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Abstract. We consider the following problem: given a bounded domain Ω ⊂ Rn and a
vector field ζ : Ω → Rn, find a solution to −∆∞u − 〈Du, ζ〉 = 0 in Ω, u = f on ∂Ω,
where ∆∞ is the 1−homogeneous infinity Laplace operator that is formally given by ∆∞u =
〈D2u Du

|Du| ,
Du
|Du| 〉 and f a Lipschitz boundary datum. If we assume that ζ is a continuous

gradient vector field then we obtain existence and uniqueness of a viscosity solution by an
Lp-approximation procedure. Also we prove the stability of the unique solution with respect
to ζ. In addition when ζ is more regular (Lipschitz continuous) but not necessarily a gradient,
using tug-of-war games we prove that this problem has a solution.

1. Introduction

Our aim is to study the following problem: given a bounded domain Ω ⊂ Rn, a Lipschitz
continuous function f : ∂Ω → R and a vector field ζ : Ω → Rn, find a solution to

(1.1)
{ −∆∞u− 〈Du, ζ〉 = 0 in Ω

u = f on ∂Ω,

where the operator

∆∞u = 〈D2u
Du

|Du| ,
Du

|Du| 〉

is known as the 1-homogeneous infinity Laplacian, see the survey [6]. The infinity Laplacian
∆∞u, was introduced by Aronsson [5] in 1960’s and can be viewed as the “Laplacian of
L∞-variational problems” in the sense that the equation ∆∞u(x) = 0 is the Euler-Lagrange
equation for the variational problem of finding absolute minimizers for the prototypical L∞-
functional I(u) = ‖Du‖L∞(Ω) with given boundary values, see e.g. [12], [18]. One of the main
difficulties when dealing with such operator is the lack of regularity results, see [14], [27] and
references therein. The infinity Laplacian also arises from certain random turn games [25],
[7], [22], and mass transportation problems [16], and it appears in several applications, such
as image reconstruction and enhancement, [10].

The infinity Laplacian appears as the limit as p →∞ of the well known and widely studied
p−Laplacian, ∆pu = div(|∇u|p−2∇u), in the sense that solutions to ∆pup = 0 with a Dirichlet
data up = f on ∂Ω converge as p → ∞ to the solution to ∆∞u = 0 with u = f on ∂Ω in
the viscosity sense (see [6], [9] and [15]). In our case, when ζ is a gradient vector field we
can obtain solutions to our problem by taking the limit as p → ∞ in certain p−Laplacian
type problems that we describe below. Note that infinity harmonic functions are limits of
p−harmonic functions, but this limit procedure does not work for solutions to equations with
a right hand side, like for −∆∞u = g that is not the limit of −∆pu = g, see [9], [18], [6]. For
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our purposes let us assume that ζ is a gradient vector field and let

ζ(x) = Dη(x) and bp(x) = e(p−2)η(x).

Associated with this function bp as diffusion coefficient let us consider the following p−La-
placian type problem:

(1.2)

{
−div

(
bp |Du|p−2 Du

)
= 0 in Ω

u = f on ∂Ω.

Existence and uniqueness for this problem of a continuous weak solution in the Sobolev space
W 1,p(Ω) can be easily obtained from variational arguments. It turns out that this weak
solution is also a viscosity solution.

Now we state our main results for a gradient vector field. We have existence and uniqueness
of a viscosity solution and, in addition, stability with respect to ζ.

Theorem 1.1. Let ζ be a continuous gradient vector field. Then there exists a viscosity
solution to (1.1) that can be obtained as the uniform limit of solutions to the p−Laplacian
type problems (1.2). In addition, the viscosity solution is unique.

Theorem 1.2. When we consider gradient vector fields solutions to (1.1) depend continuously
on ζ. In fact, we have the following stability estimate: there exists a constant C such that

‖u1 − u2‖L∞(Ω) ≤
C

−ln ‖ζ1 − ζ2‖L∞(Ω)

.

Here u1, u2 are solutions to (1.1) with ζ1, ζ2 respectively and the same boundary datum f .

In this way, we have proved the stability for solutions to the equation in the sense that

lim
‖ζ1−ζ2‖L∞(Ω)→0

‖u1 − u2‖L∞(Ω) = 0.

Equation (1.1) arises naturally when one considers Tug-of-War games (as introduced re-
cently in [25], see also [11], [22]). In fact, let us describe a game that has as continuous value
a solution to (1.1). This is a zero sum game with two players in which the earnings of one of
them are the losses of the other. Starting with a token at a vertex x0 ∈ Ω, the players flip a
biased coin with probabilities C(ε) and 1 − C(ε). If the result is a head (probability C(ε)),
they toss a fair coin to decide who move the token. If the outcome of the second toss is heads,
then Player I moves the token to any x1 ∈ B(x0), while in case of tails, Player II moves the
token to any x1 ∈ B(x0). In the other case, that is, if they get tails in the first coin toss
(probability 1 − C(ε)), the game state moves to the point x0 + ζ(x0)ε. The game continues
until the first time the token arrives to xτ ∈ Rn \ Ω and then Player I earns F (xτ ), and
thus Player II earns −F (xτ ) (here F is a suitable extension of the boundary datum f). This
game has a value uε that verifies a Dynamic Programming Principle formula, see the formula
(4.1). Moreover, the value functions for this game uε converge uniformly along subsequences
as ε → 0 to a limit u that is called the continuous value of the game and is a viscosity solution
to our problem (1.1). See Section 4 for more details concerning the game.

To carry on this probabilistic approach we have to assume more regularity on ζ and impose
Lipschitz continuity, but it is not necessary to assume that it is a gradient vector field.

