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Abstract
We study the p-fractional optimal design problem under volume constraint taking special care of the

case when p is large, obtaining in the limit a free boundary problem modeled by the Hölder Infinity
Laplacian operator. A necessary and sufficient condition is imposed in order to obtain the uniqueness of
solutions to the limiting problem, and, under such condition, we find precisely the optimal configuration
for the limit problem. We also prove the optimal regularity (locally C0,s) for any limiting solution. Fi-
nally, we establish some geometric properties for solutions and their free boundaries.
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1 Introduction

In the modern mathematical theory of optimization an Optimal Design Problem under a volume con-
straint can be described as follows: Let Ω ⊂ RN be a smooth and bounded domain and 0 < α < LN(Ω) a
fixed quantity. For example, one can think about the quantity of insulating material/substance to be used
in the best insulation configuration for a “body” with prescribed volume. The problem is to find a best
configuration O ⊂Ω such that minimizes a cost functional associated to a quantitative process (a mapping
u), under the prescription of the maximum volume to be used, in others words,

min
{
Jα [uΞ]

∣∣ uΞ : Ω→ R+, Ξ⊂Ω such that 0 < LN(Ξ)≤ α
}
,

where in several situations of applied mathematics the variational functional Jα [uΞ] has an integral rep-
resentation, whose involved functions are linked to the competing configuration Ξ via a prescribed PDE.
Notice that some examples of such minimization problems come from the calculus of variations and opti-
mal control theory: In elliptic PDEs (eigenvalue problems with geometric constraints, shape optimization
problems with constrained perimeter or volume), optimal design of semiconductor devices and problems
in structural optimization, just to mention a few.

Concerning optimization problems with volume constraints the pioneering work is the paper [1], where

the authors minimize Jα [vΞ] =
∫

Ω

|∇vΞ|2dx with prescribed volume of the set Ξ = {u = 0}. By considering

the minimization problem

min
{∫

Ω

∆udx
∣∣ 0≤ u ∈ H1(Ω), ∆u = 0 in {u > 0}∩Ω, u = g on ∂Ω and LN({u > 0}∩Ω)≤ α

}
,
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in [2] it is studied the shape optimization problem in heat conduction (u is the temperature in Ω) with
non-constant prescribed temperature distribution g. The nonlinear counterpart for such optimal design
problems, under non-constant temperature distribution, have been developed in [23] and [24]. On the
other hand, optimal design problems governed by degenerate/singular quasi-linear operators just have
appeared recently in the literature. Independently, [7] and [18] treated the p-Laplacian case, whose cost

functional is Jα [vΞ] =
∫

Ω

|∇vΞ|pdx with prescribed volume of set Ξ = {u > 0} (cf. [25] for other consider-

ations about nonlinear problems in rough inhomogeneous media governed by degenerate elliptic operators
L[u] = div(A(x,∇u)) of p-Laplacian type). The previous overview summarizes the mathematical journey
in the local setting.

Recently, the study of optimal design problems driven by fractional diffusion operators was successfully
developed. The starting point of this research has been the following minimization problem
(1.1)

min
{∫

RN

∫
RN

|u(x)−u(y)|2

|x− y|N+2s dxdy
∣∣ u ∈W s,2 (RN) , u = ϕ in D⊂ RN and LN({u > 0}∩Dc) = α

}
.

Recall that, minimizers to (1.1) satisfy

(1.2) (−∆)su(x) :=CN,s.P.V.
∫
RN

u(x)−u(y)
|x− y|N+2s dy = 0 in {u > 0}∩Dc,

where (−∆)s is the well-known Fractional Laplacian operator, s ∈ (0,1), P.V. means the Cauchy principal
value and CN,s is a normalizing constant.

In [26] the authors investigated the variational formulation of problem (1.2) and strongly rely on the ex-
tension formula by Caffarelli-Silvestre (based on the Dirichlet-to-Neumann operator) given in [11]. More-
over, inspired by devices and results that comes from [9] they were able to obtain optimal regularity of
minimizers (C0,s regularity estimates), the s-Hölder growth away from the free boundary and the positive
density of {u > 0} and {u = 0} along the free boundary. Particularly, this implies that blow-up limits
have non-trivial free boundaries and that free boundaries can not form cusps (cf. [9] for a survey to Alt-
Caffarelli’s theory for one-phase problems in the non-local setting).

Those previous studies are the starting point for the present work in the setting of fractional diffusion
operators with p-Laplacian structure. Thus, let us consider the minimizing problem for the p-fractional en-
ergy with a positive data g prescribed outside Ω and a restriction on the maximum volume of the support of
the involved functions inside Ω. From a mathematical point of view we consider the optimization problem:

(Ps
p) Ls

p[α] = min
{
[v]W s,p(RN)

∣∣ v ∈W s,p (RN) , v = g in RN \Ω and LN({v > 0}∩Ω)≤ α

}
.

Physically speaking, taking into account long-range interactions a model for the problem becomes more
accurate when governed by nonlocal operator such as the p-fractional Laplacian.

Existence of a minimizer follows easily by the direct method in calculus of variations. Moreover, recall
that any minimizer up is a solution to the following Dirichlet problem driven by fractional p-Laplacian
operator

(1.3)

{
−(−∆RN )

s
p up(x) = 0 in {up > 0}∩Ω

up(x) = g(x) on RN \Ω,

where

(−∆RN )
s
p up(x) :=CN,s,p.P.V.

∫
RN

|up(y)−up(x)|p−2(up(y)−up(x))
|x− y|N+ps dy.

In the present paper, we are interested in the asymptotic behavior, as p→ ∞, of optimal shapes to
problem (Ps

p). The limiting configurations for p→ ∞ have been inspired by the work of the first author in
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the local setting, see [20] for details. Analytical and geometric features of a limiting free boundary reveals
asymptotic information on the optimal design problem (Ps

p). Motivated by formal considerations, we are
led to consider the following limiting configuration:

(Ps
∞) Ls

∞[α] =min

 sup
x,y∈RN

x 6=y

|v(y)− v(x)|
|x− y|s

∣∣ v ∈W s,∞ (RN) , v = g in RN \Ω and LN({v > 0}∩Ω)≤ α

 .

We prove here that any sequence of minimizers up to Ps
p converges, up to a subsequence, to a solution

u∞ of the limiting problem Ps
∞. Furthermore, we find the associated equation that u∞ verifies in its positivity

region, Ω+
∞

:= {u∞ > 0}∩Ω, that is,

−Ls
∞[u∞](x) :=−

(
sup

y∈RN

u∞(y)−u∞(x)
|x− y|s

+ inf
y∈RN

u∞(y)−u∞(x)
|x− y|s

)
= 0 in Ω

+
∞ ,

where Ls
∞[·] is the Hölder Infinity Laplacian operator. For this reason, we have the fact that u∞ is an

extremal for the nonlocal Hölder extension problem. We will show that u∞ is a minimizer for the Hölder
norm within its positivity region. This means, it minimizes the Hölder quotient in every sub-domain of Ω+

∞

when testing against functions with the same boundary data (cf. [12] and [15]). Therefore, u∞ is a Hölder-
infinity harmonic function in its positivity region. These information are present in the first theorem in this
paper.

Theorem 1.1. Let up be a minimizer to (Ps
p). Then, up to a subsequence,

up→ u∞ as p→ ∞,

uniformly in Ω and weakly in W s,q(Ω) for all 1 < q < ∞, where u∞ minimizes (Ps
∞). Furthermore, the

extremal values also converge
Ls

p[α]→ Ls
∞[α] as p→ ∞.

Finally, the limit u∞ fulfils
−Ls

∞[u∞](x) = 0 in {u∞ > 0}∩Ω,

in the viscosity sense.

We also studied uniqueness of the solution to the limit problem (note that when we have uniqueness of
the limit we have convergence of up not only along subsequences). Here the key is a geometric compati-
bility condition on the data,

(Comp. Assump.) α ≤ LN

 ⋃
y∈RN\Ω

B(
g(y)

[g]
C0,s(RN\Ω)

) 1
s
(y)∩Ω

 .

We observe that when g is constant, then (Comp. Assump.) is satisfied. This condition (Comp. Assump.)
turns out to be necessary and sufficient to obtain uniqueness of solutions to the limit problem.

Theorem 1.2. Let v∞ be given by

v∞(x) = sup
RN\Ω

(
g(y)−H]|x− y|s

)
+
.
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1. Assume that (Comp. Assump.) holds. Let H] be the unique positive number such that

Ω
] :=

⋃
y∈RN\Ω

B(
g(y)
H]

) 1
s
(y)∩Ω fulfils LN

(
Ω

]
)
= α.

Then v∞ is the unique minimizer for (Ps
∞).

