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Abstract. In this paper we study the limit as p → ∞ in a
PDE problem involving the p−Laplacian with a right hand side,
−div(|Du|p−2Du) = f , with mixed boundary conditions, u = 0 on
Γ and |Du|p−2 ∂u

∂ν
= 0 on ∂Ω \ Γ. We find that this limit is related

to an optimal mass transport problem, where the total mass given
by f is transported outside the domain through a given window
on the boundary Γ.

1. Introduction.

The main goal of this article is to study the limit as p → ∞ in a
PDE problem involving the p−Laplacian, −div(|Du|p−2Du) = f , with
mixed boundary conditions, u = 0 on Γ and |Du|p−2 ∂u

∂ν
= 0 on ∂Ω \ Γ,

and to connect it with the following mass transport problem: given
an amount of material inside a domain, look for the optimal way to
transport it outside through a given window on the boundary of the
domain.

To formalize this transport problem let f ≥ 0 be a probability density
and let Ω be a convex smooth domain with supp(f) ⊂ Ω. Let Γ a

smooth submanifold of ∂Ω (the window) such that if Γ ∩ ∂Ω \ Γ 6= ∅
then is a smooth N−2-dimensional manifold. More precisely, it suffices
with C1 regularity for most of the results in this paper, except for taking
limits in viscosity sense, where we need continuity of the normal vector
field in ∂Ω \ Γ.

We want to determine the most efficient way of transport f(x) dx
to the window Γ with linear cost; that is, we want to find a function
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T : supp(f) → Γ in such a way that T minimizes

L(T ) =

∫

Ω

|x− T (x)|f(x) dx.

It turns out that this problem has a very simple solution. Just take as
T (x) a point in Γ that realizes the distance; that is, define

T (x) = y, for some y such that y ∈ Γ, dist(x,Γ) = dist(x, y).

Next, we consider a natural way to approximate this problem by
taking the limit as p → ∞ of some PDEs involving the p−Laplacian.
We will not need to assume any sign condition on f , but simply that
f is bounded.

We will study the limit as p→ ∞ of solutions to the problems

(1.1)











−∆pu = f in Ω,

|Du|p−2 ∂u
∂ν

= 0 on ∂Ω \ Γ,

u = 0 on Γ.

Here ∂
∂ν

is the outer normal derivative. It is worthy to point out that

the solution up ∈ C1,α(Ω) ∩ Cβ(Ω) for some 0 < α < 1 and 0 < β < 1
2
.

This regularity on the interface between both boundary conditions is
optimal. See [17].

Solutions to this problem can be easily obtained from a variational
argument. In fact, let us consider

(1.2) max

{
∫

Ω

wf dx : w ∈W 1,p(Ω), w|Γ = 0, ‖Dw‖Lp(Ω) ≤ 1

}

.

From a compactness argument it is easy to check that the maximum
is attained and gives a solution to (1.1), up to a Lagrange multiplier.
Our first result says that there is a natural variational limit problem
as p→ ∞.

Theorem 1. The maximizers of (1.2) up converge as p → ∞ along

subsequences uniformly in Ω to u∞, which is a maximizer of

(1.3) max

{
∫

Ω

wf dx : w ∈W 1,∞(Ω), w|Γ = 0, ‖Dw‖L∞(Ω) ≤ 1

}

.

This function u∞ is a solution to the dual mass transport Kan-
torovich problem of f+ to f−, or to the window Γ, according to the
relative mass position between themselves and the boundary. The
transport set being given by the union of transport rays that goes
from supp(f+) or Γ to supp(f−) or Γ and are given by segments on
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which the gradient of u∞ has modulus exactly one (see [9] for a more
precise description of the transport set and rays).

Going back to our original motivation, when f is nonnegative the
transport rays are segments along which the distance to the window Γ
is realized. Hence u∞ coincides with the distance to Γ in the transport
set (see Remark 2.2). In this case we also have uniqueness of the limit
and therefore the limit lim

p→∞

up exists (see Remark 2.3).

We want to pass to the limit in a PDE verified by up. To this end
we note that weak solutions to (1.1) are also weak solutions to

(1.4)

{

−∆pu = f in Ω,

|Du|p−2 ∂u
∂ν

= µp on ∂Ω,

where µp is a measure supported in Γ defined by
∫

Ω

|Du|p−2DuDϕdx−

∫

Ω

fϕ dx =

∫

Γ

ϕdµp

for every ϕ ∈ C1(Ω). See section 3 below.