Theorem 1.3. Let ζ be a Lipschitz vector field. Then there exists a viscosity solution to (1.1)
that can be obtained as the continuous value of the game described above.
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Let us end the introduction with a brief discussion of the previous bibliography and a
description of the main techniques used in the proofs. Concerning approximations using
p−Laplacian type operators, we quote [9] and [17], from where the main idea to show the
key bounds for the Lp-norm of the gradient is taken. We use ideas from [19] and [20] (some
of them being original from [18]) to show uniqueness of solutions and the stability result.
Note however that the equation considered here is different from the one in [19] and [20]
that appears as a limit of p(x)−Laplacian problems. Here we have a diffusion coefficient but
no x-dependence in the exponent. This change affects some of the arguments that has to
be carefully adapted to the present situation. Concerning games we mention [25] (see also
[26]) from where we mimic the technical details to obtain uniform convergence of the values
of the game. Let us point out that in reference [23] a related problem is studied (here the
probability of winning the coin toss depends on ε). The resulting equation is similar to ours
(they consider ζ depending on u as ζ = Du) and the main results there are obtained via a
clever comparison result with exponential cones. We don’t use any comparison with cones
argument here but rely on the more probabilistic ideas from [25]. We also quote the recent
references [1], [2], [3] and [4] related with the interplay between tug-of-war games and the
infinity Laplacian.

The paper is organized as follows: In Section 2 we prove the existence part of Theorem 1.1
showing that there is a sequence of solutions to (1.2) that converges uniformly (this fact comes
from uniform in p estimates of the gradients of such solutions); in Section 3 we deal with the
uniqueness part of Theorem 1.1 and with the stability with respect to ζ; finally, in Section 4
we perform the game theoretical approach.

2. A p−Laplacian approximation

In this section our aim is to obtain solutions to our problem (1.1) as limits of solutions to
(1.2). Let us recall that we assume that ζ is a gradient vector field, ζ(x) = Dη(x) and that
we consider bp(x) = e(p−2)η(x) as the diffusion coefficient in the following problem:

(2.1)

{
−div

(
bp |Du|p−2 Du

)
= 0 in Ω

u = f on ∂Ω.

Adding a constant if necessary we can assume that η ≥ 0 and hence bp ≥ 1.
First, we show existence and uniqueness of a continuous weak solution to (2.1). The proof

is standard but we include the details for the sake of completeness.

Lemma 2.1. Let p > n, then there it exists a unique continuous solution to the variational
problem

min
S

∫

Ω
bp
|Du|p

p

where S =
{
u ∈ W 1,p (Ω) : u |∂Ω= f

}
. This minimum is a weak solution of the problem (2.1),

that is, it verifies,
∫
Ω bp |Du|p−2 DuDφ = 0, for every φ ∈ C∞

0 (Ω) and u = f on ∂Ω.

Proof. As bp(x) is a bounded in Ω, we obtain that for every u ∈ W 1,p (Ω) there holds
∫

Ω

|Du|p
p

≤
∫

Ω
bp
|Du|p

p
≤ c1

∫

Ω

|Du|p
p
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and hence the functional

Θ(u) =
∫

Ω
bp
|Du|p

p
,

is well defined in the set S which is convex, weakly closed and non empty.
On the other hand, Θ is coercive, bounded below and lower semicontinuous in S, for this

reason there is a minimizing sequence un ∈ S ⊂ W 1,p (Ω), such that un ⇀ u ∈ S, and

inf
S

Θ = lim inf
n→+∞ Θ(un) ≥ Θ(u).

Hence the minimum of Θ in S is attained. From the strict convexity of Θ we obtain that up

is the unique minimum of Θ in S. Finally, up, the unique minimizer, is a weak solution of
(2.1). The fact that up is continuous follows from the fact that W 1,p(Ω) ↪→ C(Ω) for p > n,
see [13]. ¤

Notice that since p > n and f is Lipschitz, the conditions u ∈ W 1,p(Ω) ∩ C(Ω) and u = f

on ∂Ω are equivalent to the statement that u − F ∈ W 1,p
0 (Ω) being F a Lipschitz extension

of f to the whole Ω.
Now we have to introduce the definition of a viscosity solution, see [15]. For later use we

state the definition with full generality using the upper and lower semicontinuous envelopes
of a function G(X, ξ, u, x) (that we call G∗ and G∗ respectively) defined for X ∈ Mn×n, the
set of symmetric matrices in Rn×n, ξ ∈ Rn, u ∈ R and x ∈ Ω.

Definition 2.1. Let us consider a general second order elliptic equation

−G(D2u,Du, u, x) = 0.

We say that a lower semicontinuos proper function v : Ω → (−∞,∞] is a viscosity superso-
lution in Ω if, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that φ(x0) = v(x0) and φ(x) < v(x)
when x 6= x0, we have,

−G∗(D2φ(x0), Dφ(x0), φ(x0), x0) ≥ 0.

The viscosity subsolutions have a similar definition: they are upper semicontinuos, the test
functions touch from above and the differential inequality is reversed using G∗ instead of G∗.

Finally, a viscosity solution is a function that is both a viscosity supersolution and viscosity
subsolution.

Observe that since we assume that p is large, the equation div(bp|Du|p−2Du) = 0 is not
singular at the points where the gradient vanishes, and thus x 7→ div(bp|Du|p−2Du)(x) is well
defined and continuous for any φ ∈ C2(Ω). Hence, when we consider viscosity solutions to
equation (2.1), we take

Gp(X, ξ, u, x) = |ξ|p−2〈Dbp(x), ξ〉+ (p− 2)bp(x)|ξ|p−4〈Xξ, ξ〉+ bp(x)|ξ|p−2trace(X).

Now we show that for this equation of p−Laplacian type a continuous weak solution is also
a viscosity solution.

Lemma 2.2. Let up be a continuos weak solution of (2.1) then up is a viscosity solution.

Proof. Let φ(x) ∈ C2 be a test function such that φ(x0) = u(x0) and (u− φ) (x) has a strict
minimum at x0 ∈ Ω. Assume that Dφ(x0) 6= 0 (otherwise the conclusion is immediate). We
want to show that

− |Dφ(x0)|p−2 Dbp(x0)Dφ(x0)− (p− 2)bp(x0) |Dφ(x0)|p−2 〈D2φ(x0)
Dφ

|Dφ|(x0),
Dφ

|Dφ|(x0)〉
−bp(x0) |Dφ(x0)|p−2 ∆φ(x0) ≥ 0.



