ Lp′(U)
∫
U |σ|

p′ ≤ 1,

+∞ otherwise

Notice that the pair (up, u
p−1
p dx) is an extremal for Gp so that minGp = −1.

Indeed for any admissible pair (v, σ) ∈W 1,p
Γ1

(U)× Lp′(U), we have

−Gp(v, σ) =

∫
U
vσ ≤ ‖v‖p‖σ‖p′ ≤ λ−1/p

p

(∫
U
|∇v|p + αp

∫
Γ2

|v|p
)1/p

≤ 1 =

∫
U
upp

(we used succesively Hölder’s inequality, the definition of λp and the fact
that v is admissible). In view of Lemma 1, we introduce the formal limit
functional G∞ : C(Ū)×M(Ū)→ R of the Gp by

G∞(v, σ) =


−
∫
v dσ if v ∈W 1,∞

Γ1
(U), max{‖∇u‖∞, α‖v‖L∞(Γ2)} ≤ λ∞,

and |σ|(Ū) ≤ 1,

+∞ otherwise.

The convergence of the functionals Gp to G∞ can be justified using the
notion of Γ-convergence. Recall that a sequence of functionals Fn : X →
[0,+∞] defined over a metric space X is said to Γ-converge to a functional
F∞ : X → [0,+∞] if the following two conditions hold:
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• for every x ∈ X and every sequence (xn)n ⊂ X converging to x,
F (x) ≤ lim inf F (xn),

and
• for any x ∈ X, there exists a sequence (xn)n ⊂ X converging to x
such that F (x) ≥ lim sup F (xn).

An easy but important consequence of the definition, that we will use later,
is the fact that if xn is a minimizer of Fn then every cluster point of the
sequence (xn) is a minimizer of F∞. We refer e.g. to [6] and [9] for a
detailed account on Γ-convergence.

Proposition 4.1. The functionals Gp Γ-converge as p→ +∞ to G∞.

Proof. The proof is very similar to [7] (see also [19] for the pure Neumann
boundary case). We briefly sketch it for the reader’s convenience.

Assume that (vp, σp) ∈ C(Ū)×M(Ū) converge to (v, σ). We have to prove
that

(8) lim inf
p→+∞

Gp(vp, σp) ≥ G(v, σ).

We can assume that Gp(vp, σp) <∞. Then we have∫
U
vpσp dx−

∫
U
v dσ =

∫
U

(vp − v)σp dx+

∫
U
v (σp dx− dσ)→ 0

as p→ +∞. Indeed the first integral on the right hand side can be bounded
by ‖vp − v‖∞‖σp‖p′ |U |

1
p = o(1). Independently∫

U
|σ| =

∫
U
|σp| dx+ o(1) ≤ ‖σp‖p′ |U |

1
p + o(1) ≤ 1 + o(1)

so that
∫
U |σ| ≤ 1. Moreover taking limit in α‖vp‖Lp(Γ2) ≤ λp yields

α‖v‖L∞(Γ2) ≤ λ∞. Eventually, for any φ ∈ Lp′(U,Rn) such that ‖φ‖p′ ≤ 1
we have∫
U
φ∇v dx = −

∫
U
v divφdx = −

∫
U
vp divφdx+ o(1) =

∫
U
φ∇vp dx+ o(1)

≤ ‖∇vp‖p + o(1) ≤ λ
1
p
p + o(1) = λ∞ + o(1),

where the o(1) does not depend on φ. Taking the supremum over all such φ
we obtain ‖∇v‖p ≤ λ∞ + o(1), so that ‖∇v‖∞ ≤ λ∞. It follows that (v, σ)
is admissible for G∞.

We now fix a pair (v, σ) admissible for G∞. We have to find some pair
(vp, σp) admissible for Gp which converges to (v, σ) and such that

lim sup
p→+∞

Gp(vp, σp) ≤ G∞(v, σ).

We define

vp =
λ

1
p
p

λ∞(|U |+ |Γ2|)
1
p

v.