2. On the other hand, assume that (Comp. Assump.) does not hold. Then there exists infinitely many
minimizers for (Ps

∞). Moreover, v∞ is the least (or minimal) solution, in the following sense v∞(x)≤
u∞(x) in Ω for any other minimizer u∞ to (Ps

∞) and verifies

{v∞ > 0}∩Ω =
⋃

y∈RN\Ω
B g(y)

H]

(y)∩Ω fulfils LN({v∞ > 0}∩Ω)< α.

Now, we state some properties of the limits of up. In the next result we don’t assume (Comp. Assump.).

Theorem 1.3. Let v∞ a uniform limit as p→ ∞ of up. Then the following properties hold:

1. C0,s regularity for minimizers. v∞ is uniformly s-Hölder continuous in Ω.

2. Strong non-degeneracy for minimizers. v∞ is strongly non-degenerate of order s, i.e., there exists
a constant c= c(N,s)> 0 such that for any fixed point x0 ∈ {v∞ > 0}∩Ω there holds

sup
Br(x0)

v∞(x)≥ crs.

3. Uniform lower positive density. Let x0 ∈ {v∞ > 0}∩Ω be an interior point. There exists a constant
c0 = c0(N,s)> 0 such that for every r� 1 there holds

LN({v∞ > 0}∩Br(x0))≥ c0rN .

4. Harnack inequality for minimizers in a touching ball. Let x0 ∈ {v∞ > 0}∩Ω be an interior point
and d := dist(x0,∂{v∞ > 0}). Then,

sup
Bτd(x0)

v∞(x)≤ C inf
Bτd(x0)

v∞(x)

for a universal constant C> 0 and for any 0 < τ < 1.

5. Uniform non-degeneracy for minimizers v∞ grows with an s-rate away from the free boundary,
i.e., for a constant c= c(N,s)> there holds

v∞(x)≥ cdist(x,∂{v∞ > 0})s ∀ x ∈ {v∞ > 0}∩Ω.

Let us also mention that we have convergence of the positivity sets (in the sense that the measure of the
symmetric difference goes to zero as p→ ∞) and also convergence of the null sets. For the proof of this
result we use some of the regularity properties obtained in Theorem 1.3.

Theorem 1.4. Let vp be a sequence of minimizers to (Ps
p). If for some subsequence, denoted by vp yet,

vp→ v∞ uniformly in Ω and weakly in W s,q(Ω) for all 1 < q < ∞, being v∞ a solution to (Ps
∞), then

lim
p→∞

LN({vp > 0}4{v∞ > 0}) = 0.

Moreover, the null sets verify

int({u∞ = 0})⊂ liminf
p→∞

{up = 0} ⊂ limsup
p→∞

{up = 0} ⊂ {u∞ = 0}.
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With the same ideas used here one can also deal with the following two optimal design problems:

(As
p) L̂s

p[α] = min
u=g in RN\Ω

LN ({v>0}∩Ω)≤α

Fs
p[v]
(
RN ,Ω

)
,

with

Fs
p[v]
(
RN ,Ω

)
:=
(∫

Ω

∫
Ω

|v(y)− v(x)|p

|y− x|N+sp dxdy+
∫
RN\Ω

∫
Ω

|g(y)− v(x)|p

|y− x|N+sp dxdy
) 1

p

.

and

(Bs
p) L̃s

p[α] = min
u=g in D

LN ({v>0}∩Ω)≤α

Gs
p[v] (Ω∪D,Ω) ,

with

Gs
p[v] (Ω∪D,Ω) :=

(∫
Ω

∫
Ω

|v(y)− v(x)|p

|y− x|N+sp dxdy+
∫

D

∫
Ω

|g(y)− v(x)|p

|y− x|N+sp dxdy
) 1

p

.

Note that in (As
p) and in (Bs

p) we do not need to ask that the exterior datum g is in W s,p(RN). In fact, it
is enough that there is an extension ug : Ω→R such that the two integrals that define Fs

p and Gs
p are finite.

We will briefly comment on the limit as p→ ∞ for these minimizations problems in the last section of this
paper.

Let us end this introduction with a brief survey on recent references concerning limits as p→ ∞ in
different p−Laplacian type problems. It has been well established (cf. [5]) that for a non-negative function
g, the corresponding weak solutions (local problem) for the p-Laplacian

(1.4)

{
−∆p up(x) = 0 in Ω

up(x) = g(x) on ∂Ω

converge for a limiting function u∞, which fulfils in the viscosity sense the following problem{
−∆∞ u∞(x) = 0 in Ω

u∞(x) = g(x) on ∂Ω,

where ∆∞ v(x) :=DvT ·DvD2v is the well known Infinity-Laplacian operator, which is associated to AMLE,
Absolutely Minimizing Lipschitz Extension, a concept was introduced by G. Aronsson in the end of sixties.
(cf. [3]).

The nonlocal counterpart of the problem (1.4), related to the fractional p-Laplacian operator is given of
the following form {

−(−∆Ω)
s
p up(x) = 0 in Ω

up(x) = g(x) on ∂Ω

and has been studied by Chambolle et al in [12]. They proved that the limiting problem as p→ ∞ is given
by {

−Ls
∞[u∞](x) = 0 in Ω

u∞(x) = g(x) on ∂Ω,

Recall that if g ∈C0,s(∂Ω) then u∞ is said to be the Optimal Hölder extension to Ω of the Hölder boundary
data g, in the following sense:

sup
x,y∈Ω

x 6=y

|u∞(y)−u∞(x)|
|x− y|s

≤ sup
x,y∈∂Ω

x 6=y

|g(y)−g(x)|
|x− y|s

.
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For this reason, the operator Ls
∞ is called the Hölder Infinity Laplacian. Moreover, in [6] it is obtained the

best Hölder extension of a function g defined in RN \Ω. Such a extension is related to solubility of the
Dirichlet problem driven by the Infinity Fractional Laplacian. Notice that such an operator arises from a
nonlocal and non-variational approach (more precisely from Tug-of-War game theory), different from the
variational treatment, see [12]. Furthermore, recently the Hölder Infinity Laplacian have also appeared in
[15], where it is studied the behaviour of solutions as p→ ∞ of the following Dirichlet problem

(1.5)

{
(−∆)s

pup(x) = f (x,u) in Ω

up(x) = g(x) on RN \Ω.

Regarding free boundary problems, the strategy of passing the limit as p→∞ in p-variational problems
in order to obtain a non-variational limiting configuration (a problem governed by the Infinity-Laplacian
operator) has been successful in many contexts of the current literature: In Bernoulli type problems [17],
optimal design problems [20], obstacle type problems [21] (See also [19] for a free boundary problem in
the context of Tug-of-War games and [22] for a limiting free boundary problem in the two-phases setting).
Furthermore, such approach allows us to use several technical features of the corresponding p-sequential
problems to their limiting points, via uniform convergence. Optimal regularity estimates, weak geometric
and measure-theoretic properties are some of these obtained features, just to mention a few. Finally, we
highlight that in this article, such a strategy will also play a key role in our approach in order to study some
properties of minimizers of the limiting minimizing problem Ps

∞.
Finally, for similar free boundary problems in the local case, that is, when we consider the p-energy∫

Ω

|∇u|p instead of p-fractional energy
∫
RN

∫
RN

|u(y)−u(x)|p

|y− x|N+sp dxdy we refer to [20]. Remark that in the

nonlocal case treated here some subtle differences appear. For instance, the singular kernel K(x,y) = |x−
y|−(N+ps) yields a significant obstacle when one looks for a bound for the family (up)p↗∞ in the W s,q

topology for all 1 < q < ∞. On the other hand, we will follow ideas from [20] when we obtain the necessary
condition that is used to pass to the limit as p→ ∞ in order to obtain the uniqueness and characterization
of limiting profile. In contrast with the local case, there is no uniform in p estimates for the free boundary.
Hence the properties of the free boundary of the limit problem and the convergence as p→ ∞ of the free
boundaries in the non-local case are based in completely different arguments.

The paper is organized as follows: in Section 2 we collect some preliminary results that will be used
latter; in Section 3 we show how to pass to the limit as p→ ∞ and deal with the uniqueness of solutions
to the limit problem (Theorem 1.2), we also include some examples in which the limit solution can be
computed explicitly; in Section 4 we collect the proofs of the properties of the limit problem stated in
Theorem 1.3 and we include here the proof of the convergence of the positivity and null sets, Theorem 1.4;
finally, in Section 5 we include some remarks on possible extensions of our results.