THE INFINITY LAPLACIAN WITH A TRANSPORT TERM 5

Assume that this is not the case, then there exists a radius r > 0 such that

− |Dφ(x)|p−2 Dbp(x)Dφ(x)− (p− 2)bp(x) |Dφ(x)|p−2 〈D2φ(x)
Dφ

|Dφ|(x),
Dφ

|Dφ|(x)〉
−bp(x) |Dφ(x)|p−2 ∆φ(x) < 0.

for every x ∈ Br(x0). Set m = inf |x−x0|=r(u− φ)(x) and let ψ(x) = φ(x) + m
2 . This function

verifies ψ(x0) > u(x0) and −div
(
bp

∣∣Dψp−2
∣∣ Dψ

)
< 0. Take (ψ − u)+ and we extend it by

zero outside Br(x0), then (ψ − u)+ ∈ W 1,p
0 (Ω). Taking (ψ − u)+ as test function in the weak

form of the equation we get,∫

ψ>u
bp〈|Du|p−2 Du; D((ψ − u)+)〉 = 0.

So, we obtain

C(N, p)
∫

ψ>u
bp |Dψ −Du|p ≤

∫

ψ>u
bp

〈
|Dψ|p−2 Dψ − |Du|p−2 Du; Dψ −Du

〉

=
∫

ψ>u
bp

〈
|Dψ|p−2 Dψ;Dψ −Du

〉
.

But, by the divergence theorem,∫

ψ>u
bp

〈
|Dψ|p−2 Dψ; Dψ −Du

〉
=

∫

ψ>u
−div(bp |Dψ|p−2 Dψ)(ψ − u) < 0,

a contradiction. This proves that u is a viscosity supersolution. The proof that is a viscosity
subsolution is analogous and we omit the details. ¤

Our next step is to prove that from a sequence of solutions to (2.1) with p → ∞ we can
extract a subsequence that converges uniformly.

Lemma 2.3. Let {up} be a sequence of solutions to (2.1) with p → ∞, then there exists a
subsequence pj →∞ such that upj → u uniformly in Ω.

Proof. We already proved in Lemma 2.1 that up is a minimizer of Θ in S. Let v a fixed
Lipschitz function such that |Dv| ≤ L and v = f on ∂Ω, then we have that v ∈ S and hence

∫

Ω
bp
|Dup|

p

p

≤
∫

Ω
bp
|Dv|

p

p

≤
∫

Ω
bp

Lp

p
≤ Lp

p
|Ω|max

Ω
|bp| .

Let k = maxx∈Ω̄ η(x) then 1 ≤ |bp(x)| ≤ e(p−2)k, and we obtain,
∫

Ω
|Dup|p ≤ C

Lp

p
|Ω| ek(p−2).

Therefore we have, (∫

Ω
|Dup|p

) 1
p

≤ C
1
p

L

p
1
p

|Ω| 1p e
k(p−2)

p ≤ C1,

being the constant C1 independent of p. Now we take m such that n < m ≤ p and obtain the
following bound

‖Dup‖Lm(Ω) =
(∫

Ω
|Dup|m · 1

) 1
m

≤
[(∫

Ω
|Dup|p

)m
p

(∫

Ω
1
) p−m

p

] 1
m

≤ C1 |Ω|
p−m
pm ≤ C2,
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the constant C2 being independent of p. We have proved that up is a bounded sequence in
W 1,m(Ω), and we know that up = f in ∂Ω, so we can obtain a subsequence upj ⇀ u ∈ W 1,m(Ω)
with pj → +∞. Since W 1,p(Ω) ↪→ C0,α(Ω̄) and upj ⇀ u ∈ W 1,p(Ω), we obtain upj → u in
C0,α(Ω), and in particular upj → u uniformly in Ω. As upj ∈ C(Ω), so u ∈ C(Ω). ¤

Remark 2.1. The function u ∈ W 1,m(Ω), given by Lemma 2.3, is Lipschitz. In fact, we
proved that,

(∫

Ω
|Dup|m

) 1
m

≤ lim inf
pj→+∞

(∫

Ω

∣∣Dupj

∣∣m
) 1

m

≤ C1 |Ω|
1
m ≤ C2.

Now, we take p → ∞ and then m → ∞ to obtain ‖Du‖L∞(Ω) ≤ C2. So, we have proved
u ∈ W 1,∞(Ω), that is, u is a Lipschitz function.

Now we are ready to prove existence of a viscosity solution to our main problem, (1.1).
Observe that, in order to define the 1−homogeneous infinity Laplacian, we have to give sense
to the following function,

G∞(X, ξ, u, x) = 〈X ξ

|ξ| ,
ξ

|ξ| 〉+ 〈ξ, ζ(x)〉, ξ ∈ Rn, X ∈ Mn×n,

when ξ = 0. Since this function is discontinuous at ξ = 0 we have to take into account the
upper and lower envelopes. To this end, associated with a symmetric matrix let us denote by
M(X) and m(X) the largest and the smallest eigenvalues of X ∈ Mn×n, respectively, i.e.

M(X) = max
|η|=1

〈Xη; η〉, and m(X) = min
|η|=1

〈Xη; η〉.

Then the upper and lower envelopes of G∞ are given by

(G∞)∗(X, ξ, u, x) =




〈X ξ

|ξ| ,
ξ

|ξ| 〉+ 〈ξ, ζ(x)〉 ξ 6= 0

M(X) ξ = 0,

and

(G∞)∗(X, ξ, u, x) =




〈X ξ

|ξ| ,
ξ

|ξ| 〉+ 〈ξ, ζ(x)〉 ξ 6= 0

m(X) ξ = 0.

With these semicontinuous envelopes we refer to Definition 2.1 for the concept of a contin-
uous function u being a viscosity solution of (1.1).

Theorem 2.1. Let up be a sequence of viscosity solutions of (2.1), such that

lim
p→+∞up = u

uniformly in Ω, then u is a viscosity solution of
{ −∆∞u− 〈Du, ζ〉 = 0 in Ω

u = f on ∂Ω.

Proof. Since up = f for every p, the limit u verifies the boundary condition u = f on ∂Ω. Let
φ ∈ C2(Ω) be a test function such that φ(x0) = u(x0) and (u− φ) (x) has a strict minimum
at x0 ∈ Ω. We want to show that, −∆∞φ(x0)− 〈Dφ(x0), ζ(x0)〉 ≥ 0. Since limp→+∞ up = u
uniformly in Ω̄, we have that φ− up has a strict minimum at xp ∈ Ω, with xp → x0. Assume
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|Dφ| (x0) 6= 0, so we obtain |Dφ| (xp) 6= 0, by the continuity of |Dφ| and the fact that xp → x0.
As up is a viscosity solution of (2.1), we have,

(2.2)
〈

Dφ(xp),
Dbp(xp)

bp(xp)(p− 2)

〉
+

∆φ

p− 2
(xp) +

〈
D2φ(xp)

Dφ

|Dφ|(xp),
Dφ

|Dφ|(xp)
〉
≤ 0.