Then vp ∈W 1,p(U), vp → v uniformly, and
∫
U |∇vp|

p + αp
∫

Γ2
|vp|p ≤ λpp.

In order to define σp by regularizing σ by convolution, we first need to
adjust a little. Let ~n be the unit inner normal vector to U that we extend
in a smooth way to Rn with compact support in a neighborhood of ∂U . We
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consider Tε : Ū → Ū2ε := {x ∈ Ū , dist(x, ∂U ≥ 2ε} defined by Tε(x) = x +
2ε~n. Let σε = Tε]σ be the push-forward of σ by Tε i.e.

∫
f dσε =

∫
f ◦Tε dσ

for any f ∈ C(Ū2ε). Oberve that supp σε ⊂ Ū2ε and also that
∫
|σε| ≤ 1

since ∫
|σε| = sup

‖φ‖L∞(U2ε)≤1

∫
φdσε = sup

‖φ‖L∞(U2ε)≤1

∫
φ ◦ Tε dσ

≤
∫
d|σ| ≤ 1.

Moreover
σε → σ weakly in the sense of measure.

Indeed for any φ ∈ C(Ū),∣∣∣ ∫ φdσε −
∫
φdσ

∣∣∣ ≤ ∫ ∣∣∣φ(x+ 2ε~n)− φ(x)
∣∣∣ dσ(x) = o(1)

since the integrand goes to 0 uniformly in x ∈ Ū . Denote by ρε the usual
mollifying functions (i.e. ρε(x) = ε−nρ(x/ε) where ρ is a smooth function
compactly supported in the unit ball of Rn with

∫
ρ = 1). Then

ρε ∗ σε − σε → 0 weakly in the sense of measure

This follows from the fact that ‖φ ∗ ρε − φ‖L∞(U2ε) → 0 for any φ ∈ C(Ū).
Hence

(9) ρε ∗ σε ⇀ σ weakly in the sense of measure.

We now regularize σε considering

σ̃ε := σε ∗ ρ̃ε ∈ C∞(U)

with
ρ̃ε :=

ρε
‖ρε‖p′

, ε = 1/p.

Then ‖ρε‖p′ → 1 since ‖ρε‖p′ = ε−n/p‖ρ‖p′ → ‖ρε‖1 = 1. It then follows
that σ̃ε ⇀ σ. Moreover σ̃ε is admissible for Gp since, by Holder inequality
and recalling (9),

‖σ̃ε‖p
′

p′ ≤
(∫
|σε|
) 1

p−1

∫
ρ̃ε(x− y)p

′
dx d|σε|(y) = ‖ρ̃ε‖p

′

p′

(∫
|σε|
) p

p−1 ≤ 1.

It follows that (σε, vp) is admissible for Gp and converge to (v, σ). As before
we have Gp(vp, σε)→ G∞(v, σ). �

Recall that from Theorem 1, up converge in C(Ū) up to a subsequence to
some u∞ ∈ C(Ū), ‖u‖∞ = 1. Moreover, up to a subsequence, the measures
up−1
p dx converge weakly to some probability measure σ∞. Indeed since Ū is

compact, it suffices, according to Prokhorov theorem, to show that

lim
p→+∞

∫
Ū
up−1
p dx = 1.

This follows from ∫
Ū
up−1
p dx ≤ ‖up‖p|U |1/p → 1
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and, for p > n,

1 =

∫
Ū
up−1
p up dx ≤ ‖up‖∞

∫
Ū
up−1
p dx = (1 + o(1))

∫
Ū
up−1
p dx.

As a consequence of the Γ-convergence of Gp to G∞ and the fact that
(up, u

p−1
p dx) is a minimizer of Gp, we obtain that (u∞, σ∞) is a minimizer of

G∞ with G∞(u∞, σ∞) = limp→+∞Gp(up, u
p−1
p dx) = −1. Since σ∞ ∈ P (Ū)

and u∞ is an extremal for λ∞, we can thus write

1 = max
{∫

v dσ; v ∈W 1,∞
Γ1

(U),

max{‖∇v‖∞, α‖v‖L∞(Γ2)} = λ∞,

σ ∈ P (Ū)
}

i.e.