2 Preliminaries

From now on we establish the functional framework for our problem. For 0 < s < 1 and 1 < p < ∞ the
fractional Sobolev spaces W s,p(RN) is defined as

W s,p(RN) :=

{
u ∈ Lp(RN) :

|u(y)−u(x)|

|y− x|
N
p +s

∈ Lp(RN×RN)

}
,

whose corresponding norm is given by

‖u‖W s,p(RN) :=
[
‖u‖p

Lp(RN)
+[u]pW s,p(RN)

] 1
p
,
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where

[u]W s,p(RN) :=
(∫

RN

∫
RN

|u(y)−u(x)|p

|y− x|N+sp dxdy
) 1

p

is the so-called Gagliardo semi-norm. Furthermore, the fractional Sobolev space W s,∞(RN) is defined as
follows

W s,∞(RN) :=
{

u ∈ L∞(RN) :
u(y)−u(x)
|y− x|s

∈ L∞(RN×RN)

}
,

endorsed with the norm

‖u‖W s,∞(RN) := ‖u‖L∞(RN)+

∥∥∥∥u(y)−u(x)
|y− x|s

∥∥∥∥
L∞(RN×RN)

.

For the sake of simplicity in notation, it is convenient to designate s = γ − N
p . Consequently, γ must

satisfy that γ p > N and γ− N
p < 1 in order to ensure that s ∈ (0,1).

Finally, for Ω⊂ RN a smooth domain we define

W s,p
g (Ω) :=

{
u ∈W s,p(RN) : s = γ− N

p
and u = g on RN \Ω

}
.

Recall that W s,p(RN) is a Banach space, interpolated between Lp(RN) and W 1,p(RN) (cf. [13]). More-
over, in order to recover Lp(RN) and W 1,p(RN) as s→ 0 and s→ 1 respectively, we must consider the
norm (cf. [8]):

‖u‖W s,p(RN) :=
[
‖u‖p

Lp(RN)
+ s(1− s)[u]pW s,p(RN)

] 1
p
.

For a complete study about Fractional Sobolev spaces (without the use of interpolation theory) we recom-
mend the survey [13].

In the following we specify the notions of solutions which we will use throughout this article. For a
fixed value of 1 < p < ∞ we consider weak solutions. On the other hand, in the limiting setting, as p→ ∞,
we will use the concept of viscosity solutions.

Definition 2.1 (Weak solution). u ∈W s,p
g (Ω) is said a weak subsolution (resp. supersolution) to (1.3)

provided

X u≤ g in RN \Ω;

X For all 0≤ ϕ ∈W s,p
0 (Ω) holds

1
2

∫
RN

∫
RN

|u(y)−u(x)|p−2(u(y)−u(x))
|y− x|N+sp (ϕ(y)−ϕ(x))dxdy≤ 0 (resp. ≥ 0)

Finally, we say that u is a weak solution to (1.3) if it is simultaneously u is a weak supersolution and weak
subsolution.

Definition 2.2 (Viscosity solution). A upper (resp. lower) semi-continuous function u such that u ≤ g in
RN \Ω is said a viscosity subsolution (resp. supersolution) to (1.3) if whenever x0 ∈ Ω and ϕ ∈ C1

0(RN)

such that

X u(x0) = ϕ(x0);

X u(x)≤ ϕ(x) for x 6= x0 then

−
∫
RN

|ϕ(y)−ϕ(x0)|p−2(ϕ(y)−ϕ(x0))

|y− x|N+sp dy≤ 0 (resp. ≥ 0)



FREE BOUNDARY PROBLEMS WITH FRACTIONAL p−LAPLACIANS 8

Finally, a continuous function u is a viscosity solution to (1.3) if it is simultaneously u is a viscosity
supersolution and a viscosity subsolution.

Concerning general theory of viscosity solutions to integro-differential equations with singular kernels
we refer the reader to Barles-Imbert’s survey, [4].

Recall that the fractional Sobolev space W s,p(RN) embeds, for sufficiently large exponent p, into the
Hölder-continuous functions (cf. [13]). Such a result will play an important role in order to pass to the limit
in our problem.

Theorem 2.3 (Hölder embedding). Let 0 < s < 1, sp > N and γ = s− N
p . Then, for any u ∈W s,p(RN)

there exists a positive constant c= c(N, p,s) such that

‖u‖C0,γ (RN) ≤ c.‖u‖W s,p(RN).

The next result plays a key role in order to deduce the limiting operator as p→ ∞ in our optimization
problem.

Lemma 2.4 ([15, Lemma 6.1]). Let ϕ be a test function and xp→ x as p→ ∞. Then

Ap(ϕ(xp))→ (Ls
∞)

+[ϕ](x0) and Bp(ϕ(xp))→−(Ls
∞)
−[ϕ](x0),

where

Ap−1
p (ϕ(xp)) =

∫
RN

|ϕ(y)−ϕ(xp)|p−2(ϕ(y)−ϕ(xp))+
|y− xp|γ p dy,

Bp−1
p (ϕ(xp)) =

∫
RN

|ϕ(y)−ϕ(xp)|p−2(ϕ(y)−ϕ(xp))−
|y− xp|γ p dy,

(Ls
∞)

+[ϕ](x0) := sup
y∈RN

u∞(y)−u∞(x0)

|x0− y|s
and (Ls

∞)
−[ϕ](x0) := inf

y∈RN

u∞(y)−u∞(x0)

|x0− y|s
.

The next result ensures that continuous weak solutions to (1.5) are also viscosity solutions.

Lemma 2.5 ([15, Lemma 3.9] and [16]). Let f (x,u) be a continuous function such that f (x, ·) is nonde-
creasing. Let u ∈W s,p

g (Ω) be a weak solution to (1.5) and γ p > N. If u is continuous then it is a viscosity
solution.

Remark 2.6. Notice that if γ p > 2N then we can remove the continuity assumption in Lemma 2.5, because
Theorem 2.3 says that under this hypothesis u is a continuous function.

3 Main results. Proof of Theorems 1.1 and 1.2

Before proving our main result, let us present the notion of Optimal s-Hölder extension which plays an
important role in our studies of optimal design problems in fractional diffusion.

Definition 3.1. We say that vg ∈W s,∞(RN) is an optimal s-Hölder extension to g : RN \Ω→ R provided

X g ∈C0,s(RN \Ω);

X vg = g in RN \Ω;

X [vg]C0,s(RN) ≤ [g]C0,s(RN\Ω), where the previous s-Hölder semi-norm is defined as follows

[ω]C0,s(O) := sup
x,y∈O
x 6=y

|ω(y)−ω(x)|
|x− y|s

for any ω ∈C0(O) with O ⊂ RN .
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Now, we can proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us consider an s-Hölder extension of g, which we will denominate by vg, among
all functions in the class

(3.1) K s
∞ =

{
ϕ ∈W s,∞(RN)

∣∣ ϕ = g, in RN \Ω, LN ({ϕ > 0}∩Ω)≤ α
}
.

Since up is a minimizer to (Ps
p), then∫

RN

∫
RN

|up(y)−up(x)|p

|y− x|γ p dxdy≤
∫
RN

∫
RN

|v(y)− v(x)|p

|y− x|γ p dxdy

for all test functions v in the class

K s
p :=

{
ϕ ∈W s,p(RN)

∣∣ ϕ = g, in RN \Ω, LN ({ϕ > 0}∩Ω)≤ α
}
.

Note that vg competes in the minimization problem (Ps
p). Consequently, by using vg as a test function in

problem (Ps
p) we obtain, the following∫

RN

∫
RN

|up(y)−up(x)|p

|y− x|γ p dxdy≤
∫
RN

∫
RN

|vg(y)− vg(x)|p

|y− x|γ p dxdy.

Therefore,

(3.2)
(∫

RN

∫
RN

|up(y)−up(x)|p

|y− x|γ p dxdy
) 1

p

≤
(∫

RN

∫
RN

|vg(y)− vg(x)|p

|y− x|γ p dxdy
) 1

p

.

Furthermore, it holds that

(3.3)
(∫

RN

∫
RN

|vg(y)− vg(x)|p

|y− x|γ p dxdy
) 1

p

→ [vg]C0,s(RN) as p→ ∞.

Now our aim is to show that up→ u∞ in the W s,q weak topology, for all 1 < q < ∞ and s = γ− N
q . To

this end, fix 1 < q < ∞ such that p > q� 1. Now, let us define

S := sup
x,y∈RN

[up(y)−up(x)].

Such a quantity is well defined, because according to Hölder embedding, Theorem 2.3, we obtain for p
large enough that

‖up‖C0,σ(n,s)(RN) ≤ C(N,s)[1+ cp]
1
p

(∫
RN

∫
RN

|vg(y)− vg(x)|p

|y− x|γ p dxdy
) 1

p

→ c(N,s) sup
x,y∈RN

x 6=y

|vg(y)− vg(x)|
|y− x|s

as p→ ∞.

Hence, Arzelá-Áscoli Theorem, as well as the fact that up = g in RN \Ω, ensures us that, up to a subse-
quence,

lim
p→∞

up(z) = u∞(z) uniformly in RN .

Moreover, as up = g in RN \Ω, the limit fulfills

u∞ ∈C0(RN), with ‖u∞‖L∞(RN) ≤ c(N,s) sup
x,y∈RN

x 6=y

|vg(y)− vg(x)|
|y− x|s

and u∞ = g in RN \Ω.
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Now, we consider the set
Vγ :=

{
y ∈ RN : dist(y,Ω)γ ≤S

}
.