Now, we want to compute the limits of the different terms that appear in (2.2). Taking into
account that xp → x0, by our choice of bp as bp = e(p−2)η, it holds that

ζ(x) = lim
p→+∞

Dbp(x)
bp(x)(p− 2)

, uniformly in Ω.

Hence, we have

(2.3) lim
p→+∞

〈
Dφ(xp),

Dbp(xp)
bp(xp)(p− 2)

〉
+

∆φ

p− 2
(xp) = 〈Dφ(x0), ζ(x0)〉

and, on the other hand, it holds that

(2.4) lim
p→+∞

〈
D2φ(xp)

Dφ

|Dφ|(xp),
Dφ

|Dφ|(xp)
〉

=
〈

D2φ(x0)
Dφ

|Dφ|(x0),
Dφ

|Dφ|(x0)
〉

.

Moreover, as ∆φ is bounded for a fixed C2-function we obtain,

(2.5) lim
p→+∞

∆φ(xp)
p− 2

= 0.

If we collect these results, we obtain,

∆∞φ(x0) + 〈Dφ(x0), ζ(x0)〉 ≤ 0.

as we wanted to prove.
Now, assume that Dφ(x0) = 0. As before we get that (2.3) and (2.5) hold. Concerning

(2.4) we get

lim inf
p→+∞

〈
D2φ(xp)

Dφ

|Dφ|(xp),
Dφ

|Dφ|(xp)
〉
≥ m(D2φ(x0)).

Putting all together we obtain that u is a viscosity supersolution.
An analogous argument considering ψ ∈ C2 test function such that ψ(x0) = u(x0) and

(u− ψ) (x) has a strict maximum at x0 ∈ Ω shows that u is a viscosity subsolution to the
equation. We omit the details. ¤

Remark 2.2. Consider the modified p−Laplacian equation

−∆pu− (p− 2)|Du|p−2〈Du, ζ〉 = 0.

It can be checked that if there exists a sequence of solutions up with up = f on ∂Ω that con-
verges uniformly then the limit is a solution to (1.1). However, this equation is not variational
and hence the required estimates cannot be obtained as before.



8 R. LÓPEZ-SORIANO, J. C. NAVARRO-CLIMENT AND J. D. ROSSI

3. Uniqueness and stability

The goal of this section is to study uniqueness and stability with respect to the vector field
ζ of solutions to the equation (1.1). Along this section we assume that ζ is a gradient vector
field. Following [19], [20], we consider two auxiliary problems with a positive parameter ε,

(3.1) min
{−∆∞u+ − 〈

ζ, Du+
〉
;−ε + eη

∣∣Du+
∣∣} = 0 upper equation

−∆∞u− 〈ζ, Du〉 = 0 equation

(3.2) max
{−∆∞u− − 〈

ζ, Du−
〉
; ε− eη

∣∣Du−
∣∣} = 0 lower equation.

Let u+
p and u−p be the unique weak solutions of the problems

(3.3)
{ −div(bp |Du|Du) = εp−1 in Ω

u = f on ∂Ω,
and

{ −div(bp |Du|Du) = −εp−1 in Ω
u = f on ∂Ω,

respectively. Existence and uniqueness for these problems can be obtained as in Lemma 2.1.
For example u+

p is the unique solution to the following minimization problem,

min
u∈W 1,p(Ω),u|∂Ω=f

(∫

Ω
bp
|Du|p

p
− εp−1

∫

Ω
u

)
.

The weak solutions are viscosity solutions of their respective equations, for example, u+
p is

a solution to Gp(u) + εp−1 = 0. This fact can be proved as in Lemma 2.2. In addition, there
are subsequences such that u−p → u−, up → u, and u+

p → u+ uniformly in Ω. We also obtain
that there exists a constant K such that

(3.4) max{‖Du+‖L∞(Ω), ‖Du−‖L∞(Ω)} ≤ K.

By a comparison argument we have u−p ≤ up ≤ u+
p , hence u− ≤ u ≤ u+.

Let us see that the limits u+, u− are viscosity solutions to (3.1) and (3.2) respectively. We
provide the proof for u+ and leave the details for u− to the reader.

Lemma 3.1. Every uniform limit of u+
p as p →∞ is a viscosity solution to (3.1).

Proof. Let φ ∈ C2(Ω) be a test function such that φ(x0) = u+(x0) and (u+ − φ) has a
strict minimum at x0 ∈ Ω. By the uniform convergence, there exists xp → x0, such that
φ(xp) = u+

p (xp) and
(
u+

p − φ
)

has a minimum at xp. Thus, using that u+
p is a viscosity

solution to (3.3),

− |Dφ(xp)|p−2 Dbp(xp)Dφ(xp)− (p− 2)bp(xp) |Dφ(xp)|p−2

〈
D2φ(xp)

Dφ

|Dφ|(xp),
Dφ

|Dφ|(xp)
〉

−bp(xp) |Dφ|p−2 (xp)∆φ(xp) ≥ εp−1.

Hence Dφ(xp) 6= 0 and we obtain,

−Dbp

bp
(xp)

Dφ(xp)
p− 2

−
〈

D2φ(xp)
Dφ

|Dφ|(xp),
Dφ

|Dφ|(xp)
〉
− ∆φ(xp)

p− 2
≥ εp−1

bp(xp)(p− 2) |Dφ(xp)|p−2

We have to compute the limits of the different terms. As we did before, in (2.3), (2.4),
(2.5), we can compute the limits in the left hand side. Now we write the left hand side as

εp−1

bp(xp)(p− 2) |Dφ(xp)|p−2 =

[
ε

p−1
p−2

eη(xp)(p− 2)
1

p−2 |Dφ(xp)|

]p−2
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and we observe that

lim
p→+∞

ε
p−1
p−2

eη(xp)(p− 2)
1

p−2 |Dφ(xp)|
=

ε

eη(x0) |Dφ(x0)|
.