(10)
λ−1
∞ = max

{∫
v dσ; v ∈W 1,∞

Γ1
(U),

max{‖∇v‖∞, α‖v‖L∞(Γ2)} = 1,

σ ∈ P (Ū)
}

An appoximation argument shows that we can replaceW 1,∞
Γ1

(U) by C1(U)∩
CΓ1(Ū) where CΓ1(Ū) = {u ∈ C(Ū) : u = 0 on Γ1}.

Proposition 4.2. Given v ∈ W 1,∞
Γ1

(U), max{‖∇v‖∞, α‖v‖L∞(Γ2)} ≤ 1,
there exist vk ∈ C1(U) ∩ CΓ1(Ū), max{‖∇vk‖∞, α‖vk‖L∞(Γ2)} ≤ 1, such
that vk → v uniformly in Ū .

Proof. The proof uses ideas from [7]. We first extend v in a neighborhood of
∂U by antisymmetric reflection across ∂U so that the extended function v̄ is
Lipschitz with ‖∇v̄‖∞ = ‖∇v‖∞ ≤ 1. We then apply the same method as
in [7] consisting in introducing the function θε(t) = (t − sgn(t)ε)1|t|≥ε and
then regularizing θε ◦ v̄ by convolution with the usual mollifying functions.
Observe that ‖∇(θε ◦ v̄)‖∞ ≤ ‖∇v̄‖∞ ≤ 1 and that θε ◦ v̄ = 0 in the ε-
neighborhood {x ∈ Rn, dist(x,Γ1) < ε} of Γ1 since v̄ is 1-Lipschitz. Note
also that |θ(t)| = (|t| − ε)1|t|≥ε so that on Γ2, |θε ◦ v̄| ≤ (α−1 − ε)+. Hence
|θε ◦ v̄| ≤ α−1 in the ε-neighborhood of Γ2. It follows from these three
comments that the regularizing of θε ◦ v̄ is adequate. �

Denoting by Res : C(Ū)→ C(Γ2) the restriction operator, Au = ∇u the
derivation operator with domain C1(U), and B(R) the closed ball of radius
R centered at 0 in C(Ū), B = B(1), we can rewrite (10) as

1

λ∞
= max

σ∈P (Ū)
max
u∈C(Ū)

{
(σ, u)− (χB(1/α) ◦Res)(u)− (χB ◦A)(u)

−χCΓ1
(U)(u)

}
.

Recalling the definition of the Legendre transform, we eventually obtain
1

λ∞
= max

σ∈P (Ū)

(
(χB(1/α) ◦Res) + (χB ◦A) + χCΓ1

(U)

)∗
(σ).(11)

The inf-convolution f�g of two proper lower semi-continuous (lsc) convex
functions f, g : E → R (E denotes a normed space - we will take E = C(Ū)
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here) is defined by (f � g)(x) = infy∈E f(y) + g(x − y). This operation is
commutative and associative. Moreover f �g is a proper lsc convex function
with domain Dom(f) + Dom(g), and its Legendre transform is (f � g)∗ =
f∗ + g∗. Eventually, if 0 belongs to the interior of Dom(f) − Dom(g) then
(f +g)∗ = f∗�g∗ (see [18][section3.9 p42]). This last assumption is trivially
satisfied here since any neigborhood of 0 in C(Ū) is contained in C1(Ū) +
C(Ū).

We can thus rewrite (11) as
1

λ∞
= max

σ∈P (Ū)

(
(χB(1/α) ◦Res)∗ � (χB ◦A)∗ � χ∗CΓ1

(U)

)
(σ)

= max
σ∈P (Ū)

inf
(
χB(1/α) ◦Res)∗(µ1) + (χB ◦A)∗(µ2) + χ∗CΓ1

(U)(µ3)
)
,(12)

where the inf is taken over all triple of measures µ1, µ2, µ3 ∈ M(Ū) such
that σ = µ1 + µ2 + µ3. To pursue further we need to compute the various
Legendre transforms involved in this expression. This is the content of the
next proposition.