Our next aim is to pass to the limit in this weak formulation. In
particular we will see that µp converges weakly to a measure supported
on Γ.

Although the result is independent of a sign condition on f we will
assume by simplicity f is nonnegative. Hence u is nonnegative and
then we get that µp has a sign, µp ≤ 0.

Theorem 2. As p → ∞, weak solutions to (1.1), up, converge uni-
formly in Ω along subsequences to u∞, a weak solution of

(1.5)











−div(a(x)Du) = f, in Ω,

a(x)∂u
∂ν

= 0, on ∂Ω \ Γ,

u = 0 on Γ.

Here the function a(x) is determined by the fact that the weak limit of
|Dup|

p−2Dup, that can be written as a(x)Du.

Moreover, the measures µp converges weakly along subsequences to a
measure µ supported on Γ and it holds that

(1.6)

∫

Ω

a(x)Du(x)Dϕ(x) dx−

∫

Ω

f(x)ϕ(x) dx =

∫

Γ

ϕ(x) dµ,

for all ϕ ∈ C1(Ω).
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Note that u is also a solution to

(1.7)







−div(a(x)Du) = f, in Ω,

a(x)
∂u

∂ν
= µ, on ∂Ω,

that can be obtained (as in Theorem 1) as a maximizer of

(1.8) max
w∈W 1,∞(Ω)

{
∫

Ω

wf dx−

∫

∂Ω

w dµ : w|Γ = 0, ‖Dw‖L∞(Ω) ≤ 1

}

.

In general, this last maximization problem is the dual problem associ-
ated to the optimal mass transport between f+dx+ µ− to f−dx+ µ+.
If f is nonnegative then µ is nonpositive and we get a solution to the
transport problem between f and µ supported on Γ ⊂ ∂Ω.

Taking ϕ = 1 in (1.6) we get the mass balance

−

∫

Ω

f dx =

∫

∂Ω

dµ,

that is the natural condition when dealing with transport problems.

Remark 1.1. If
∫

Ω
f 6= 0 then µ 6= 0. But the case

∫

Ω
f = 0 is very

sensitive to the boundary conditions and the geometry associated to the
problem. Indeed, in this case we can force the transport from f+ to f−

by prescribing Γ = ∅, i.e.,

(1.9)







−∆pup = f in Ω,

|Dup|
p−2∂up

∂ν
= 0 on ∂Ω,

normalizing by
∫

Ω
up = 0. This is a different approach to the transport

problem that the one in [9], where Dirichlet boundary conditions in a
sufficiently large ball are considered.

However, we can prescribe mixed boundary conditions, and then it
may happen that µ = 0 or not depending on the geometric configuration
of the data f+, f−, Ω and Γ. For example, in [9] it is shown that,
even if Γ = ∂Ω, it can happen that µ = 0. Actually this occurs for
a sufficiently large ball for fixed compactly supported f . Notice that
this means that the window is very far away and therefore the optimal
transport is realized between f+ and f−.

However, if we let f+ and f− be far away from each other but con-
centrated near Γ we can easily see that we have µ 6= 0 regardless that
∫

Ω
f 6= 0 or not.
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Now, we turn our attention to the PDE verified by the limit in the
viscosity sense. The precise definition of solution in the viscosity sense
is given in section 3 below.

Theorem 3. Given a continuous function u∞ which is the uniform
limit of some sequence {up} of weak solutions to (1.1), we have in the
viscosity sense:

|Du∞| ≤ 1 ; and − |Du∞| ≥ −1,

and moreover,

∆∞u∞ = 0, in Ω \ supp(f)

min{|Du∞| − 1,−∆∞u∞} = 0 in {f > 0}o

max{1 − |Du∞|,−∆∞u∞} = 0 in {f < 0}o

−∆∞u∞ ≥ 0, in Ω ∩ ∂{f > 0} \ ∂{f < 0},

−∆∞u∞ ≤ 0, in Ω ∩ ∂{f < 0} \ ∂{f > 0},

together with the boundary conditions

u∞ = 0, on Γ,

∂u∞
∂ν

= 0, on ∂Ω \ Γ.