Hence, as the limit of the left hand side is finite we get
ε

eη(x0) |Dφ(x0)|
≤ 1,

and
−∆∞φ(x0)− 〈Dφ(x0, ζ(x0))〉 ≥ 0.

Moreover, if −ε + eη(x0) |Dφ(x0)| > 0, then −∆∞φ(x0)−〈Dφ(x0), ζ(x0)〉 = 0. Then, we have
obtained min {−∆∞φ− 〈ζ, Dφ〉 ;−ε + eη |Dφ|} (x0) ≥ 0, as we wanted to prove.

An analogous argument considering ψ ∈ C2(Ω) a test function such that ψ(x0) = u+
p (x0)

and
(
u+

p − ψ
)

has a strict maximum at x0 ∈ Ω shows a reverse inequality. ¤

Using the weak form of the equations with u+
p − u−p as test function we have,

∫

Ω
bp

∣∣Du+
p

∣∣p−2
Du+

p D
(
u+

p − u−p
)

=
∫

Ω
εp−1

(
u+

p − u−p
)

and ∫

Ω
bp

∣∣Du−p
∣∣p−2

Du−p D
(
u+

p − u−p
)

= −
∫

Ω
εp−1

(
u+

p − u−p
)

and if we substract, we obtain∫

Ω
bp

〈∣∣Du+
p

∣∣p−2
Du+

p −
∣∣Du−p

∣∣p−2
Du−p ;D

(
u+

p − u−p
)〉

= 2
∫

Ω
εp−1

(
u+

p − u−p
)
.

With the aid of the elementary inequality: 〈|b|q−2b− |a|q−2a, b− a〉 ≥ 22−q|b− a|q valid for
vectors a, b ∈ Rn and q ≥ 2, we get

4
∫

Ω
bp

∣∣Du+
p −Du−p

∣∣p
2

≤ 1
ε

∫

Ω
εp

∣∣u+
p − u−p

∣∣

Extracting the pth root, and taking p →∞ we conclude that ‖Du+ −Du−‖L∞(Ω) ≤ Cε and
then ‖u+ − u−‖L∞(Ω) ≤ Cε. Hence we have proved,

(3.5) u+ ≤ u− + Cε and hence u− ≤ u ≤ u+ ≤ u− + Cε c.t.p. x ∈ Ω.

Now, using these functions u+, u− we prove a comparison result valid for any viscosity
solution to (1.1).

Lemma 3.2. Let u ∈ C(Ω) be a viscosity solution to (1.1), then

u− ≤ u ≤ u+.

Proof. We prove that u ≤ u+. The proof of u− ≤ u is analogous and we omit the details.
By adding a constant if necessary we can assume that u+ > 0. Arguing by contradiction

we assume that
max

Ω
(u− u+) > 0 = max

∂Ω
(u− u+).

Now we introduce a function g which is an approximation of the identity,

g(t) =
1
α

ln(1 + A(eαt − 1)), where A > 1, α > 0.
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Let w = g(u+). Analogously as in [19], see also [20], we have that there exists µ > 0 such
that w verifies −∆∞w − 〈Dw, ζ〉 ≥ µ in the viscosity sense. Since g is an approximation of
the identity we have

max
Ω

(u− w) > max
∂Ω

(u− w).

Now, we double the variables and consider

sup
x,y∈Ω

{
u(x)− w(y)− j

2
|x− y|2

}
.

For large j the supremum is attained at interior points xj , yj such that xj → x̂, yj → x̂,
where x̂ is an interior point (that x̂ cannot be on the boundary can be obtained as in [19]).

Now, we have to prove that there exists a constant C such that j|xj − yj | ≤ C. To show
this fact we just observe that u(xj) − w(yj) − j

2 |xj − yj |2 ≥ u(xj) − w(xj). Hence, by (3.4)
and the explicit form of g we get (here we are using that u+ is obtained taking the limit as
p →∞ of a sequence of solutions to variational p−Laplacian type problems),

j

2
|xj − yj |2 ≤ w(xj)− w(yj) ≤ ‖g′(u+)Du+‖L∞(Ω)|xj − yj | ≤ AK|xj − yj |

from where the claim follows.
Now, the theorem of sums implies that there are symmetric matrices Xj , Yj , with Xj ≤ Yj

such that (j|xj − yj |,Xj) ∈ J2,+(u)(xj) and (j|xj − yj |,Yj) ∈ J2,−(w)(yj), where J2,+(u)(xj)
and J2,−(w)(yj) are the closures of the super and subjets of u and w respectively. Using the
equations, assuming that xj 6= yj , we have

〈
Yj

(xj − yj)
|xj − yj | ,

(xj − yj)
|xj − yj |

〉
+ j〈xj − yj , ζ(yj)〉 ≤ −µ

and 〈
Xj

(xj − yj)
|xj − yj | ,

(xj − yj)
|xj − yj |

〉
+ j〈xj − yj , ζ(xj)〉 ≥ 0.

Substracting these equations we obtain

0 ≤
〈

(Yj − Xj)
(xj − yj)
|xj − yj | ,

(xj − yj)
|xj − yj |

〉
≤ −µ + j〈xj − yj , ζ(xj)− ζ(yj)〉

≤ −µ + j|xj − yj ||ζ(xj)− ζ(yj)| ≤ −µ + C|ζ(xj)− ζ(yj)|.
This gives a contradiction taking the limit j →∞ using the continuity of ζ.

When xj = yj we obtain M(Yj) ≤ −µ and m(Xj) ≥ 0, that also gives a contradiction since
0 ≤ Yj − Xj .

Hence we have obtained that u ≤ u+, as we wanted to prove. ¤
Now we can prove uniqueness of viscosity solutions to (1.1).

Theorem 3.1. There is a unique viscosity solution to (1.1).

Proof. From Lemma 3.2 we get that any two solutions u1, u2 to (1.1) satisfy u− ≤ u1, u2 ≤ u+.
This fact, together with (3.5) gives |u1 − u2| ≤ Cε. The result follows letting ε → 0. ¤

Our next task is to prove the stability of solutions to our equation with respect to ζ. First,
let us prove an estimate when ζ1 is small. Let u1 be a viscosity solution of,{ −∆∞u− 〈Du; ζ1〉 = 0 in Ω

u = f on ∂Ω,
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and u2 be a viscosity solution of
{ −∆∞u = 0 in Ω

u = f on ∂Ω.