Proposition 4.3. There holds for µ ∈M(Ū),

(13) χ∗CΓ1
(U)(µ) =

{
0 if supp µ ⊂ Γ1

+∞ otherwise

and

(χB ◦A)∗(µ) = inf
{∫

Ū
|σ| : σ ∈M(Ū ,Rn) s.t. − div σ = µ in D′(Rn)

}
=

{
W1(µ+, µ−) if µ(Ū) = 0,

+∞ otherwise.
(14)

Moreover,

(15) (χB(1/α) ◦Res)∗(µ) =

{
1
α |µ|(Γ2) if supp µ ⊂ Γ2

+∞ otherwise.

Proof. These computations are more or less classical. We sketch them here
for the reader’s convenience.

First, the definition of the Legendre transform gives

χ∗CΓ1
(U)(µ) = sup

u∈C(Ū)

(µ, u)− χCΓ1
(U)(u)

= sup
u∈C(Ū), u=0 on Γ1

∫
Ū
u dµ(16)

from which we deduce (13).

We now prove (14). The second equality in (14) is well-known. It remains
to prove the first one. We recall the following result concerning the Legendre
transform: if E and F are two normed space, L : E → F linear with
domain Dom(L) and f : E → R is convex, consider the function (LF )(y) =
inf {f(x) : x ∈ Dom(L) s.t. Lx = y}, y ∈ F . Then Lf is convex with
(Lf)∗ = f∗ ◦ L∗ in the domain Dom(L∗) of the adjoint L∗ : F ∗ → E∗ of L.
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Notice that the adjoint A∗ : M(Ū) → M(Ū) of A is defined by A∗µ =
−div µ in the weak sense (i.e. (A∗µ, u) = (µ,∇u) =

∫
∇u dµ for any

u ∈ Dom(A) = C1(Ū)) with domain Dom(A∗) = {µ ∈ M(Ū), −div µ ∈
Mb(Rn)}.

In a similar way as in (16), it can be seen that χ∗B(σ) =
∫
|σ|, so that

the inf in (14) can be written as (A∗χ∗B)(µ). Then taking f = χ∗B, L = A∗

and noticing that χB is convex lsc (because B is convex and closed), so
that χ∗∗B = χB, we obtain χB ◦ A∗∗ = (A∗χ∗B)∗. Observe that A∗∗ = A on
Dom(A) so that χB ◦A = (A∗χ∗B)∗ on Dom(A).

Observe that A∗χ∗B, which is the r.h.s of (14), is lsc for the weak conver-
gence (and thus also for the strong i.e. total variation convergence) in the
sense that if µn, µ ∈M(Ū) verify µn → µ weakly then

lim inf
n→+∞

(A∗χ∗B)(µn) ≥ (A∗χ∗B)(µ).

Indeed we can assume that (A∗χ∗B)(µn) ≤ Cste. Then taking σn ∈M(Ū ,Rn)
s.t. −div σn = µn and A∗χ∗B(µn) =

∫
|σn|+ o(1), we have

∫
|σn| ≤ C. Then

applying Prokhorov theorem to σ+
n and σ−, we have, up to a subsequence,

that σn → σ weakly. In particular −div σ = µ and lim infn→+∞
∫
|σn| ≥∫

|σ| ≥ (A∗χ∗B)(σ) from which we deduce the result.
We thus have that A∗χ∗B is convex lsc so that A∗χ∗B = (A∗χ∗B)∗∗. Hence

(χB ◦A)∗ = A∗χ∗B which is exactly (14).