Let us end the introduction with a brief discussion on some of the
existing bibliography. That limits to p−Laplacians are related to mass
transport problems was first noticed in [9] and later used in many differ-
ent contexts, for example, see [1], [5], [10], the book [18] and references
therein. See the recent references [10], [11], [12] for other papers deal-
ing with limits as p → ∞ with different boundary conditions. In [13]
the limit as p→ ∞ for the Dirichlet problem was studied with special
emphasis on conditions that guarantee uniqueness of the limit. On the
other hand, the infinity Laplacian has many applications and has at-
tracted a fair amount of attention in recent years; see for example the
survey [2]. Recently, problems involving the infinity Laplacian show a
connection between PDEs and probability theory, see [6] and [16].

The rest of the paper is organized as follows: in Section 2 we deal
with the variational setting and prove Theorem 1. In Section 3 we deal
with the weak formulation (Theorem 2). Finally in Section 4 we look
at the PDE satisfied by the limit, proving Theorem 3.
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2. Variational setting. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. First, we note that
limits of the solutions to the maximization problem (1.2) coincide with
limits of the solutions to the corresponding PDE (1.1) when p → ∞.
In fact, the unique maximizer of (1.2), up, is a weak solution to

(2.1)















−∆pup = λpf in Ω,

|Dup|
p−2∂up

∂ν
= 0 on ∂Ω \ Γ,

up = 0 on Γ,

where λp is a Lagrange multiplier. If we take

ũp = (λp)
−1/(p−1)up

we get a solution to (1.1), that is,














−∆pũp = f in Ω,

|Dũp|
p−2∂ũp

∂ν
= 0 on ∂Ω \ Γ,

ũp = 0 on Γ.

From the weak form of (2.1) and our previous results we get

lim
p→∞

λp = lim
p→∞

(
∫

Ω

fup

)

−1

=

(
∫

Ω

fu∞

)

−1

6= 0.

Therefore,

lim
p→∞

ũp = lim
p→∞

(λp)
−1/(p−1)up = lim

p→∞

up,

and we conclude that the limit points of weak solutions to (1.1) and
the maximizers of (1.2) as p→ ∞ coincide.

Proof of Theorem 1. We use ideas from [10], but we include some de-
tails for the reader’s convenience. Since weak solutions and maximizers
give the same limit, we can consider a sequence {up} of solutions to
(1.1). First, we derive some estimates on the family up. We have,

(2.2)

∫

Ω

|Dup|
p =

∫

Ω

up f ≤

(
∫

Ω

|up|
p

)1/p (
∫

Ω

|f |p
′

)1/p′

where p′ is the exponent conjugate to p, that is 1/p′ + 1/p = 1. Recall
the following Sobolev inequality, see for example [8],

∫

Ω

|φ|p ≤ Cp

(
∫

Ω

|Dφ|p
)

,
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where C is a constant that does not depend on p and φ vanishes on Γ.
Going back to (2.2), we get,

∫

Ω

|Dup|
p ≤

(
∫

Ω

|f |p
′

)1/p′

C1/pp1/p

(
∫

Ω

|Dup|
pdx

)1/p

.

On the other hand, for large p we have

|up(x) − up(y)| ≤ Cp|x− y|
1−
N

p
(

∫

Ω

|Dup|
pdx

)1/p

.

Since we are assuming that up = 0 on Γ, we may choose a point y ∈ Γ
such that up(y) = 0, and hence

|up(x)| ≤ C(p,Ω)

(
∫

Ω

|Dup|
pdx

)1/p

.

The arguments in [8], pages 266-267, show that the constant C(p,Ω)
can be chosen uniformly in p. Hence, we obtain

∫

Ω

|Dup|
p ≤

(
∫

∂Ω

|g|p
′

)1/p′

C1/pp1/p(Cp
2 + 1)1/p

(
∫

Ω

|Dup|
pdx

)1/p

,

with constants independent of p.

Taking into account that p′ = p/(p− 1), for large values of p we get

(
∫

Ω

|Dup|
p

)1/p

≤ αp

(
∫

Ω

|f |p
′

)1/p

where αp → 1 as p→ ∞. Next, fix m, and take p > m. We have,

(
∫

Ω

|Dup|
m

)1/m

≤ |Ω|

1

m
−

1

p
(

∫

Ω

|Dup|
p

)1/p

≤ |Ω|

1

m
−

1

p
(

∫

Ω

|f |p
′

)1/p

,

where |Ω|

1

m
−

1

p → |Ω|

1

m as p→ ∞. Hence, there exists a weak limit
in W 1,m(Ω) that we will denote by v∞. This weak limit has to verify

(
∫

Ω

|Dv∞|m
)1/m

≤ |Ω|1/m.