Take u+
2 which is viscosity solution of (3.1) and verifies u+

2 ≥ u2 > 0. Let w2 = g(u+
2 ). As

in [20] one can show that
−∆∞w2 ≥ µ,

where µ is given by,

(3.6) µ =
(A− 1)ε4

Ae
∥∥u+

2

∥∥
L∞(Ω)

.

Using the properties of g and [20], we obtain the following estimate,

(3.7) u1 − u2 = (u1 − w2) + (w2 − u+
2 ) + (u+

2 − u2) ≤ (u1 − g(u+
2 ))− A− 1

α
+ ε diam(Ω).

Lemma 3.3. We have the following bound,

u1 − w2 ≤ Cε−4
∥∥u+

2

∥∥2

L∞(Ω)
‖ζ‖L∞(Ω) .

Proof. Let σ = maxΩ(u1 − w2). If we suppose σ ≤ 0, the conclusion is immediate, so we
assume σ > 0. Let us consider

Mj = sup
x,y∈Ω

{
u1(x)− w2(y)− j

2
|x− y|2

}
.

We know Mj ≥ σ, and the supremum is attained at some points xj , yj . Now |xj − yj | → 0
as j → +∞, and xj → x̂, yj → x̂ at least for a subsequence. As before, we have that x̂ is
an interior point of Ω. We have the following bounds: ε ≤ j |xj − yj | ≤ C. The upper bound
follows as before, while the lower bound can be obtained as in [19].

According to the Theorem on Sums there exist matrices Xj and Yj such that Xj ≤ Yj

and, assuming that xj 6= yj (if xj = yj we can proceed as in the previous proof, we omit the
details), 〈

Yj
(xj − yj)
|xj − yj | ,

(xj − yj)
|xj − yj |

〉
≤ −µ

and 〈
Xj

(xj − yj)
|xj − yj | ,

(xj − yj)
|xj − yj |

〉
+ j〈xj − yj , ζ(xj)〉 ≥ 0.

If we substract them

0 ≤
〈

(Yj − Xj)
(xj − yj)
|xj − yj | ,

(xj − yj)
|xj − yj |

〉
≤ −µ + 〈j(xj − yj); ζ(xj)〉 ≤ −µ + C ‖ζ‖L∞(Ω)

so, we have
µ ≤ C ‖ζ‖L∞(Ω)

and from the expression of µ in (3.6), the above estimate can be written as follows:

(A− 1)ε4

Ae ‖u+‖L∞(Ω)

≤ C ‖ζ‖L∞(Ω) .
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Now, we fix A > 1 such that A−1
α = σ. So we obtain, σ ≤ Cε−4Ae

∥∥u+
2

∥∥2

L∞(Ω)
‖ζ‖L∞(Ω). As

A < 2, Ae can be absorbed into the constant C, and since u1 − w2 ≤ σ, we obtain

u1 − w2 ≤ Cε−4
∥∥u+

2

∥∥2

L∞(Ω)
‖ζ‖L∞(Ω)

as we wanted to prove. ¤
Theorem 3.2. It holds the following stability estimate,

|u1 − u2| ≤ C ‖ζ‖L∞(Ω) + C ‖ζ‖
1
5

L∞(Ω) .

Proof. If we return to (3.7), using the last result we have

u1 − u2 ≤ 2Cε−4
∥∥u+

2

∥∥2

L∞(Ω)
‖ζ‖L∞(Ω) + ε diam(Ω)

It remains to choose ε nearly optimal. To simplify, we use (3.5), u+
2 ≤ ‖f‖L∞(∂Ω) +ε diam(Ω)

to obtain
u1 − u2 ≤ 2

C

ε4

(
‖f‖L∞(Ω) + εdiam(Ω)

)2
‖ζ‖L∞(Ω) + ε diam(Ω).

That is, renaming constants,

u1 − u2 ≤ C1

ε5
‖ζ‖L∞(Ω) ε + C2ε.

We consider two cases. If C2 ≤ 2C1 ‖ζ‖L∞(Ω), we take ε = 1 and obtain a bound of the form
C ‖ζ‖L∞(Ω), then, u1 − u2 ≤ C ‖ζ‖L∞(Ω). If C2 > 2C1 ‖ζ‖L∞(Ω), we choose ε as:

ε =

[
C1 ‖ζ‖L∞(Ω)

C2

]1/5

,

and we obtain u1 − u2 ≤ C ‖ζ‖
1
5

L∞(Ω). We conclude that

u1 − u2 ≤ C ‖ζ‖L∞(Ω) + C ‖ζ‖
1
5

L∞(Ω) ,

and considering u−2 instead of u+
2 we get,

|u1 − u2| ≤ C ‖ζ‖L∞(Ω) + C ‖ζ‖
1
5

L∞(Ω) ,

as we wanted to prove. ¤
Now we obtain a general stability estimate. Let u1, u2 > 0 be viscosity solutions of{

∆∞u + 〈Du; ζ1〉 = 0 in Ω
u = f on ∂Ω and

{
∆∞u + 〈Du; ζ2〉 = 0 in Ω
u = f on ∂Ω,

respectively. As before we let w2 = g(u+
2 ) that verifies

∆∞w + 〈Dw, ζ2〉 ≤ −µ

with

µ =
α(A− 1)

A
e−α‖u+

2 ‖L∞(Ω)−2‖η2‖L∞(Ω)ε2

and we obtain

u1 − u2 = (u1 − w2) + (w2 − v2) + (v2 − u2) ≤ (u1 − g(u+
2 ))− A− 1

α
+ Cε.
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Lemma 3.4. It holds that

u1 − w2 ≤ CAe
1
ε
‖u2‖L∞(Ω) ‖ζ1 − ζ2‖L∞(Ω) .

Proof. The proof follows the same steps as the previous one until we arrive to

ε2α2A−1 σ

2
e−α‖u+

2 ‖L∞(Ω)−2‖η2‖L∞(Ω) ≤ C ‖ζ1 − ζ2‖L∞(Ω) .