Since

sup
x,y∈RN

x 6=y

|u∞(y)−u∞(x)|
|y− x|s

= max

 sup
x∈Ω,y∈RN

x 6=y

|u∞(y)−u∞(x)|
|y− x|s

, sup
x,y∈RN\Ω

x 6=y

|g(y)−g(x)|
|y− x|s

 ,

by virtue of (3.2) and (3.3), we just need to analyze the first supremum. In addiction, by Fatou’s Lemma,
we have

sup
x∈Ω,y∈RN

x 6=y

|u∞(y)−u∞(x)|
|y− x|s

= lim
q→∞

(∫
Ω

∫
RN

|u∞(y)−u∞(x)|q

|y− x|γq dxdy
) 1

q

≤ lim
q→∞

liminf
p→∞

(∫
Ω

∫
RN

|up(y)−up(x)|q

|y− x|γq dxdy
) 1

q

.

Thus, we can re-write the fractional p-energy functional in the following way∫
Ω

∫
RN

|up(y)−up(x)|q

|y− x|γq dxdy =
∫

Ω

∫
Vγ

|up(y)−up(x)|q

|y− x|γq dxdy+
∫

Ω

∫
RN\Vγ

|up(y)−up(x)|q

|y− x|γq dxdy.

Applying Hölder inequality for the first integral we get

∫
Ω

∫
Vγ

|up(y)−up(x)|q

|y− x|γq dxdy ≤
(∫

Ω

∫
Vγ

|up(y)−up(x)|p

|y− x|γ p dxdy
) q

p

(LN(Ω×Vγ))
p−q

p

≤
(∫

RN

∫
RN

|vg(y)− vg(x)|p

|y− x|γ p dxdy
) q

p

(LN(Ω×Vγ))
1− q

p .

Now, analyzing the second integral we obtain∫
Ω

∫
RN\Vγ

|up(y)−up(x)|q

|y− x|γq dxdy ≤ Sq
∫
Ω

∫
|x−y|γ>S

1
|y− x|γq dxdy

= SqLN(Ω)LN−1(SN−1)
S

N−γq
γ

γq−N

=
S

N
γ LN(Ω)LN−1(SN−1)

γq−N
.

Therefore, the sequence (up)p>0 is uniformly bounded in the W s,q-topology, and its weak limit as p→ ∞,
verifies

(∫
Ω

∫
RN

|u∞(y)−u∞(x)|q

|y− x|γq dxdy
) 1

q

≤

[
[vg]

q
C0,s(RN)

.LN(Ω×Vγ)+
S

N
γ LN(Ω)LN−1(SN−1)

γq−N

] 1
q

.

Finally, taking q→ ∞ and performing a standard diagonal argument, we obtain a subsequence, which we
will be still labelled as up, that converges weakly in every W s,q(RN), for 1 < q < ∞ and s = γ− n

q , to a limit
u∞ ∈W s,∞(RN) such that

sup
x,y∈RN

x 6=y

|u∞(y)−u∞(x)|
|x− y|s

≤ sup
x,y∈RN

x 6=y

|v(y)− v(x)|
|y− x|s

,

for all functions v that belong to the set K s
∞ given in (3.1).
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Let us now estimate the Lebesgue measure of {u∞ > 0} ∩Ω. Fix an ε > 0. Thanks to the uniform
convergence, for p large enough, there holds

{u∞(x)> ε}∩Ω⊂ {up(x)> 0}∩Ω.

Hence
LN ({u∞ > ε}∩Ω)≤ LN ({up > 0}∩Ω)≤ α,

and we conclude that
LN ({u∞ > 0}∩Ω) = lim

ε→0
LN ({u∞ > ε}∩Ω)≤ α.

Therefore, we have proved that u∞ is an extremal for the limit problem (Ps
∞).

We proved that there exists a subsequence of solutions upk to (Ps
p) such that upk → u∞ uniformly as

pk→ ∞. It remains to prove that u∞ verifies

−Ls
∞[u∞](x) = 0 in {u∞ > 0}∩Ω

in the viscosity sense. To prove this fact, we argue as follows: let x0 ∈ {u∞ > 0}∩Ω and xp → x0 be a
sequence of minima for the positive functions up−ϕ and such that

ψ(x) = u∞(x)−ϕ(x)> 0

achieves a strictly minimum at x0 (for a test function ϕ). According to Lemma 2.5, for p sufficiently large,
we have

−
[
Ap−1

p (ϕ(xp))−Bp−1
p (ϕ(xp))

]
≥ 0

point-wisely (because up(xp)> 0 and up is a viscosity solution to (1.5) in {up > 0}∩Ω for f ≡ 0). There-
fore,

Bp(ϕ(xp))≥ Ap(ϕ(xp))

and by using Lemma 2.4 we obtain after passing the limit as p→ ∞ the following

−(Ls
∞)

+[ϕ](x0)≥ (Ls
∞)
−[ϕ](x0) ⇒ −Ls

∞[ϕ](x0)≥ 0.

The last one says us that u∞ is a viscosity supersolution for the Hölder Infinity Laplacian. Similarly we can
prove that u∞ is a viscosity supersolution.

Theorem 3.2 (Characterization of minimizers and their optimal sets). Assume that (Comp. Assump.)
holds, and let H] be the unique positive number such that

(3.4) Ω
] :=

⋃
y∈RN\Ω

B(
g(y)
H]

) 1
s
(y)∩Ω fulfils LN

(
Ω

]
)
= α.

Then v∞ given as 
−Ls

∞[v∞] = 0 in Ω]

v∞(x) = g(x) on RN \Ω

v∞(x) = 0 on ∂Ω]∩Ω

is the unique minimizer for (Ps
∞). Therefore, if vp minimizes (Ps

p), then vp→ v∞ as p→ ∞ uniformly in Ω

and weakly in W s,q(Ω) for all 1 < q < ∞ and also the extremal values converge Lp→ L∞ = H] as p→ ∞.
Furthermore, v∞ is given explicitly by the formula,

v∞(x) = sup
RN\Ω

(
g(y)−H]|x− y|s

)
+
.
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Proof. First of all, notice that due to assumption Comp. Assump.

[g]C0,s(RN\Ω) ≤ H].

Now, Theorem 1.1 assures the existence of at least one minimizer v∞ for problem (Ps
∞). Next, for each

point z ∈ ∂{v∞ > 0}∩Ω we have due to s-Hölder regularity of v∞ that

g(y) = v∞(y)− v∞(z)≤ [v∞]C0,s(RN)|y− z|s ∀ y ∈ RN \Ω.

Consequently,

(3.5)
⋃

y∈RN\Ω
B(

g(y)
[v∞]

C0,s(RN )

) 1
s
(y)∩Ω⊂ {v∞ > 0}∩Ω.

In particular, this means that

(3.6) LN

 ⋃
y∈RN\Ω

B(
g(y)
L]

) 1
s
(y)∩Ω

= α ≥ LN

 ⋃
y∈RN\Ω

B(
g(y)

[v∞]
C0,s(RN )

) 1
s
(y)∩Ω

 .

Moreover,

(3.7) [v∞]C0,s(RN) ≥ H].

Now, letting
Ω

] :=
⋃

y∈RN\Ω
B(

g(y)
H]

) 1
s
(y)∩Ω

we observe that v̂∞ given by 
−Ls

∞[v̂∞] = 0 in Ω]

v̂∞ = g on RN \Ω

v̂∞ = 0 on ∂Ω]∩Ω

is a competitor function for the minimization problem (Ps
∞). Hence,

[v∞]C0,s(RN) ≤ [v̂∞]C0,s(RN).

Now, consider the following barrier function Θg : RN → R+ given by

Θg(x) := sup
y∈RN\Ω

(
g(y)−H]|x− y|s

)
+
,

where we have extended g in an s-Hölder way in Ω. We affirm that

[Θg]C0,s(RN) = H].

First of all, let us show that [Θg]C0,s(RN) ≤H]. Without loss of generality select x1,x2 ∈RN and assume that

0 < Θg(x1)< Θg(x2).

Now, let x̂1, x̂2 ∈ RN \Ω such that

Θg(xi) = g(x̂i)−H]|xi− x̂i|s for i = 1,2.
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Notice that from the definition of Θg it follows that

Θg(x1)≥ g(x̂2)−H]|x1− x̂2|s.

For this fact and by using that | · |s is a distance function we get that

Θg(x2)−Θg(x1)≤ H](|x1− x̂2|s−|x2− x̂2|s)≤ H]|x1− x2|s.

Hence, this implies that [Θg]C0,s(RN) ≤ H].

Now, let us verify the reverse inequality. Given x̂ ∈Ω, there exists (xk)k∈N ⊂ RN \Ω such that

Θg(x̂) = lim
k→∞

g(xk)−H]|x̂− xk|s.