The proof of (15) is similar. We have as before that for any µ ∈M(Ū),

(χB(1/α) ◦Res)∗(µ) = (Res∗χ∗B(1/α))(µ) = inf{χ∗B(1/α))(σ) : Res∗(σ) = µ}

with Res : C(Ū) → C(Γ2) and Res∗ : C(Γ2)∗ = M(Γ2) → C(Ū)∗ = M(Ū)
is given by

(Res∗(σ), v) = (σ,Res(v)) = (σ, v|Γ2
) =

∫
Γ2

v dσ

for any σ ∈ C(Γ2)∗, v ∈ C(Ū). Moreover χB(1/α) : C(Γ2) → R and for any
σ ∈ C(Γ2)∗,

χ∗B(1/α)(σ) = sup
v∈C(Γ2)

(σ, v)− χB(1/α)(v) = sup
v∈C(Γ2),‖v‖L∞(Γ2)≤1/α

∫
Γ2

v dσ

=
1

α
sup

v∈C(Γ2),‖v‖L∞(Γ2)≤1

∫
Γ2

v dσ

=
1

α

∫
Γ2

|σ|

Thus

(χB(1/α) ◦Res)∗(µ)

= inf
{ 1

α

∫
Γ2

|σ| : σ ∈ C(Γ2)∗ s.t.
∫

Γ2

u dσ =

∫
Ū
u dµ for all u ∈ C(Ū)

}
.

Consider an admissible measure σ. Then for any A ⊂ Ū ,

σ(A ∩ Γ2) =

∫
Γ2

1A dσ =

∫
Ū

1A dµ = µ(A).
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It follows that there cannot exists A ⊂ Ū\Γ2 s.t. µ(A) 6= 0 i.e. supp µ ⊂ Γ2.
and then σ = µ. Hence (χB(1/α) ◦ Res)∗(µ) = 1

α |µ|(Γ2) if supp µ ⊂ Γ2.
Otherwise there does not exist any admissible σ and the inf is +∞. �

Using the previous proposition, we can rewrite (16) as
1

λ∞
= max

σ∈P (Ū)
inf (χB ◦A)∗(µ2) +

1

α
|µ1|(Γ2),

where the inf is taken over all triple of measures µ1, µ2, µ3 ∈ M(Ū) such
that σ = µ1 + µ2 + µ3, supp µ3 ⊂ Γ1, supp µ1 ⊂ Γ2, µ2(Ū) = 0. Letting
ν = µ1 +µ3 = σ−µ2, we have |µ1|(Γ2) = |ν|(Γ2) = ν+(Γ2)+ν−(Γ2) since µ1

and µ3 have disjoint support. Moreover, since µ2(Ū) = 0 i.e. (σ+ ν−)(Ū) =
ν+(Ū), we have

(χB ◦A)∗(µ2) = (χB ◦A)∗(σ − ν)

= inf
{∫

Ū
|σ̃| : σ̃ ∈M(Ū ,Rn) s.t. − div σ̃ = (σ + ν−)− ν+ in D′(Rn)

}
= W1(σ + ν−, ν+).

We thus obtain
1

λ∞
= max

σ∈P (Ū)
inf

ν∈M(∂U), ν(∂U)=1
W1(σ + ν−, ν+) +

1

α
ν+(Γ2) +

1

α
ν−(Γ2).

To conclude the proof of (7), it suffices to verify that the inf can be taken
over non-negative ν. This is a consequence of the following Proposition:

Proposition 4.4. For any σ ∈ P (Ū),

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σ + ν1, ν2) = inf
ν∈P (∂U)

W1(σ, ν).

The proof of this lemma is based on the following lemma:

Lemma 2. Consider probability measures µε, µ ∈ P (Rn) such that

lim
ε→0

W1(µε, µ) = 0,

and a subset A ⊂ P (Rn) compact w.r.t the convergence in distance W1. Then
limε→0W1(µε, A) = W1(µ,A) where W1(µ,A) = infν∈AW1(µ, ν).

Observe that the compactness assumption is satisfied for A = P (K) where
K ⊂ Rn is compact in view of Prokhorov theorem and the fact that W1

metrizes the weak convergence in P (K) (because K is bounded).

Proof of lemma 2. Consider νδ ∈ A s.t. limδ→0W1(νδ, µ) = W1(µ,A). Then
passing to the limit inW1(µε, A) ≤W1(µε, νδ) yields lim supε→0W1(µε, A) ≤
W1(µ, νδ) for any δ, so that lim supε→0W1(µε, A) ≤W1(µ,A).