Then we choose α ≈ 1
ε and we get

σ ≤ CAe−
1
ε
‖u+

2 ‖L∞(Ω)−2‖η2‖L∞(Ω) ‖ζ1 − ζ2‖L∞(Ω)

as we wanted to prove. ¤

Theorem 3.3. It holds the general stability estimate,

‖u1 − u2‖L∞(Ω) ≤
C

−ln ‖ζ1 − ζ2‖L∞(Ω)

Proof. We have

u1 − u2 ≤ CAe−
1
ε
‖u2‖L∞(Ω) ‖ζ1 − ζ2‖L∞(Ω) +

A− 1
α

+ Cε

so that, by a symmetric argument and using that α ≈ 1
ε ,

‖u1 − u2‖L∞(Ω) ≤ CAe−
1
ε
‖u2‖L∞(Ω) ‖ζ1 − ζ2‖L∞(Ω) + Cε.

Now we choose ε as

ε ≈ 1
−ln ‖ζ1 − ζ2‖L∞(Ω)

and we conclude the desired estimate. ¤

4. A game theoretical approach

In this section our aim is to show that for a Lipschitz continuous vector field ζ solutions to
our problem (1.1) can be obtained as the continuous value of a modification of the tug-of-war
game introduced in [25]. Next, we briefly describe the tug-of-war game of [25] and refer to
that reference for details.

4.1. The tug-of-war game. A tug-of-war game is a two person zero-sum game, that is,
two players play knowing that the earnings of the first one are the losses of the second one.
Player I chooses a strategy in order to maximize the expected outcome, and Player II chooses
another in order to minimize the outcome.

Take a bounded smooth domain Ω ⊂ Rn. Let f : ∂Ω → R be a Lipschitz continuos function
and extend it to a small strip of width ε around ∂Ω in Rn\Ω, Γε = {x ∈ Rn\Ω : d(x, ∂Ω) < ε}.
This extension, that we call F , gives the final payoff of the game (that is, the earnings of
Player I and the looses of Player II). At the beginning, a token is placed at a point x0 ∈ Ω.
Then, a fair coin is tossed and the player who wins moves the token to any x1 ∈ Bε(x0), being
ε > 0 a parameter of the game. At the next turn, the coin is tossed again and the winner
chooses to move the token to any x2 ∈ Bε(x1). When the token arrives to any xτ ∈ Rn \ Ω,
Player I earns F (xτ ), and thus Player II earns −F (xτ ).
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Denote SI and SII the profile of strategies of Player I and Player II respectively, see [21]
and [25], we define the expected payoff for Player I as

Vx0,I(SI , SII) =
{
Ex0

SI ,SII
[F (xτ )] , if the game terminate a.s.

−∞ otherwise.

Analogously, we define the expected payoff for Player II as

Vx0,II(SI , SII) =
{
Ex0

SI ,SII
[F (xτ )] , if the game terminate a.s.

+∞ otherwise.

Now, we define the ε− value of the game for Player I as

uε
I(x0) = sup

SI

inf
SII

Vx0,II(SI , SII)

and the ε− value of the game for Player II as

uε
II(x0) = inf

SII

sup
SI

Vx0,I(SI , SII).

We have that uε
I = uε

II := uε, that is, the game has a value. Now comes a key fact, by the
Dynamic Programming Principle, see [21], [24] and[25], the value of the game verifies

uε(x) =
1
2

sup
y∈Bε(x)

uε(y) +
1
2

inf
y∈Bε(x)

uε(y).

In [25] it is proved that uε converges uniformly when ε → 0. This uniform limit is called
the continous value of the game that we denote by u and it can be proved (see also [25]) that
u is a viscosity solution to the problem

{ −∆∞u = 0 in Ω
u = f on ∂Ω.

4.2. A modification of the game. We consider as before a smooth domain Ω ⊂ Rn and
F the final payoff function defined in a narrow strip around the boundary. The principal
difference in this modified tug-of-war game is that we play a game with two stages. First we
toss an unfair coin, which has head probability 0 < C(ε) < 1, and tail probability 1− C(ε).
If we have obtained a head, we play to the game described before, i.e., we toss a new (fair)
coin and the winner moves the token to any new position x1 ∈ Bε(x0). But if in the first
(unfair) coin toss we obtained a tail, the token is moved to x0 + ζ(x0)ε, where ζ(x) : Ω → Rn

is the vector field that appears in (1.1) (that is assumed to be Lipschitz). Note that there is
no strategies of the players involved if we get a tail in the first coin toss. The game continues
until the first time the token arrives to xτ ∈ Rn \Ω and then Player I earns F (xτ ), and thus
Player II earns −F (xτ ).

We choose the probability C(ε) according to

C(ε) = 1− ε.

This choice is motivated by the different scaling properties of the different terms that appear
in (1.1).

Again we have that this game has a value (defined in an analogous way as before), and,
using the Dynamic Programmming Principle, we obtain that the value function for this game
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verifies

(4.1) uε(x) = (1− ε)

{
1
2

sup
y∈Bε(x)

uε(y) +
1
2

inf
y∈Bε(x)

uε(y)

}
+ εuε(x + ζ(x)ε).

Our next goal is to show that we can pass to the limit as ε → 0 and that this limit, the
continuous value of the game, is a viscosity solution to (1.1).

4.3. Uniform Convergence of the ε-value of the game as ε → 0. Our first result shows
uniform convergence using an Arzela-Ascoli type lemma from [22].

Lemma 4.1. Let {uε : Ω → R, ε > 0} be a set of functions such that
(1) there exists C > 0 so that |uε(x)| < C for every ε > 0 and every x ∈ Ω,
(2) given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any x0, y0 ∈ Ω

with |x0 − y0| < r0 it holds |uε(x)− uε(y)| < η.
Then, there exists a uniformly continuous function u : Ω → R and a subsequence still denoted
by {uε} such that uε → u uniformly in Ω, as ε → 0.

Now, we proceed with the proof of the uniform convergence.

Lemma 4.2. There exists a subsequence εj → 0 such that uεj → u uniformly in Ω.

Proof. First, let us point out that since F is bounded then uε is uniformly bounded. In fact,
it holds,

min
y∈Γε

F (y) ≤ uε(x) ≤ max
y∈Γε

F (y).