As the above inequality holds for every m, we get that v∞ ∈W 1,∞(Ω)
and moreover, taking the limit m→ ∞,

|Dv∞| ≤ 1, a.e. x ∈ Ω.
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Now let us prove that the subsequence upi
converges to v∞ uniformly

in Ω. From our previous estimates we know that
(

∫

Ω

|Dup|
pdx

)1/p

≤ C,

uniformly in p. Therefore we conclude that up is bounded (indepen-
dently of p) and has a uniform modulus of continuity. Hence up con-
verges uniformly to v∞.

Now we are ready to finish the proof of Theorem 1. We have

lim
p→∞

∫

Ω

|Dup|
p = lim

p→∞

∫

Ω

upf =

∫

Ω

v∞f.

If we multiply (1.1) by a test function w, we have, for large enough p,
∫

Ω

wf ≤

(
∫

Ω

|Dup|
p

)(p−1)/p (
∫

Ω

|Dw|p
)1/p

≤

(
∫

Ω

v∞f + δ

)(p−1)/p (
∫

Ω

|Dw|p
)1/p

.

As the previous inequality holds for every δ > 0, passing to the limit
as p→ ∞ we conclude,

∫

Ω

wf ≤

(
∫

Ω

v∞f

)

‖Dw‖∞.

Hence, the function v∞ verifies,
∫

Ω

v∞f = max

{
∫

Ω

wf : w ∈W 1,∞(Ω), w|Γ = 0, ‖Dw‖∞ ≤ 1

}

,

This ends the proof. �

On the other hand, taking as a test function in the maximization
problem v∞ itself we obtain the following corollary.

Corollary 2.1. If f 6≡ 0, then ‖Dv∞‖L∞(Ω) = 1.

When f is nonnegative, we can obtain additional information about
the structure and uniqueness of the limit.

Remark 2.2. Let w ∈ W 1,∞(Ω) be any function such that w|Γ = 0
and ‖Dw‖L∞(Ω) ≤ 1. Then,

w(x) ≤ dist(x,Γ),

and hence, for any f ≥ 0, we have,
∫

Ω

w(x)f(x) dx ≤

∫

Ω

dist(x,Γ)f(x) dx
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As dist(x,Γ) is an admisible function in the maximization problem (1.3)
we conclude that a maximizer u∞ verifies,

u∞(x) = dist(x,Γ)

in the union of the segments that join x ∈ supp(f) with a point y ∈ Γ
that realizes dist(x,Γ).

Remark 2.3. When f ≥ 0 we have uniqueness of the limit. To see
this, we use the fact that any solution to the mass transport problem
verifies

(2.3) |Du∞| = 1

in the transport set T (remark that we have Γ ∩ T 6= ∅). Therefore, if
we have two limits u∞ and v∞ of the the family of solutions to (1.1),
up, we can consider

w∞ =
u∞ + v∞

2
.

By (2.3) we obtain that

|Dw∞| =

∣

∣

∣

∣

u∞ + v∞
2

∣

∣

∣

∣

= 1,

and hence we conclude that

u∞ = v∞ + C

in T . As Γ ∩ T 6= ∅ we conclude that C = 0 (since u∞ = v∞ = 0 on
Γ). This property can be extended to the whole Ω using the uniqueness
for the mixed problem for the infinity Laplacian, recently proved in [6].

Therefore we conclude that the limit is unique and hence there exists
the limit limp→∞ up = u∞.

3. Weak formulations. Proof of Theorem 2

In this section we pass to the limit in the weak form of the equation
(1.4) and prove Theorem 2. Notice that it is not obvious, since we have
to justify that we get in the limit as p→ ∞ a measure µ supported on
the boundary.

Proof of Theorem 2. Recall that we are considering the case f ≥ 0.
If Γ ∩ ∂Ω \ Γ = ∅ (thus, ∂Ω is a disconnected set), solutions up are
C1,α(Ω), and we obtain the result by using the same arguments as

section 2 in [9]. However the general case, i.e. Γ∩∂Ω \ Γ 6= ∅ a smooth
N − 2-dimensional manifold, is different. Notice that in the latter
case we have a threshold of regularity for the corresponding mixed
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problem. More concretely, if up is the solution to problem (1.1) then
up ∈ C1,α(Ω) ∩ Cβ(Ω) for some β < 1/2, see [17].