To prove the opposite inequality we consider νε ∈ A such thatW1(µε, νε) =
W1(µε, A) + o(1). Since A is compact, we can assume up to a subsequence
that there exists ν ∈ A s.t. W1(νε, ν)→ 0. Since W1(µε, µ)→ 0, we obtain

lim
ε→0

W1(µε, A) = lim
ε→0

W1(µε, νε) = W1(µ, ν) ≥W1(µ,A)

which ends the proof of the lemma. �

We now prove Proposition 4.4.
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Proof of Proposition 4.4. The ≤ inequality is clear (take ν1 = 0). To prove
the opposite inequality, we first assume that supp σ ⊂ U . Given any ν1, ν2,
any transfer plan π ∈ Π(σ+ ν1, ν2) (i.e. π ∈ P (Ū) has marginals σ+ ν1 and
ν2) can be written as

π = π̃ + π̄, π̃ ∈ Π(σ, ν̃2), π̄ ∈ Π(ν1, ν̄2)

for some decomposition ν2 = ν̃2 + ν̄2 with ν̃2, ν̄2 ∈ M+(∂U), ν̃2(∂U) = 1,
ν̄2(∂U) = ν1(∂U). It follows that

W1(σ + ν1, ν2) = inf
π∈Π(σ+ν1,ν2)

∫
Ū×Ū

d(x, y) dπ(x, y)

= inf
ν2=ν̃2+ν̄2, π̃∈Π(σ,ν̃2), π̄∈Π(ν1,ν̄2)

∫
Ū×Ū

d(x, y) dπ̃(x, y)

+

∫
Ū×Ū

d(x, y) dπ̄(x, y)

≥ inf
ν2=ν̃2+ν̄2

W1(σ, ν̃2) +W1(ν1, ν̄2)

Then

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σ + ν1, ν2)

≥ inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

inf
ν2=ν̃2+ν̄2

W1(σ, ν̃2) +W1(ν1, ν̄2)

which is clearly greater or equal than inf ν̃2∈P (∂U) W1(σ, ν̃2). This proves the
≥ inequality when supp σ ⊂ U .

In the general case we have supp σ ⊂ Ū . We consider σε = Tε]σ the push-
forward of σ under Tε(x) = x − ε~n where ~n denote some smooth extension
of the unit exterior normal to a neighborhood of ∂U . Then supp σε ⊂ U so
that

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σε + ν1, ν2) = W1(σε, P (∂U)).

To pass to the limit as ε → 0, we use Lemma 2. Just notice that σε → σ
weakly as measure i.e. W1(σε, σ) → 0 since U is bounded, and A = P (∂U)
is compact for the weak convergence. We then have W1(σε, P (∂U)) →
W1(σ, P (∂U)). Observe also that the first part of the proof of Proposition
4.4, which does not use the compactness assumption, yields

lim sup
ε→0

inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σε + ν1, ν2)

≤ inf
ν1,ν2∈M+(∂U), ν2(∂U)=ν1(∂U)+1

W1(σ + ν1, ν2).

The result follows. �

To end the proof of theorem 3, we verifiy that the max in (7) is attained
by f∞, the weak limit as p → +∞ of the measures fp = up−1

p dx (which
exists up to a subsequence). Notice that up is the unique minimizer of the
functional Fp : W 1,p

Γ1
(U)→ R defined by

Fp(u) =
1

pλp

∫
U
|∇u|p +

αp

pλp

∫
Γ2

|u|p − (fp, u).
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Indeed the associated Euler-Lagrange equation, which has a unique solution
since Fp is strictly convex, is the equation ∆pu = λpfp with the boundary
conditions of (1), which admits up as a solution.

Writing Fp as

Fp(u) =

∫
U

∣∣∣ ∇u
p1/pλ

1/p
p

∣∣∣p +

∫
Γ2

∣∣∣ αu

p1/pλ
1/p
p

∣∣∣p − (fp, u),

we can prove, as in Proposition 4.1, that Fp Γ-converge as p → +∞ to the
functionnal F∞ : C(Ū)→ R defined by

F∞(u) =


−(f∞, u), if u ∈W 1,∞

Γ1
(U), ‖∇u‖∞ ≤ λ∞,

and α‖u‖L∞(Γ2) ≤ λ∞
+∞ otherwise.