Now, we want to prove that condition (2) in Lemma 4.1 holds. If x0 ∈ Γε and y0 ∈ Γε

then, due to the fact that F is Lipschitz we have,

|uε(x0)− uε(y0)| = |F (x0)− F (y0)| ≤ L|x0 − y0|,
and this shows (2) in this case. If x0 ∈ Ω and y0 ∈ Γε, then, using the same arguments as
in [25], taking the strategy of pointing to y starting at x one can show that there exists a
constant K such that |uε(x0)− uε(y0)| ≤ Kdε(x0, y0), where dε is the discrete distance given
by dε(x, y) = [ |x−y|

ε ] + 1 and we also get (2) in this case. Finally, if x0 ∈ Ω and y0 ∈ Ω we can
mimic the strategies of the players starting at x with those starting at y. That is, when we
fix SI(x) ∈ Bε(x), we choose SI(y) = SI(x)− x + y ∈ Bε(y) and analogously for SII . In this
way, each time that the tug-of-war game is played, we have |xk − yk| = |xk−1− yk−1|. In case
the movement is given by the vector field ζ we have (here we use that ζ is Lipschitz)

|xk − yk| = |xk−1 − yk−1 + ε(ζ(xk−1)− ζ(yk−1))| ≤ (1 + Lε)|xk−1 − yk−1|.
Now, we observe that E[] plays with ζ] = E[] total number of plays]ε, and the expected num-
ber of total plays can be bounded by K/ε2, see [25], [22], hence we get E[] plays with ζ] ≤ K/ε.
Therefore, if we let τ be the first time such that xτ ∈ Γε or yτ ∈ Γε, we have

E[|xτ − yτ |] ≤ (1 + Lε)K/ε|x0 − y0| ≤ C|x0 − y0|.
And by the same arguments that we used for the case x ∈ Ω and y ∈ Γε we conclude that

|uε(x0)− uε(y0)| ≤ Cdε(x0, y0),

and also in this case we get (2).
Therefore we are under the hypotheses of Lemma 4.1 and we get the desired uniform

convergence, extracting a subsequence if it is necessary. ¤
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Now our aim is to show that the uniform limit as ε → 0 of uε, called the continous value
of the game, that we denote by u is a viscosity solution to the problem (1.1).

Theorem 4.1. Any uniform limit of uε as ε → 0 is a viscosity solution to (1.1).

Proof. First, let us observe that from the fact that uε = F in Γε and the uniform convergence
to u, we obtain that the boundary condition u|∂Ω = f is satisfied.

Now, let us check the equation in (1.1). To this end, let us first consider a smooth test
function φ that touches u from above, that is, φ(y)−φ(x0) ≥ u(y)−u(x0), for every y 6= x0 ∈
Ω. As uε converge uniformly to u as ε → 0 there are points xε converging to x0 such that

φ(y)− φ(xε) ≥ uε(y)− uε(xε)− ε3.

Using that uε verifies the Dynamic Programming Principle, (4.1), at the point xε, we obtain
that

0 ≤ (1− ε)

{
1
2

sup
y∈Bε(xε)

φ(y) +
1
2

inf
y∈Bε(xε)

φ(y)− φ(xε)

}
+ ε

{
φ(xε + ζ(xε)ε)− φ(xε)

}
+ O(ε3).

Now we divide by ε2 and pass to the limit as ε → 0. The first term

A(ε, φ) =
(1− ε)

ε2

{
1
2

sup
y∈Bε(xε)

φ(y) +
1
2

inf
y∈Bε(xε)

φ(y)− φ(xε)

}

can be handled as in [22], see also [11], and gives as limit when ε → 0 the infinity Laplacian
of φ at x0,

lim
ε→0

A(ε, φ) = ∆∞φ(x0).

While the second term
B(ε, φ) =

1
ε
{φ(xε + ζ(xε)ε)− φ(xε)}

gives as limit
lim
ε→0

B(ε, φ) = 〈Dφ(x0), ζ(x0)〉.
Therefore we get

0 ≤ ∆∞φ(x0) + 〈Dφ(x0), ζ(x0)〉
and we have obtained that u is a viscosity supersolution according to Definition 2.1.

The fact that u is a viscosity subsolution is analogous and we omit the details. ¤
Remark 4.1. To prove that the a uniform limit of the values of the game is a viscosity
solution to (1.1) we only used that ζ is continuous (but we don’t need Lipschitz continuity
here).
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[16] J. Garćıa-Azorero, J.J. Manfredi, I. Peral and J.D. Rossi. The Neumann problem for the ∞-Laplacian

and the Monge-Kantorovich mass transfer problem. Nonlinear Anal. 66 (2007), no. 2, 349–366.
[17] H. Ishii and P. Loreti. Limits of solutions of p-Laplace equations as p goes to infinity and related varia-

tional problems. SIAM J. Math. Anal. 37 (2005), no. 2, 411–437.
[18] R. Jensen. Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational

Mech. Anal. 123 (1993), 51–74.
[19] P. Lindqvist and T. Lukkari, A curious equation involving the ∞-Laplacian, Adv. Calc. Var. 3 (2010)

409–421.
[20] E. Lindgren and P. Lindqvist, Stability for the infinity-Laplace equation with variable exponent. Preprint.
[21] J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games

with noise. ESAIM. Control, Optimisation and Calculus of Variations, COCV. 18(1), (2012), 81–90.
[22] J. J. Manfredi, M. Parviainen and J. D. Rossi. On the definition and properties of p-harmonious functions.

To appear in Ann. Scuola Nor. Sup. Pisa.
[23] Y. Peres, G. Pete and S. Somersielle. Biased Tug-of-War, the biased infinity Laplacian and comparison

with exponential cones. Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 541–564.
[24] A. P. Maitra, W. D. Sudderth. Discrete Gambling and Stochastic Games. Applications of Mathematics

32, Springer-Verlag (1996).
[25] Y. Peres, O. Schramm, S. Sheffield and D. Wilson. Tug-of-war and the infinity Laplacian, J. Amer. Math.

Soc. 22 (2009), 167-210.
[26] Y. Peres, S. Sheffield. Tug-of-war with noise: a game theoretic view of the p-Laplacian. Duke Math. J.

145(1) (2008), 91–120.
[27] O. Savin, C1 regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal.

176 (2005), no. 3, 351–361.
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