Fix the solution up and define the following linear continuous oper-
ator

(3.1)
Lp : C1(Ω) → R

ϕ→

∫

Ω

|Dup|
p−2DupDϕdx−

∫

Ω

fϕ dx

Lp is a distribution compactly supported in Γ that is (formally) repre-
sented by

(3.2) Lp(ϕ) =

∫

Γ

ϕ|Dup|
p−2∂up

∂η
dσ

where η is the outwards normal to Γ and dσ is the surface measure
in Γ. At this point, it is necessary to justify the existence of a limit
measure when p→ ∞.

The uniform estimate for p > N

‖up‖L∞(Ω) < C,

could be obtained in a similar way as in the Dirichlet problem case.
To obtain the boundary estimates we argue by approximation, first for
fixed p and then for p→ ∞.

Consider Xp = |Du|p−2Du and

Ωǫ = {x ∈ Ω | dist(x,Γ) ≥ ǫ},

which for suitable ǫ > 0 small is a tubular neighborhood of Γ union
with some regular open set. Call Γǫ = {x ∈ Ω | dist(x,Γ) = ǫ}. Then
for all ϕ ∈ C1(Ω),

∫

Ωǫ

XpDϕdx−

∫

Ωǫ

fϕ dx =

∫

Γǫ

ϕ|Dup|
p−2∂up

∂ηǫ

dσǫ ≡

∫

Γǫ

ϕGp,ǫ dσǫ.

The function a(x) appears in a similar way as in [9], by the uniform L∞

estimate. As Gp,ǫ in particular belongs to L1(Γǫ), defines a measure in
Ω concentrated in Γǫ. Notice that taking ϕ = 1 and taking into account
that f ≥ 0,

−

∫

Γǫ

Gp,ǫ dσǫ =

∫

Ω

f dx,

and Gp,ǫ has a sign. In other words the measures

µǫ,p = χΓǫ
Gp,ǫ ⇀ µp, ǫ→ 0
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weakly in the sense of measures. Then, we also have that the total
variation is bounded, since

|dµp| ≤ lim inf
ǫ→0

|dµǫ,p| =

∫

Ω

f dx.

Hence up to a subsequence we find a measure µ concentrated in Γ such
that

µp ⇀ µ, weakly in the sense of measures.

As a consequence in the limit we have the representation
∫

Ω

a(x)DuDϕdx−

∫

Ω

fϕ dx =

∫

Γ

ϕdµ, ∀ϕ ∈ C1(Ω).

where a(x) is bounded in any compact subset of Ω disjoint with Γ, and
is in all Lr(Ω), 1 ≤ r <∞. �

We will analyze the structure of the measure µ in order to better
understand the associated optimal transport problem.

Given a point z ∈ Γ, we consider

Lz = {x ∈ Ω | dist(x,Γ) = dist(x, z)},

we consider the following classification of Γ and Ω,

(1)

Γ1 =

{

z ∈ Γ |

∫

Lz

dx = 0

}

,

Ω1 =
{

x ∈ Ω | ∃z ∈ Γ1, dist(x,Γ) = dist(x, z)
}

.

(2)

Γ2 =

{

z ∈ Γ |

∫

Lz

dx > 0

}

,

Ω2 =
{

x ∈ Ω | ∃z ∈ Γ2, dist(x,Γ) = dist(x, z)
}

.

By a geometric argument it is not difficult to see that Γ∩∂Ω \ Γ = Γ2

if the boundary and the interface Γ ∩ ∂Ω \ Γ are smooth.

Recall that any admissible transport function s satisfies the local
conservation of mass property

µ(E) =

∫

s−1(E)

f dx, ∀E ⊂ Γ.

In particular, in our case the transport function T is given by the rays
joining a point of Ω with the point of Γ which realizes the distance,
and hence we get



12 J. GARCIA-AZORERO, J. J. MANFREDI, I. PERAL AND J.D. ROSSI

i) If p ∈ Γ1 then µ(p) = 0, thus, µ is absolutely continuous with
respect to the area measure on Γ1 and then it could be repre-
sented by a element of L1(Γ1).

ii) If p ∈ Γ2 then µ(p) < 0 if supp(f)∩Ω2 6= ∅. So it is possible to

have a mass concentration on points of the interface Γ∩∂Ω \ Γ.

