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Abstract. In this paper we study the asymptotic behaviour as t → ∞ of solutions to a
nonlocal diffusion problem on a lattice, namely, u′n(t) =

P
j∈Zd Jn−juj(t)− un(t) with t ≥ 0

and n ∈ Zd. We assume that J is nonnegative and verifies
P

n∈Zd Jn = 1. We find that
solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool,
the discrete Fourier transform.

1. Introduction

In this paper our main concern is the study of the asymptotic behaviour of the following
nonlocal equation on a lattice

(1.1)

{
un

′(t) = (J ∗ u)n(t)− un(t), t ≥ 0, n ∈ Zd,

un(0) = ϕn, n ∈ Zd,

where by (J ∗ u) we denote the discrete convolution,

(J ∗ u)n =
∑

j∈Zd

Jn−juj .

Trough the paper we assume that the kernel J is nonnegative and satisfies,

(1.2)
∑

n∈Zd

Jn = 1.

Equation (1.1), is called nonlocal diffusion equation. Continuous analogous to (1.1), like
ut(x, t) = J ∗ u(x, t) − u(x, t), have been recently widely used to model diffusion processes,
see, for example, [2], [3], [5], [6], [8], [9], [10], [16] and [17]. In particular, let us mention
that these equations are also used in models of neuronal activity, see [7], [11], [13] and [14].
Also there is a discrete counterpart for nonlocal models, see [1], [3] and references therein. In
all these models the asymptotic behaviour of the solution (see [4]) is relevant, both from its
pure mathematical and its applied point of view. Concerning (1.1), as stated in [9] (see also
[3]), if ui(t) is thought of as the density of a single population at the point i at time t, and
Ji−j is thought of as the probability distribution of jumping from location i to location j,
then (J ∗ u)(t) is the rate at which individuals are arriving to position i from all other places
and −ui(t) is the rate at which they are leaving location i to travel to all other sites. This
consideration, in the absence of external or internal sources, leads immediately to the fact
that the density u satisfies equation (1.1).

To study the asymptotic beahviour of solutions to (1.1) let us introduce the discrete Lapla-
cian given by

(∆du)n =
d∑

k=1

(un+ek
− 2un + un−ek

),
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where {ek}d
k=1 is the canonical basis on Rd. Note that this is a local diffusion operator.

Our first result says that the asymptotic behaviour as t → ∞ of solutions to (1.1) is the
same as the one for the evolution equation associated to a fractional power of the discrete
Laplacian.

Theorem 1.1. Let u be a solution of equation (1.1) with ϕ ∈ l1(Zd). If there exist positive
constants α and A such that

Ĵ(ξ) = 1−A|ξ|α + o(|ξ|α), as ξ → 0,

then the asymptotic behaviour of u(t) is given by

lim
t→∞ td/α‖u(t)− v(t)‖l∞(Zd) = 0,

where v is solution of v ′ = −A(−∆d)α/2v with initial datum vn(0) = ϕn, n ∈ Zd.

In view of this result, we analyze the asymptotic profile of the solutions to v ′ = −A(−∆d)α/2v.

Theorem 1.2. Let us consider ϕ ∈ l1(Zd). Then the solution to
{

v′(t) = −A(−∆d)α/2v, t > 0,

v(0) = ϕ,

satisfies

lim
t→∞ sup

j∈Zd

∣∣∣td/αv([jt1/α], t)−
( ∑

n∈Zd

ϕn

)
GA(j)

∣∣∣ = 0,

where GA is defined by

GA(x) =
∫

Rd

eixξe−A|ξ|αdξ,

and [·] is the floor function.

2. Proofs of the results

In our analysis, we make use of the semidiscrete Fourier transform (SDFT) (we refer to
[12] and [15] for the mains properties of the SDTF). For any v ∈ l2(Zd) we define its SDFT
by:

v̂(ξ) =
∑

j∈Zd

e−iξ·jvj , ξ ∈ [−π, π]d.

In view of property (1.2), Ĵ belongs to L∞([−π, π]) and Ĵ(0) = 1.

Proof of Theorem 1.1. Applying the SDFT to the solutions of equation (1.1) we get

û ′(t, ξ) = Ĵ(ξ)û(t, ξ)− û(t, ξ), ξ ∈ [−π, π]d, t > 0.

Solving this ODE we find that

(2.1) û(t, ξ) = et( bJ(ξ)−1)ϕ̂(ξ), ξ ∈ [−π, π]d, t > 0.

In the same way, v, the solution to v ′ = −A(−∆d)α/2v satisfies

(2.2) v̂(t, ξ) = e−Atpα(ξ)ϕ̂(ξ), ξ ∈ [−π, π]d, t > 0,
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where

p(ξ) =
(
4

d∑

k=1

sin2
(ξk

2
))1/2

.

Using the Fourier representation of u and v given by (2.1) and (2.2) we find that

‖u(t)− v(t)‖l∞(Zd) ≤
∫

[−π,π]d
|û(ξ, t)− v̂(ξ, t)|dξ

=
∫

[−π,π]d
| exp(t(Ĵ(ξ)− 1))− exp(−Atpα(ξ))||ϕ̂(ξ)|dξ.