Since
inf Fp = Fp(up) =

1

p
− 1,

we obtain that

F∞(u∞) = inf F∞ = lim
p→+∞

inf Fp = −1.

Hence

−1 = min
{
− (f∞, u) + χB(1/α)(u|Γ1

/λ∞) + χB(∇u/λ∞) + χCΓ1
(Ū)(u)

}
,

i.e.

− 1

λ∞
= min

{
− (f∞, u) + χB(1/α)(u|Γ1

) + χB(∇u) + χCΓ1
(Ū)(u)

}
,

Then
1

λ∞
= max

u∈C(Ū)

{
(f∞, u)− χB(1/α)(u|Γ1

)− χB(∇u)− χC(u)
}

=
(

(χB(1/α) ◦Res) + (χB ◦A) + χCΓ1
(Ū)

)∗
(f∞).

Since f∞ ∈ P (∂U), we obtain in view of (11) that f∞ is extremal in (7).

5. Proof of Theorem 2 for connected domains.

Let φ(σ, ν) = W1(σ, ν) + 1
αν(Γ2), σ, ν ∈ P (∂U). Since W1 is convex in

(σ, ν) (see e.g. [20][thm. 4.8]), we see that φ is convex. It easily follows that
the function Φ(σ) = infν∈P (∂U) φ(σ, ν), σ ∈ P (Ū) is also convex. Indeed
given σ1, σ2 ∈ P (Ū) and any ν1, ν2 ∈ P (Ū), we have

Φ(tσ1 + (1− t)σ2) ≤ φ(tσ1 + (1− t)σ2, tν1 + (1− t)ν2)

≤ tφ(σ1, ν1) + (1− t)φ(σ2, ν2).

The result follows taking the infimum in ν1, ν2.
Since Φ is convex, it attains its maximum at an extreme point of the

comvex compact P (Ū) i.e. at some Dirac mass δx, x ∈ Ū :
1

λ∞
= max

x∈Ū
inf

ν∈P (∂U)
W1(δx, ν) +

1

α
ν(Γ2).

It is well-known that W1(δx, ν) =
∫
Ū d(x, y) dν(y) for any x ∈ Ū . This

follows from the fact that the unique π ∈ P (Ū × Ū) with marginals δx and
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ν is π = δx ⊗ ν. Indeed such a π must have support in {x} × supp ν so that
for any A,B ⊂ Ū , π(A×B) = 0 = (δx ⊗ ν)(A×B) if x 6∈ A, and if x ∈ A,

π(A×B) = π({x} ×B) = π(X ×B) = ν(B) = (δx ⊗ ν)(A×B).

Given x ∈ Ū , we consider x1 ∈ Γ1 and x2 ∈ Γ2 such that d(x,Γi) =
d(x, xi), i = 1, 2. We write ν ∈ P (∂U) as ν = ν1 + ν2 where νi = ν|Γi

,
i = 1, 2. Then

W1(δx, ν) =

∫
∂U
d(x, y) dν(y) =

∫
Γ1

d(x, y) dν1(y) +

∫
Γ2

d(x, y) dν2(y)

≥ d(x,Γ1)ν1(Γ1) + d(x,Γ2)ν2(Γ2)

= W1(δx1 , βδx1 + (1− β)δx2),

where β = ν1(Γ1). We thus have

1

λ∞
= max

x∈Ū
inf

0≤β≤1
βd(x,Γ1) + (1− β)d(x,Γ2) +

1− β
α

.

We deduce theorem 2 noticing that for any x ∈ Ū , the inf in β is{
d(x,Γ2) + 1

α if d(x,Γ1)− d(x,Γ2)− 1
α ≥ 0 i.e. x ∈ A

d(x,Γ1) otherwise.
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