4. Viscosity setting. Proof of Theorem 3

Following [3] let us recall the definition of viscosity solution taking
into account general boundary conditions.

Assume

F : Ω × R
N × S

N×N → R

a continuous function. The associated equation

F (x,Du,D2u) = 0

is called (degenerate) elliptic if

F (x, ξ,X) ≤ F (x, ξ, Y ) if X ≥ Y.

Definition 4.1. Consider the boundary value problem

(4.1)

{

F (x,Du,D2u) = 0 in Ω,
B(x, u,Du) = 0 on ∂Ω.

(1) A lower semi-continuous function u is a viscosity supersolution
if for every φ ∈ C2(Ω) such that u−φ has a strict minimum at
the point x0 ∈ Ω with u(x0) = φ(x0) we have: If x0 ∈ ∂Ω, we
have the inequality

max{B(x0, φ(x0), Dφ(x0)), F (x0, Dφ(x0), D
2φ(x0))} ≥ 0

and if x0 ∈ Ω then we require

F (x0, Dφ(x0), D
2φ(x0)) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for ev-
ery ψ ∈ C2(Ω) such that u − ψ has a strict maximum at the
point x0 ∈ Ω with u(x0) = ψ(x0) we have: If x0 ∈ ∂Ω the
inequality

min{B(x0, ψ(x0), Dψ(x0)), F (x0, Dψ(x0), D
2ψ(x0))} ≤ 0

holds, and if x0 ∈ Ω then we require

F (x0, Dψ(x0), D
2ψ(x0)) ≤ 0.

(3) Finally, u is a viscosity solution if it is a super and a subsolu-
tion.
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In the sequel, we will use the same notation as in the definition: φ
stands for the test functions touching from below the graph of u, and
ψ stands for the test functions touching from above the graph of u.

First, we point out that the arguments in [4] could be used to prove
the following lemma.

Lemma 4.2. Given a continuous function u∞ which is the uniform
limit of some sequence {up} of weak solutions to (1.1), we have in the
viscosity sense:

|Du∞| ≤ 1 ; and − |Du∞| ≥ −1 .

On the other hand, at level p we can pass from weak solutions to
solutions in the sense of viscosity:

Lemma 4.3. Let up be a continuous weak solution of (1.1) for p > 2.
Then up is a viscosity solution to (1.1).

Proof. It follows by the same arguments used in [10], Lemma 2.3. �

Proof of Theorem 3. Let us call ω the support of f .

Next, to look for the equation that u∞ satisfies in the viscosity sense,
assume that u∞ − φ has a strict minimum at x0 ∈ Ω. Depending on
the location of the point x0 we have different cases.

First, suppose that x0 ∈ Ω \ ω. By the uniform convergence of upi

to u∞ there exists points xpi
such that upi

− φ has a minimum at xpi

with xpi
∈ Ω \ ω for pi large. Using that upi

is a viscosity solution to
(1.1) we obtain

−∆pφ(xpi
) = −div(|Dφ|pi−2Dφ)(xpi

) ≥ 0.

Therefore

−(pi − 2)|Dφ|pi−4∆∞φ(xpi
) − |Dφ|pi−2∆φ(xpi

) ≥ 0.

If Dφ(x0) = 0 we get −∆∞φ(x0) = 0. If this is not the case, we have
that Dφ(xpi

) 6= 0 for large i and then

−∆∞φ(xpi
) ≥

1

pi − 2
|Dφ|2∆φ(xpi

) → 0, as pi → ∞.

We conclude that

(4.2) −∆∞φ(x0) ≥ 0.

That is, u∞ is a viscosity supersolution of −∆∞u∞ = 0 in Ω \ ω.

The fact that it is a viscosity subsolution of −∆∞u∞ = 0 in Ω \ω is
completely analogous, using a test function ψ such that u∞ − ψ has a
strict maximum at x0.
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Now, assume that x0 ∈ ω lies in {f > 0}o. Then the sequence xi

also lies in {f > 0}o for large i and hence, we get

−(pi − 2)|Dφ|pi−4∆∞φ(xpi
) − |Dφ|pi−2∆φ(xpi

) ≥ f(xpi
) > 0.

Taking limits this means that

|Dφ(x0)| ≥ 1 and − ∆∞φ(x0) ≥ 0.