Consequently,

limsup
k→∞

Θg(xk)−Θg(x̂)
|x̂− xk|

≥ lim
k→∞

g(xk)−Θg(x̂)
|x̂− xk|

= H],

which assures that [Θg]C0,s(RN) ≥ H].
In what follows, we will check that Θg satisfies the boundary conditions. From its definition it is im-

mediate that
Θg = 0 on ∂Ω

].

Moreover, we claim that

(3.8) g(x) = sup
y∈RN\Ω

(
g(y)−H]|x− y|s

)
+
.

In fact, arguing by contradiction, we assume that (3.8) is not satisfied. This would imply there exist points
z,w ∈ RN \Ω such that

H]|z−w|< g(z)−g(w),

which implies that
H] < [g]C0,s(RN\Ω).

However, this contradicts the assumption (Comp. Assump.).
Next, we will check that Θg has the same contour conditions as v∞. Once we verified it, we know that

(3.9) [v∞]C0,s(RN) ≤ [Θg]C0,s(RN) ≤ H].

Our next aim is to show that

v∞(x) = sup
y∈RN\Ω

(
g(y)−H]|x− y|s

)
+

Indeed, assuming that this does not hold, then there exists x̂ such that

X v∞(x̂)< Θg(x̂)

By considering quotients involving x̂ and points in RN \Ω, we conclude that

[v∞]C0,s(RN) > H] ≥ [Θg]C0,s(RN),

which is clearly a contradiction, because Θg competes with v∞ in the limit optimization problem.

Therefore, both functions have the same positivity set, because

LN({v∞ > 0}∩Ω) = α = LN({Θg > 0}∩Ω)

and one set is included into the other.
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X Or v∞(x̂)> Θg(x̂).

In this case, by comparing quotients defining the s-Hölder constant with x̂ and points on the boundary
of the positivity set, we obtain

[v∞]C0,s(RN) > H] ≥ [Θg]C0,s(RN),

which contradicts the fact that v∞ is optimal for the limit optimization problem.

Finally, we conclude the proof by combining (3.5), (3.6), (3.7), (3.9) and the fact that v∞ and Θg are
Hölder infinity harmonic in Ω] with the same boundary data.

Example 3.3. Let us explore the relationship between the α-volume of the optimal set Ω] := {u∞ > 0}∩Ω

and the corresponding constants 0 < s < 1 and H].

1. Consider 0 < r0 < r <R, Ω = Br0(0)⊂ R2 and g(x) = χBR(0)\Br(0)
. Thus is not to hard to see that

{u∞ > 0}∩Br(0) =
⋃

y∈∂Br(0)

[
B(

1
H]

) 1
s
(y)∩Br0(0)

]
.

Consequently,

α = L2
(

Ω
]
)
= L2 (Br0(0)

)
−L2

(
B

r−
(

1
H]

) 1
s
(0)

)
= π

[
r2

0− r2 +2r
(

1
H]

) 1
s

−
(

1
H]

) 2
s
]

Finally, H] = H](r0,r,s,α) = 1(
r−

√
πr2

0−α

π

)s .

2. Now, let us take 0 < r < R, the domain Ω = Br(0)⊂ R2 and the function g : R2 \Br→ R+ given by
g(y) = (R2−|y|2)s

+. Then, it holds that

{u∞ > 0}∩Br(0) =
⋃

y∈∂Br(0)

B(
(R2−r2)s

H]

) 1
s
(y)∩Br(0)

 .
Moreover,

α = L2 ({u∞ > 0}∩Br(0)) = L2 (Br(0))−L2

B
r−
(

(R2−r2)s

H]

) 1
s
(0)


= π

2r
(
(R2− r2)s

H]

) 1
s

−
(
(R2− r2)s

H]

) 2
s

 .
Therefore, H] = H](R,r,s,α) =

(
R2−r2

r−
√

πr2−α
π

)s

.

Remark 3.4. Concerning the optimal set Ω] an interesting question appears: what should be the (topologi-
cal, geometrical or analytical) condition under g or Ω in order to the centers of the balls in (3.4) belong to
∂Ω, i.e.,

Ω
] =

⋃
y∈∂Ω

B(
g(y)
H]

) 1
s
(y)∩Ω.
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To answer this question we argue as follows: Fix z ∈RN \Ω and let y ∈ ∂Ω such that |z−y|= dist(z,∂Ω).
If

(Geom. Assump.)
∣∣∣g(z) 1

s −g(y)
1
s

∣∣∣≤ (H])
1
s .|z− y|

then
Ω

] =
⋃

y∈RN\Ω
B(

g(y)
H]

) 1
s
(y)∩Ω⊂

⋃
y∈∂Ω

B(
g(y)
H]

) 1
s
(y)∩Ω⊂Ω

].

Example 3.5. Let us present some examples in order to explore how the previous geometric condition
(Geom. Assump.) behave.

1. If Ω = Br(0)⊂ R2 and g(y) = e−s|y|2 then H] = H](r,s,α) =

(
e−r2

r−
√

πr2−α
π

)s

.

2. If Ω = Br(0)⊂ R2 and g(y) = |y|s then H] = H](r,s,α) =

(
r

r−
√

πr2−α
π

)s

.

3. If Ω = Br(0)⊂R3 and g : R3 \Br(0)→R+ is a radial s-Hölder function fulfilling (Geom. Assump.)
then

H] = H](r,s,α) =
g(r)(

r− 3
√

4πr3−3α

4π

)s .

Particularly, if g(y) = c0.χ{R3\Br(0)} for some c0 > 0 then H] = c0(
r− 3
√

4πr3−3α
4π

)s .

Next we will show that the assumption (Comp. Assump.) is a necessary and sufficient condition in
order to obtain uniqueness to (Ps

∞). In fact, if (Comp. Assump.) is not satisfied, we can find multiple
solutions for (Ps

∞). In spite of this multiplicity result, we are able to prove the existence of a minimal
solution.

Theorem 3.6. Let us assume that (Comp. Assump.) does not hold. Then there exists infinitely many min-
imizers for (Ps

∞). Moreover,

v∞(x) = sup
y∈RN\Ω

(
g(y)−H]|x− y|s

)
+

is a minimizer such that

{v∞ > 0}∩Ω =
⋃

y∈RN\Ω
B g(y)

H]

(y)∩Ω fulfils LN({v∞ > 0}∩Ω)< α.

Finally, v∞ is the least (or minimal) solution, in the following sense

v∞(x)≤ u∞(x) in Ω

for any other minimizer u∞ to (Ps
∞).

Proof. Let H] > 0 the unique constant such that

Ω
] :=

⋃
y∈RN\Ω

B(
g(y)
H]

) 1
s
(y)∩Ω and LN(Ω]) = α.

Since (Comp. Assump.) is not satisfied, this means that

[g]C0,s(RN\Ω) > H].
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Now, define
Ξ :=

⋃
y∈RN\Ω

B(
g(y)

[g]
C0,s(RN\Ω)

) 1
s
(y)∩Ω

and notice that LN(Ξ)< α . As previously proved

Θg(x) := sup
y∈RN\Ω

(
g(y)−L]|x− y|s

)
+
,

is an extremal for the limiting optimization problem with measure LN(Ξ).
Next, let v̂∞ be an extremal function for the limiting problem with N-dimensional Lebesgue measure

α . Thus, since v̂∞ = g on RN \Ω we have

(3.10) [v̂]C0,s(RN) ≥ [g]C0,s(RN\Ω) ≥ [Θg]C0,s(RN).

Remind that Θg competes in the limiting optimization problem with N-dimensional Lebesgue measure α .
For this reason,

[v̂]C0,s(RN) ≤ [Θg]C0,s(RN).

Therefore, it holds the triple equality in (3.10) and consequently Θg maximizes the limiting optimization
problem. Furthermore, for x ∈ Ξ we obtain that

Θg(x)≤ v̂∞(x),

otherwise the s-Hölder semi-norm of v̂∞ is greater than one for Θg. For the sake of contradiction let us
assume that there exists x̂ ∈ Ξ such that

v̂∞(x̂)< Θg(x̂) = sup
y∈RN\Ω

(
g(y)− [g]C0,s(RN\Ω)|x̂− y|s

)
+
.

From this fact and using that v̂∞ = g on RN \Ω we obtain that

sup
RN\Ω

v̂∞(y)− v̂∞(x0)

|y− x0|s
> [g]C0,s(RN\Ω),

which implies
[Θg]C0,s(RN) = [g]C0,s(RN\Ω) ≤ [v̂∞]C0,s(RN\Ω) ≤ [v̂∞]C0,s(RN),

yielding a contradiction with the optimality of v̂∞.
Therefore, Θg is the minimal/extremal for the limiting optimization problem. Moreover, for any ex-

tremal v̂∞ the following inclusion there holds for its support

Ξ :=
⋃

y∈RN\Ω
B(

g(y)
[g]

C0,s(RN\Ω)

) 1
s
(y)∩Ω⊂ {v̂∞ > 0}∩Ω.