By our hypothesis there exists a positive R < π such that

|Ĵ(ξ)| ≤ 1− |ξ|α
2

, |ξ| ≤ R.

Once R has been fixed, there exists δ > 0 such that

|Ĵ(ξ)| ≤ 1− δ for all ξ ∈ ΩR = {ξ ∈ [−π, π]d, |ξ| > R}.
Hence, it is easy to see that

∫

ξ∈ΩR

|et( bJ(ξ)−1) − e−Atpα(ξ)||ϕ̂(ξ)|dξ ≤ ‖ϕ̂‖L∞([−π,π]d)

∫

ξ∈ΩR

(et(| bJ(ξ)|−1) + e−Atpα(ξ))dξ

≤ ‖ϕ̂‖L∞([−π,π]d)

∫

ξ∈ΩR

(e−tδ + exp(−At inf
ξ∈ΩR

pα(ξ))dξ.

Tacking into account that the right hand side in the last inequality is exponentially small, it
remains to analyze the term

I(t) =
∫

|ξ|≤R
|û(ξ, t)− v̂(ξ, t)|dξ.

Let us choose a function r(t) → 0 such that r(t)t1/α →∞ as t →∞. The remaining term
I(t) satisfies:

I(t) =
∫

|ξ|≤R
|et( bJ(ξ)−1) − e−Atpα(ξ)||ϕ̂(ξ)|dξ ≤ I1(t) + I2(t)

where

I1(t) =
∫

|ξ|≤r(t)
|et( bJ(ξ)−1) − e−Atpα(ξ)||ϕ̂(ξ)|dξ

and

I2(t) =
∫

r(t)≤|ξ|≤R
|et( bJ(ξ)−1) − e−Atpα(ξ)||ϕ̂(ξ)|dξ.

Using that, for some positive constant c, the following holds

c|ξ| ≤ p(ξ) ≤ |ξ| for all ξ ∈ [−π, π]d,
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the term I2(t) can be estimated as follows:

td/αI2(t) ≤ td/α‖ϕ̂‖L∞([−π,π]d)

∫

r(t)≤|ξ|≤R
(e−Atpα(ξ) + et(| bJ(ξ)|−1))dξ

≤ td/α‖ϕ‖L1(Zd)

∫

r(t)≤|ξ|≤R
(e−Atpα(ξ) + e−t|ξ|α/2)dξ

≤ td/α‖ϕ‖L1(Zd)

∫

r(t)≤|ξ|≤R
e−Bt|ξ|αdξ

= ‖ϕ‖L1(Zd)

∫

t1/αr(t)|ξ|≤t1/α

e−B|ξ|αdξ

≤ ‖ϕ‖L1(Zd)t
d/αe−Btrα(t) → 0.

To estimate I1(t) we first observe that there exists a function h(ξ) with h(ξ) → 0 as |ξ| → 0
and such that

|Ĵ(ξ)− 1−A|ξ|α| ≤ |ξ|h(ξ)

for all ξ in a sufficiently small ball centered at the origin. Thus for all such ξ

|Ĵ(ξ)− 1−Apα(ξ)| ≤ |ξ|αh(ξ) + ||ξ|α − pα(ξ)| . |ξ|αh(ξ) + |ξ|3α.

In view of this property we get

I1(t) ≤ td/α‖ϕ̂‖L∞([−π,π]d)

∫

|ξ|≤r(t)
e−Atpα(ξ)|et( bJ(ξ)−1−Atpα(ξ)) − 1|dξ

≤ td/α‖ϕ‖L1(Zd)

∫

|ξ|≤r(t)
e−Atpα(ξ)t|ξ|α(h(ξ) + |ξ|3α)dξ

≤ td/α‖ϕ‖L1(Zd)

∫

|ξ|≤r(t)
e−Bt|ξ|α(t|ξ|αh(ξ) + t|ξ|4α)dξ.

The last term in the right hand side verifies

td/α

∫

|ξ|≤r(t)
e−Bt|ξ|αt|ξ|4αdξ ≤ t−3

∫

|η|≤r(t)t1/α

e−B|η|α |η|4αdη → 0.

Hence we have to analyze the first one. In this case, by the same change of variables, we get

td/α

∫

|ξ|≤r(t)
e−Bt|ξ|αt|ξ|αh(ξ) =

∫

|η|<r(t)t1/α

|η|αe−Bt|η|αh(ηt−1/α).

Applying Lebesgue convergence theorem we obtain that also this term converges to zero as
t →∞. This ends the proof. ¤

Now we prove our second result, Theorem 1.2, that describes the asymptotic profile of
solutions to v ′ = −A(−∆d)α/2v.

Proof of Theorem 1.2. Using the Fourier representation of v we have

v(j, t) =
∫

[−π,π]d
e−Atpα(ξ)eijξϕ̂(ξ) dξ, j ∈ Zd, t > 0.
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Thus

td/αv([jt1/α], t) = td/α

∫

[−π,π]d
e−Atpα(ξ)ei[jt1/α]ξϕ̂(ξ) dξ

=
∫

[−πt1/α,πt1/α]d
e−Atpα(ξt−1/α) exp

(
iξ

[jt1/α]
t1/α

)
ϕ̂(ξt−1/α) dξ

and

GA(j) =
∫

Rd

e−A|ξ|αeiξj dξ.