That is,

min{|Dφ(x0)| − 1,−∆∞φ(x0)} ≥ 0.

Next, suppose that u∞−ψ has a strict maximum at the point x0. Then
the same arguments as before leads to

−(pi − 2)|Dψ|pi−4∆∞ψ(xpi
) − |Dψ|pi−2∆ψ(xpi

) ≤ f(xpi
)(> 0).

In this case, this means that either

|Dψ(x0)| ≤ 1,

either

|Dψ(x0)| > 1 and − ∆∞ψ(x0) ≤ 0.

That is,

min{|Dψ(x0)| − 1,−∆∞ψ(x0)} ≤ 0.

Therefore, we get that the equation that u∞ satisfies in the sense of
viscosity in the set {f > 0}o is:

min{|Du∞| − 1,−∆∞u∞} = 0.

In an analogous way we obtain

max{1 − |Du∞|,−∆∞u∞} = 0 for x ∈ {f < 0}o,

in the viscosity sense.

The next case to consider, is when f(x0) = 0 and the point x0 can
be reached as a limit of points xpi

that could be contained in the region
{f > 0} or in the region {f = 0}. In other words, x0 ∈ Ω ∩ ∂{f >
0} ∩ (∂{f < 0})C .

In this case, if we consider a test function φ touching from below the
graph of u∞ at x0, then we get a sequence {xpi

} converging to x0, such
that upi

− φ has a strict minimum at xpi
. Passing to a subsequence if

necessary, we have two possibilities: either f(xpi
) = 0, or f(xpi

) > 0.
If we assume f(xpi

) = 0, then

−(pi − 2)|Dφ|pi−4∆∞φ(xpi
) − |Dφ|pi−2∆φ(xpi

) ≥ 0.

Then, if |Dφ(xpi
)| 6= 0 it follows that −∆∞φ(x0) ≥ 0. On the other

hand, if |Dφ(xpi
)| = 0 for infinitely many indexes, then −∆∞φ(x0) = 0.
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If we assume f(xpi
) > 0, then |Dφ(xpi

)| 6= 0 and therefore passing
to the limit we get −∆∞φ(x0) ≥ 0.

Concerning the test functions ψ touching from above the graph of
u∞, when f(xpi

) = 0, then we have

−(pi − 2)|Dψ|pi−4∆∞ψ(xpi
) − |Dψ|pi−2∆ψ(xpi

) ≤ 0.

This implies that −∆∞ψ(x0) ≤ 0. But if f(xpi
) > 0, then, as in a

previous case, we get that min{|Dψ(x0)|−1,−∆∞ψ(x0)} ≤ 0, and this
condition is always satisfied because |Du∞| ≤ 1 .

As a conclusion, if x0 ∈ Ω∩ ∂{f > 0}∩ (∂{f < 0})C , we have in the
sense of viscosity that −∆∞u∞ ≥ 0 (jointly with the general viscosity
estimates on the gradient, valid in all Ω).

In an analogous way, if x0 ∈ Ω∩ (∂{f > 0})C ∩∂{f < 0}, we have in
the viscosity sense that −∆∞u∞ ≤ 0 (jointly with the general viscosity
estimates on the gradient, valid in the whole domain Ω).

The next region consists on the points x0 ∈ Ω that can be reached
as limits of sequences contained either in {f > 0}, either in {f = 0},
either in {f < 0}. That is, x0 ∈ Ω ∩ ∂{f > 0} ∩ ∂{f < 0}. The same
arguments as before give us that in this set the equation satisfied in
the sense of viscosity is simply |Du∞| ≤ 1 and −|Du∞| ≥ −1.

Finally, we look at the boundary conditions satisfied by u∞ in the
viscosity sense.

It is clear that u∞ = 0 on Γ.

For x0 ∈ ∂Ω \ Γ, with the same notations as before, the sequence
xi can be contained inside Ω (and in this case the previous arguments
give the desired inequality), or it is contained on the boundary ∂Ω \Γ.
In this last case, taking into account the results in [3], the boundary
condition at level p in the viscosity sense gives just

∂φ

∂ν
(xi) ≥ 0.

Therefore, passing to the limit, we get

∂φ

∂ν
(x0) ≥ 0.

In an analogous way we can deal with the reverse inequalities, obtaining

∂u∞
∂ν

(x) = 0 for x ∈ ∂Ω \ Γ,

in the viscosity sense. �
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