Hereafter, for 0 < σ < 1 (small enough) consider the σ -neighborhood of Ξ,

Ξσ :=

 ⋃
y∈RN\Ω

B(
g(y)

[g]
C0,s(RN\Ω)

) 1
s
(y)∩Ω

+Bσ (0) such that LN(Ξσ )< α.
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Next, consider u∞ the viscosity solution to the following boundary value problem
−Ls

∞[u∞] = 0 in Ξσ

u∞ = g on RN \Ω

u∞ = 0 on ∂Ξσ .

Since Ξ⊂ Ξσ we claim that
[u∞]C0,s(RN) = [g]C0,s(RN\Ω).

In order to prove this statement, let us define on the Ξσ the auxiliary boundary value function

G(x) :=

{
g(x) in RN \Ω

0 in ∂Ξσ ∩Ω.

Notice that such an exterior datum G is an s-Hölder function with corresponding s-Hölder semi-norm given
by

[G]C0,s(∂Ξσ )
= sup

x,y∈∂Ξσ
x 6=y

|G(x)−G(y)|
|x− y|s

.

In the following we will estimate the constant [G]C0,s(∂Ξσ )
. To this end, we must consider three cases:

X If x,y ∈ ∂Ξσ ∩Ω. In this case,

|G(x)−G(y)|
|x− y|s

= 0 < [g]C0,s(RN\Ω).

X If x,y ∈ RN \Ω. Immediately we obtain

|G(x)−G(y)|
|x− y|s

= 0≤ [g]C0,s(RN\Ω).

X If x ∈ RN \Ω and y ∈ ∂Ξσ ∩Ω In this last case we have

|G(x)−G(y)|
|x− y|s

=
| f (x)|
|x− y|s

< [g]C0,s(RN\Ω),

where we have been using that Ξ ⊂ Ωσ , and consequently the distance |x− y|s is much bigger than
g(x)

[g]C0,s(RN\Ω)
, which is due to the fact that for y ∈ ∂Ξ and any x ∈ RN \Ω, we obtain

g(x)− [g]C0,s(RN\Ω)|x− y|s ≤ 0 ⇔ |x− y|s ≥ g(x)
[g]C0,s(RN\Ω)

.

Therefore, we conclude that
[G]C0,s(∂Ξσ )

= [g]C0,s(RN\Ω).

Moreover, as u∞ has the same s-Hölder semi-norm that G, we obtain that

[u∞]C0,s(RN) = [g]C0,s(RN\Ω).

In other words, u∞ is also an extremal function for the limiting optimization problem, which is positive on
∂Ξ ⊂ int(Ξσ ). Finally, we conclude that u∞ 6= Θg, as well as the fact that there is no monotonicity with
respect to the measure in the limiting optimization problem.

An immediate consequence of our previous Theorem 3.6 is the following convergence result:



FREE BOUNDARY PROBLEMS WITH FRACTIONAL p−LAPLACIANS 18

Corollary 3.7. If

α̂ := LN

 ⋃
y∈RN\Ω

B(
g(y)

[g]
C0,s(RN\Ω)

) 1
s
(y)∩Ω

< α,

and in (Ps
p), up is an extremal for Ls

p[α] and vp is an extremal for Ls
p[α̂], then

lim
p→∞

(∫
RN

∫
RN

|up(y)−up(x)|p

|y− x|N+sp dxdy
) 1

p

= lim
p→∞

(∫
RN

∫
RN

|vp(y)− vp(x)|p

|y− x|N+sp dxdy
) 1

p

.

Furthermore,
up⇒ u∞ and vp⇒Θg in RN

with
[u∞]C0,s(RN) = [g]C0,s(RN\Ω) = [Θg]C0,s(RN) and Θg(x)≤ u∞(x).

4 Main results. Proof of Theorems 1.3 and 1.4

In this section we study some quantitative regularity and geometric measure properties for the limiting
free boundary, namely ∂{v∞ > 0}∩Ω, as well as convergence issues of the corresponding free boundaries
∂{vp > 0}∩Ω.

Theorem 4.1 (C0,s regularity for minimizers). Let vp be minimizer to (Ps
p) and assume that for a subse-

quence (denoted as vp yet) vp→ v∞ uniformly in Ω and weakly in W s,q(Ω) for every 1 < q < ∞. Then v∞ is
uniformly s-Hölder continuous in Ω.

Proof. Revisiting the proof of Theorem 1.1, we conclude that any limit point u∞ of minimizers up to (Ps
p)

converging uniformly in Ω and weakly in W s,q(Ω) for every 1 < q < ∞ fulfils:

X u∞ ∈W s,∞(Ω)

X u∞ ∈C0(RN) with

‖u∞‖L∞(RN) ≤ c(N,s). sup
x,y∈RN\Ω

x 6=y

|g(y)−g(x)|
|y− x|s

and u∞ = g in RN \Ω.

X u∞ ∈C0,s(RN) with

sup
x,y∈RN

x 6=y

|u∞(y)−u∞(x)|
|x− y|s

≤ sup
x,y∈RN\Ω

x 6=y

|g(y)−g(x)|
|y− x|s

.

Theorem 4.2 (Strong non-degeneracy for minimizers). Let v∞ a uniform limit as p→ ∞ to (Ps
∞). Then

v∞ is strongly non-degenerate of order s, i.e., there is a constant c= c(N,s)> such that for any fixed point
x0 ∈ {v∞ > 0}∩Ω there holds

(4.1) sup
Br(x0)

v∞(x)≥ crs.



FREE BOUNDARY PROBLEMS WITH FRACTIONAL p−LAPLACIANS 19

Proof. First of all, notice that by continuity, it suffices to prove (4.1) for points within the set {v∞ > 0}∩Ω.
Next, fix x0 ∈ {v∞ > 0} and define the scaled function

vr(x) :=
v∞(x0 + rx)

rs in B1(0)

and the auxiliary barrier function
Φ(x) := c|x|s,

for a constant c= c(N,s)> 0 to be chosen a posteriori. Thus,

Ls
∞[Φ](x)≤ 0≤ Ls

∞[vr](x) in B1

Now, if vr ≤ Φ in whole RN \B1(0), then the Comparison Principle would imply that vr ≤ Φ in B1(0).
However, this contradicts the fact that vr(0)> 0. Therefore, there exists a point z ∈ RN \B1(0) such that

vr(z)> Φ(z) = c|z|s ⇒ v∞(x0 + rz)> crs|z|s

Now, using the s-Hölder continuity for minimizers we obtain

crs|z|s− v∞(x0 + rx)≤ v∞(x0 + rz)− v∞(x0 + rx)≤ ĉrs|x− z|s ≤ 2sĉrs|z|s.

Finally,
sup

Br(x0)

v∞(y)≥ v∞(x0 + rx)≥ rs|z|s(c−2sĉ)≥ c]rs,

provided we choose c] := c−2sĉ> 0.

Once we have established the asymptotic behaviour for the limiting free boundary problem, it becomes
possible to obtain some weak geometric and measure theoretic properties for the free boundaries.

The next result says that the positivity set of a limiting function has uniform positive density along the
free boundary, which inhibits the development of cusps pointing inwards to the vanishing region.

Corollary 4.3 (Uniform Lower Positive Density). Let x0 ∈ {v∞ > 0}∩Ω be an interior point. If v∞ is a
minimizer to (Ps

∞) in Ω, then there exists a constant c0 = c0(N,s)> 0 such that for every r� 1 it holds

LN({v∞ > 0}∩Br(x0))≥ c0rN .

Proof. From the Strong Non-degeneracy, Theorem 4.2, we have that there exists z ∈ Br(x0) such that

v∞(z)≥ c(N,s)rs > 0.

Furthermore, due to s-Hölder regularity, Theorem 4.1, for y ∈ Bςr(z) we get,

v∞(y)−C(N,s)(ςr)s ≥ v∞(z).

Hence, by the previous estimate, it is possible to choose 0 < ς � 1 (small enough) such that

y ∈ Br(x0)∩Bςr(z) and v∞(y)> 0.

Therefore, we conclude that there exists a portion of Br(x0) with volume comparable to rN within {v∞ >

0}∩Ω, i.e.,
LN (Br(x0)∩{v∞ > 0})≥ LN (Br(x0)∩Bςr(z)

)
= c0(N,s)LN(Br(x0)).
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Definition 4.4. A set S⊂ RN is said porous with porosity δ > 0, if ∃R> 0 such that

∀ x ∈S, ∀ r ∈ (0,R), ∃ y ∈ RN such that Bδ r(y)⊂ Br(x)\S.