Denoting

I(j, t) = td/αv([jt1/α], t)− ϕ̂(0)GA(j)

we obtain

|I(j, t)| ≤
∣∣∣
∫

[−πt1/α,πt1/α]d
e−Atpα(ξt−1/α)eijξ − ϕ̂(0)

∫

Rd

e−A|ξ|αeiξjdξ
∣∣∣

+
∫

[−πt1/α,πt1/α]d
e−Atpα(ξt−1/α)

∣∣eijξ − eiξ[jt1/α]t−1/α∣∣|ϕ̂(ξt−1/α)|dξ

= I1(j, t) + I2(j, t).

Therefore we have to get bounds for I1(j, t) and I2(j, t).
Step I. Estimates for I2(t). For I2(t) we have the rough estimate

|I2(j, t)| ≤ ‖ϕ̂‖L∞([−π,π]d)

∫

[−πt1/α,πt1/α]d
e−Atpα(ξt−1/α)

∣∣∣ sin
(jt1/αξ − [jt1/α]ξ

2t1/α

)∣∣∣dξ

≤ ‖ϕ‖L1(Zd)

∫

[−πt1/α,πt1/α]d
e−Atpα(ξt−1/α)

∣∣∣jt
1/αξ − [jt1/α]ξ

2t1/α

∣∣∣dξ

≤ ‖ϕ‖L1(Zd)

∫

[−πt1/α,πt1/α]d
e−Atpα(ξt−1/α) |ξ|

t1/α
dξ

. t−1/α‖ϕ‖L1(Zd)

∫

[−πt1/α,πt1/α]d
e−c(α)|ξ|α |ξ|dξ → 0.

Step II. Estimates for I1(t). Observe that I1 satisfies:

I1(j, t) ≤
∫

[−πt1/α,πt1/α]d
|e−Atpα(ξt−1/α) − e−A|ξ|α ||ϕ̂(ξt−1/α)|dξ

+
∫

[−πt1/α,πt1/α]d
e−A|ξ|α |ϕ̂(ξt−1/α)− ϕ̂(0)|dξ

+|ϕ̂(0)|
∫

ξ /∈[−πt1/α,πt1/α]d
e−A|ξ|αdξ

= I3(t) + I4(t) + I5(t).

In the case of the last integral, easily follows that |ξ| & t1/α. Thus

I5(t) .
∫

|ξ|&t1/α

e−A|ξ|αdξ → 0.
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For I4 we have the following estimate:

I4(t) =
∫

Rd

e−A|ξ|α |ϕ̂(ξt−1/α)− ϕ̂(0)|χ[−πt1/α,πt1/α]d dξ

and the Lebesgue dominated convergence theorem guarantees that I4(t) → 0 as t →∞.
Using that p(ξ) satisfies c|ξ| ≤ p(ξ) ≤ |ξ| for some positive c and the mean value theorem

we get:

I3(t) ≤ ‖ϕ̂‖L∞([−π,π]d)

∫

[−πt1/α,πt1/α]d
e−Atpα(ξt−1/α)|tpα(ξt−1/α)− |ξ|α| dξ

. ‖ϕ‖L1(Zd)

∫

[−πt1/α,πt1/α]d
e−c|ξ|α |tpα(ξt−1/α)− |ξ|α| dξ.

Applying again the dominated convergence theorem we obtain that I3(t) → 0 as t →∞.
The proof is now complete. ¤

Acknowledgements. L. I. Ignat partially supported by the grants MTM2005-00714 and
PROFIT CIT-370200-2005-10 of the Spanish MEC, SIMUMAT of CAM and CEEX-M3-C3-
12677 of the Romanian MEC.

J. D. Rossi partially supported by SIMUMAT (Spain), UBA X066, CONICET and AN-
PCyT PICT 05009 (Argentina).

References

[1] P. Bates and A. Chmaj. A discrete convolution model for phase transitions. Arch. Rat. Mech. Anal.,
150, 281–305, (1999).

[2] P. Bates, P. Fife, X. Ren and X. Wang. Travelling waves in a convolution model for phase transitions.
Arch. Rat. Mech. Anal., 138, 105–136, (1997).

[3] C. Carrillo and P. Fife. Spatial effects in discrete generation population models. J. Math. Biol., 50(2),
161–188, (2005).

[4] E. Chasseigne, M. Chaves and J. D. Rossi. Asymptotic behavior for nonlocal diffusion equations. J.
Math. Pures Appl., 86, 271–291, (2006).

[5] X Chen. Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equa-
tions. Adv. Differential Equations, 2, 125–160, (1997).

[6] C. Cortazar, M. Elgueta and J. D. Rossi. A non-local diffusion equation whose solutions develop a
free boundary. Annales Henri Poincaré, 6(2), 269–281, (2005).
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