A porous set of porosity δ has Hausdorff dimension not exceeding N− cδ N , where c > 0 is a dimen-
sional constant. Particularly, a porous set has Lebesgue measure zero.

As a consequence of the optimal growth rate, Theorem 4.1 and non-degeneracy property, Theorem 4.2
we will obtain porosity for the free boundary.

Corollary 4.5. Let v∞ be a minimizer to (Ps
∞). Then the free boundary ∂{v∞ > 0}∩Ω is a porous set.

Proof. Let R> 0 and x0 ∈Ω be such that B4R(x0)⊂Ω. We will prove that the set ∂{v∞ > 0}∩BR(x0) is
δ

2 -porous, for a universal constant 0 < δ ≤ 1. To this end, let x ∈ ∂{v∞ > 0}∩BR(x0). For each r ∈ (0,R)

we have Br(x)⊂ B2R(x0)⊂Ω. Now, let y ∈ ∂Br(x) such that v∞(y) = sup
∂Br(x)

v∞. By Non-degeneracy

(4.2) v∞(y)≥ crs,

where c> 0 is a universal constant. On the other hand, near the free boundary

(4.3) v∞(y)≤ Cd(y)s,

where C > 0 is a universal constant and d(y) := dist(y,∂{v∞ > 0}∩B2R(x0)). Now, from (4.2) and (4.3)
we get

(4.4) d(y)≥ δ r

for a universal positive constant 0 < δ ≤ 1. Now, let ŷ ∈ [x,y] be such that |y− ŷ|= δ r
2 . Then, there holds

(4.5) B δ
2 r(ŷ)⊂ Bδ r(y)∩Br(x).

Indeed, for each z ∈ B δ
2 r(ŷ)

|z− y| ≤ |z− ŷ|+ |y− ŷ|< δ r
2

+
δ r
2

= δ r,

and

|z− x| ≤ |z− ŷ|+
(
|x− y|− |ŷ− y|

)
≤ δ r

2
+

(
r− δ r

2

)
= r,

and hence (4.5) follows. Finally, since by (4.4) Bδ r(y)⊂ Bd(y)(y)⊂ {v∞ > 0}, we have

Bδ r(y)∩Br(x)⊂ {v∞ > 0}∩Ω,

which together with (4.5) yields

B δ
2 r(ŷ)⊂ Bδ r(y)∩Br(x)⊂ Br(x)\∂{v∞ > 0} ⊂ Br(x)\∂{v∞ > 0}∩BR(x0).

Therefore, the free boundary is a δ

2 -porous set.

Theorem 4.6 (Harnack inequality for minimizers in a touching ball). Let v∞ be a solution of (Ps
∞),

x0 ∈ {v∞ > 0}∩Ω an interior point and d := dist(x0,∂{v∞ > 0}). Then,

sup
Bτd(x0)

v∞(x)≤ C inf
Bτd(x0)

v∞(x)

for a universal constant C> 0 and for any 0 < τ < 1.
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Proof. Let z1,z2 ∈ {v∞ > 0}∩Ω be points such that

inf
Bτd(x0)

v∞(x) = v∞(z1) and sup
Bτd(x0)

v∞(x) = v∞(z2).

Since dist(z1,∂{v∞ > 0})≥ τd, by Theorem 4.2

(4.6) v∞(z1)≥ C1 (τd)
s .

Moreover, by Theorem 4.1

(4.7) v∞(z2)≤ C2 [(τd)
s + v∞(x0)] .

Now, by choosing y ∈ ∂{v∞ > 0} such that d= |x0− y|, we get as consequence from Theorem 4.1

(4.8) v∞(x0)≤ sup
Bd(y)

v∞(x)≤ C2.d
s.

Combining (4.6), (4.7) and (4.8), we conclude

sup
Bτd(x0)

v∞(x)≤ C(N,s,τ). inf
Bτd(x0)

v∞(x).

Theorem 4.7 (Uniform non-degeneracy for minimizers). Let vp be minimizer to (Ps
p) and v∞ a uniform

limit as p→ ∞ to (Ps
∞). Then v∞ has an s-grows rate away from the free boundary, i.e., for a constant

c= c(N,s)> there holds

v∞(x)≥ cdist(x,∂{v∞ > 0})s ∀ x ∈ {v∞ > 0}∩Ω.

Proof. Let x0 ∈ {v∞ > 0}∩Ω and x̂0 ∈ ∂{v∞ > 0}∩Ω such that

dist(x0,∂{v∞ > 0}∩Ω) = |x0− x̂0| :=R.

Now, let us define

Θ(x) :=


c.(Rs−|x− x0|s) in BR(x0)\BR

2
(x0)

κ in BR
2
(x0)

0 on RN \BR(x0)

,

where we have chosen κ > 0 such that
κ ≤ inf

BR
2
(x0)

v∞(z).

Then, it is easy to check that

Ls
∞[vr](x) ≤ 0 ≤ Ls

∞[Θ](x) in BR(x0)\BR
2 (x0)

Θ ≤ v∞ on RN \
(

BR(x0)\BR
2
(x0)

)
.

Therefore, using the Comparison Principle, we get

(4.9) v∞(z)≥Θ(z) in BR(x0)\BR
2
(x0).

Now, for z ∈ ∂B 3R
4
(x0), applying the Harnack inequality (Theorem 4.6), we obtain the following inequali-

ties

(4.10) v∞(z)≤ sup
B 3R

4
(x0)

v∞(t)≤ C inf
B 3R

4
(x0)

v∞(t)≤ Cv∞(x0).
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Finally, by combining (4.9) and (4.10) we obtain

v∞(x0)≥ C−1 v∞(z)≥ C−1
Θ(z) = C−1c.Rs = C](N,s)dists(x0,∂{v∞ > 0}∩Ω).

Theorem 4.8 (Convergence of the positivity sets). Let vp be a sequence of minimizers to (Ps
p). If for

some subsequence, denoted by vp yet, vp→ v∞ uniformly in Ω and weakly in W s,q(Ω) for all 1 < q < ∞,
being v∞ a solution to (Ps

∞), then

lim
p→∞

LN({vp > 0}4{v∞ > 0}) = 0.

Proof. First of all, given ε > 0 there exists p large enough such that

{v∞ > ε}∩Ω⊂ {vp > 0}∩Ω.

Moreover, since
LN({v∞ > 0}∩Ω) = α,

then for such a ε > 0 there exists 0 < δ < 2α such that

α− δ

2
≤ LN({v∞ > ε}∩Ω)≤ α.

Now, by defining
Ω

ε
∞

:= {v∞ > ε}∩Ω,

then Ωε
∞ is increasing as ε ↘ 0. Moreover,

lim
ε→0+

LN(Ωε
∞) = LN({v∞ > 0}∩Ω) = α.

On the other hand,

α− δ

2
≤ LN({v∞ > ε}∩Ω)≤ LN({vp > 0}∩Ω)≤ α,

which implies that

LN({vp > 0}\{v∞ > ε}∩Ω)≤ δ

2
.

Finally,

LN({vp > 0}4{v∞ > 0}) ≤ LN({vp > 0}\{v∞ > 0})+LN({v∞ > 0}\{vp > 0})
≤ LN({vp > 0}\{v∞ > 0})+LN({v∞ > 0}\{v∞ > ε})
≤ δ

2 + δ

2 = δ .

Therefore,
lim
p→∞

LN({vp > 0}4{v∞ > 0}) = 0

and the theorem is proved.

Remark 4.9 (Convergence of the free boundaries). The previous theorem gives the convergence in the
sense of symmetric difference of sets. However, by assuming the strong non-degeneracy for family of
p-minimizers vp, i.e., there exists a universal modulus of continuity ω : [0,∞)→ [0,∞) such that

sup
Br(x0)

vp(x)≥ cω(r),
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then
∂{vp > 0}→ ∂{v∞ > 0} as p→ ∞,

in the sense of the Hausdorff distance.
In order to show a short proof of this convergence let us introduce the following notation: for δ > 0 we

will denote the δ -neighborhood of a set S⊂ RN as follows

Nδ (S) :=
{

x ∈ RN : dist(x,S)< δ
}
.

Now, we must show that, given 0 < δ � 1 and p = p(δ ) large enough, one obtains

∂{vp > 0} ⊂Nδ (∂{v∞ > 0}) and ∂{v∞ > 0} ⊂Nδ (∂{vp > 0}).

Let us prove the first inclusion. Suppose for sake of contradiction that such an inclusion does not hold. Thus,
should exist a point x0 ∈ ∂{vp > 0}∩

(
RN \Nδ (∂{v∞ > 0})

)
. The last sentence implies in particular that

dist(x0,∂{v∞ > 0})≥ δ .

Now, if x0 ∈ {v∞ > 0} then by uniform non-degeneracy, Theorem 4.7 we get

v∞(x0)≥ cdist(x0,∂{v∞ > 0})s ≥ cδ s.

On the other hand, due to uniform convergence we must have for p large enough

vp(x0)≥
cδ s

7
> 0.

However, this contradicts the assumption that x0 ∈ ∂{vp > 0}. Therefore, v∞(x0) = 0 and consequently
v∞ ≡ 0 in Bδ (x0), which contradicts the strong non-degeneracy property for the sequence of p-minimizers.

The second inclusion can be proved similarly.

In what follows, we analyze the behaviour of the coincidence sets for the p-variational problem and its
corresponding limiting problem. We recall the following notion of limits of sets

liminf
p→∞

Up :=
∞⋂

p=1

⋃
k≥p

Uk and limsup
p→∞

Up :=
∞⋃

p=1

⋂
k≥p

Uk

Theorem 4.10. Let Up := {up = 0} be the null sets of the nonlocal p-variational problems and U∞ :=
{u∞ = 0} be the corresponding null set of the limiting problem. Then,

int(U∞)⊂ liminf
p→∞

Up ⊂ limsup
p→∞

Up ⊂ U∞.

Proof. Given 0 < ε� 1 (small enough), consider Vε an ε-neighbourhood of U∞. Thus, Ω\Vε ⊂ {u∞ > 0}
been it a closed set. By using the continuity of limiting u∞, there exists a 0 < δ = δ (ε) such that

u∞(x)> δ ∀ x ∈Ω\Vε .

Moreover, by the uniform convergence (up a subsequence up→ u∞) we obtain that for p large enough

up(x)> δ ∀ x ∈Ω\Vε .

Therefore,
Ω\Vε ⊂ {up > 0} ⇒ Up ⊂ Vε for every p� 1.
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This implies that
limsup

p→∞

Up ⊂ Vε ,

for any ε-neighbourhood of U∞ of of U∞. Particularly, we obtain that

limsup
p→∞

Up ⊂ U∞

since U∞ is a compact set.
Let x0 ∈ int(U∞). We claim that there exists a p̂ = p̂(x0) such that

uk(x0) = 0 ∀ k ≥ p̂.

If we suppose the opposite, i.e.,
up j(x0)> 0

for some subsequence p j→ ∞, then
−(−∆)s

p j
up j(x0) = 0.

Passing to the limit we conclude that
−Ls

∞[u∞](x0) = 0,

which implies x0 ∈ {u∞ > 0}∩Ω, a contradiction with x0 ∈ int(U∞). This proves our claim. Consequently,

x0 ∈
⋃
k≥p̂

Uk ⇒ int(U∞)⊂ liminf
p→∞

Up.

Finally, we conclude that
int(U∞)⊂ liminf

p→∞
Up

where we have used that liminf
p→∞

Up is a closed set.

Definition 4.11. The reduced free boundary FΩ
red[u∞] is the set of points x0 at which the following condition

holds: given the half ball B+
r (x0) := {(x− x0) ·η ≥ 0}∩Br(x0) we get

(4.11) lim
r→0

LN(B+
r (x0)4Ω+[u∞])

LN(Br(x0))
= 0.

Such a definition says us (cf. [14]) that the vector measure ∇χΩ(Br(x0)) has a density at the point, i.e.,
there exists η(x0) (with |η(x0)|= 1) such that fulfils the following

lim
r→0

∇χΩ(Br(x0))

|∇χΩ(Br(x0))|
= η(x0).

Recall that from the uniform positive density of Ω+[u∞] (Corollary 4.3) we have, as r→ 0, at the free
boundary point x0 the following

Br(x0)∩FΩ
red[u∞]⊂ {|(x− x0) ·η(x0)| ≤ o(r)}.

In fact, if we suppose that u∞(x) = 0 for (x− x0) ·η(x0) ≥ εr, there exists c0 > 0 such that LN(Bεr(x)∩
Ω0[u∞])≥ c0εrN , implying

liminf
r→0

LN(B+
r (x0)4Ω+[u∞])

LN(Br(x0))
≥ c0ε,

which yields a contradiction with (4.11).
Next, we will show that free boundary points at which we have a tangent ball from inside are regular

points. To this end, let us introduce the following definition:
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Definition 4.12. A free boundary point y ∈ FΩ[u] := ∂{u > 0}∩Ω is said to have a tangent ball from
inside if there exists a ball B ⊂Ω+[u] := {u > 0}∩Ω such that y ∈B∩Ω+[u]. Finally, we say that a free
boundary point y ∈ FΩ[u] is regular if FΩ[u] has a tangent hyperplane at y.

Theorem 4.13. A free boundary point y ∈ FΩ[u∞] which has a tangent ball from inside is regular.

Proof. The proof is similar to the one in [10, Lemma 11.17], thus we will only write the modifications for
the reader’s convenience. Let us suppose that B1(y1) is tangent to FΩ[u∞] at y. Now, consider the following
function

Φ(x) = 1−|x− y1|s.

As before, from non-degeneracy, some multiple, say c0Φ, is a lower barrier of u∞ in B1(y1). Now, let cr > 0
be the supremum of all c’s such that

u(x)≥ cΦ(x) in Br(y1).

Notice that such values cr increase with r. For this reason, by optimal regularity, converges to some constant
c∞ as r→ 0. Finally, according to [10], this implies the following asymptotic behaviour near free boundary

u∞(x) = c∞.((x− y) ·η(y))s +o(((x− y) ·η(y))s) ,

where η(y) = y1− y. Therefore, the plane orthogonal to η(y) is tangent to FΩ[u∞] and, we conclude that y
is a regular point.

5 Generalizations and comments

In this final section we will present some remarks and extensions for our previous results.
First of all, we highlight that our approach can be applied for weak solutions of possibly degener-

ate/singular non-local equations of the form

(−∆RN )s
Ku(x) :=CN,p,s.P.V.

∫
RN
|u(x)−u(y)|p−2(u(x)−u(y))K(x,y)dy,

where K :RN×RN→R is a general singular kernel fulfilling the following properties: There exist constants
Λ≥ λ > 0 and M,ς > 0 such that

X [Symmetry] K(x,y) = K(y,x) for all x,y ∈ RN ;

X [Growth condition] λ ≤ K(x,y).|x− y|N+ps ≤ Λ for x,y ∈ RN , x 6= y;

X [Integrability at infinity] 0≤ K(x,y)≤ M
|x−y|N+ς for x ∈ B2 and y ∈ RN \B 1

4
.

X [Translation invariance] K(x+ z,y+ z) = K(x,y) for all x,y,z ∈ RN , x 6= y.

X [Continuity] The map x 7→ K(x,y) is continuous in RN \{y}.

Clearly this previous class of operators have as prototype the fractional p-Laplacian operator provided
K(x,y) = |x− y|−(N+ps).

Moreover, any minimizer for

Jp
K[u](R

N) :=
∫
RN

∫
RN
|u(x)−u(y)|pK(x,y)dydx

satisfies in the weak sense
(−∆RN )s

Ku(x) = 0 in RN .
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Although K is a general kernel, we obtain that any minimizer sequence (up)p>0, still converges to a Hölder
infinity harmonic function u∞ as previously.

Another interesting issue which we want to stress is that we can recover, under suitable assumptions, the
corresponding “local counterpart” taking the limit as s→ 1−. More precisely, by studying the minimization
problem with the corrected p-fractional energy

Ĵs
p[u](RN) := K (N, p)[u]W s,p(Ω),

where the above normalization constant is given explicitly by

K (N, p) =
pΓ(N+p

2 )

2π
N−1

2 Γ( p+1
2 )

.

Recall that it is proved that for any smooth bounded domain Ω⊂RN , u ∈W 1,p with 1 < p < ∞ there holds

lim
s→1−

K (N, p)[u]W s,p(Ω) = ‖∇u‖Lp(Ω)

(cf. [8] for more derails). Therefore, if up⇒ u∞ in RN then

lim
p→∞

[
lim

s→1−
Ĵs

p[up](RN)

]
= Lip[u∞].

Moreover, the limit satisfies in the viscosity sense{
−∆∞u∞(x) = 0 in {u∞ > 0}∩Ω

u∞(x) = g(x) on RN \Ω.

On the other hand, notice that the reverse double limit, namely first take p→ ∞ and then s→ 1−, does not
yield an infinity-harmonic function in the limit, because we get that the limit verifies

(5.1) L1
∞[u∞](x) := sup

y∈RN\Ω

u∞(y)−u∞(x)
|x− y|

+ inf
y∈RN\Ω

u∞(y)−u∞(x)
|x− y|

,

an equation that does not coincide with the infinity-Laplacian operator. In fact, the Aronsson’s function

u(x1, · · · ,xN) := a1.|x1|
4
3 + · · ·+aN .|xN |

4
3

(
N

∑
i=1

ai = 0

)

is an infinity harmonic function, however it does not satisfies (5.1) in

Ω =

{
x ∈ RN : max

1≤i≤N
|xi| ≤ 1

}
.
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