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Abstract. In this article we prove that the first eigenvalue of the∞−Laplacian{
min{−∆∞v, |∇v| − λ1,∞(Ω)v} = 0 in Ω

v = 0 on ∂Ω,

has a unique (up to scalar multiplication) maximal solution. This maximal

solution can be obtained as the limit as `↗ 1 of concave problems of the form{
min{−∆∞v`, |∇v`| − λ1,∞(Ω)v``} = 0 in Ω

v` = 0 on ∂Ω.

In this way we obtain that the maximal eigenfunction is the unique one that is

the limit of the sub-homogeneous problems as happens for the usual eigenvalue

problem for the p−Laplacian for a fixed 1 < p <∞.
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1. Introduction

Let Ω ⊂ Rn be a domain, i.e., a connected, bounded and open set, with smooth
boundary, 1 < p < ∞ and ∆pu := div(|∇u|p−2∇u) (the p-Laplace operator). It is
a well-known fact in the literature (cf. [1] and [24]) that the first eigenvalue of the
following p-homogeneous (nonlinear) eigenvalue problem

(1.1)

{
−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω

can be characterized variationally as the minimizer of the Rayleigh quotient

(p-Eigenvalue) λ1,p(Ω) := inf
u∈W 1,p

0 (Ω)\{0}

ˆ
Ω

|∇u|pdx
ˆ

Ω

|u|pdx
> 0.
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Eigenvalue problems have received an increasing amount of attention along of last
decades by many authors (being studied mainly via variational methods) due to
several connections with applied sciences, such as bifurcation theory, resonance
problems, fluid and quantum mechanics, etc, (cf. [13], [21], [24], as well as the book
[20]).

Notice that, without loss of generality, due to the weak maximum principle (or
Harnack inequality) the eigenfunction up corresponding to λ1,p(Ω) can be consid-
ered to be positive in Ω, as well as, due to the p-homogeneity of (1.1), normalized
such that ‖up‖Lp(Ω) = 1 (cf. [19]). Recall that the minimum in (p-Eigenvalue) is
achieved by the unique positive solution (up to multiplicative constants) of equa-
tion (1.1) with λ(Ω) = λ1,p(Ω) (cf. [19]). This fact is known as the simplicity of
the principal eigenvalue of (1.1) (cf. [1] and [11]).

When one takes the limit as p→∞ in the minimization problem (p-Eigenvalue)
obtains

(∞-Eigenvalue) λ1,∞(Ω) := lim
p→∞

p

√
λ1,p(Ω) = inf

u∈W 1,∞
0 (Ω)\{0}

‖∇u‖L∞(Ω)

‖u‖L∞(Ω)
.

This min-max problem presents too many solutions as it was shown in the celebrated
paper [16] (see also [17]). Concerning the limit equation, also in [16] it is proved
that any family of normalized eigenfunctions {up}p>1 to (p-Eigenvalue) fulfills
(up to subsequence)

up(x)→ u∞(x) uniformly in Ω as p→∞,

where u∞ ∈ W 1,∞
0 (Ω) satisfies ‖u∞‖L∞(Ω) = 1 and the pair (u∞, λ1,∞(Ω)) is a

nontrivial solution to

(1.2)

{
min

{
−∆∞v∞, |∇v∞| − λ1,∞(Ω)v∞

}
= 0 in Ω

v∞ = 0 on ∂Ω.

Here solutions are understood in the viscosity sense and

∆∞u(x) :=

n∑
i,j=1

∂u

∂xj
(x)

∂2u

∂xj∂xi
(x)

∂u

∂xi
(x)

is the well-known ∞−Laplace operator. For this reason, (1.2), its (positive) solu-
tions and λ1,∞(Ω) are called in the literature the∞-eigenvalue problem,∞−ground
states and the first ∞-eigenvalue respectively (cf. [14], [16], [17] and [26]). In ad-
dition, also in [16], it is given a geometrical characterization for λ1,∞(Ω), namely,

λ1,∞(Ω) =
1

R

where R > 0 is the radius of the biggest ball contained inside Ω. This means that
the “principal frequency” for the ∞-eigenvalue problem can be detected from the
geometry of the domain. For more references concerning the first eigenvalue for the
∞−eigenvalue problem we refer to [6], [9], [15], [18], [22], [25] and [26].

In contrast with the first (zero) Dirichlet p-Laplace eigenfunction (cf. [2], [11]
and [13]), problem (1.2) may have many solutions. In fact, the simplicity of λ1,∞(Ω)
has only been established for those domains in which the distance function u(x) =
dist(x, ∂Ω) is an eigenfunction, see [26]. Such domains include the ball, the stadium
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(the convex hull of two balls with the same radii) and the torus as particular
examples. Here we mention that from [22] we know that there are convex domains
for which the distance function is not an∞−eigenfunction. Nevertheless, in general
domains, one cannot expect a simple first eigenvalue, since in [14] the authors
show an example of a planar domain with a dumbbell shape (two balls of the
same size with a small bridge connecting them) containing (at least) three different
eigenfunctions (all of them normalized by ‖u∞‖L∞(Ω) = 1). We also highlight that
such an example solves a conjecture posed by [16] and [17].

Taking into account the fact that, in general, λ1,∞(Ω) is not simple, the main
purpose of this paper is to prove that, in spite of this lack of simplicity, there exists
a unique distinguished eigenfunction v̂ corresponding to λ1,∞(Ω) that arises as
the limit of sub-linear (concave) problems associated to the ∞-eigenvalue problem.
This distinguished eigenfunction v̂ is characterized as the only one that fulfills a
maximality property: it is normalized with ‖v̂‖L∞(Ω) = 1, it verifies v̂ ≥ u∞ for
any other solution to (1.2) with ‖u∞‖L∞(Ω) = 1.

Now we take a small detour and introduce for 1 < q < p the following family of
eigenvalue problems

(1.3)

{
−∆pu = Λp,q(Ω)‖u‖p−qLq(Ω)|u|

q−2u in Ω

u = 0 on ∂Ω,

see [5, 11]. The first eigenvalue for this problem is given by the following quantity

(1.4) Λp,q(Ω) := inf

{ˆ
Ω

|∇u|p dx : u ∈W 1,p
0 (Ω) with ‖u‖Lq(Ω) = 1

}
.

As before, we will consider the corresponding eigenfunction up,q being positive in Ω
and normalized such that ‖up,q‖Lq(Ω) = 1. Notice that with this normalization we

have that up,q is the unique positive solution to−∆pu = Λp,q(Ω)|u|q−2u (uniqueness
holds due to the fact that q < p).

Our first result shows that the value λ1,∞(Ω) defined in (∞-Eigenvalue) can
be also obtained as the limit of the eigenvalues Λp,q(Ω) as p, q →∞.

Theorem 1.1. Let Ω ⊂ Rn be a bounded domain. Then,

(1.5) lim
p,q→∞

p

√
Λp,q(Ω) = λ1,∞(Ω),

where λ1,∞(Ω) is the quantity given by (∞-Eigenvalue).

In the previous result, the arguments leading to λ1,∞(Ω) do not require any
additional assumption on the divergence rates of p and q. However, if it is imposed

that
q

p
≈ ` < 1 as p, q → ∞, then we can obtain more information in this limit

procedure. The following result shows that eigenfunctions up,q to (1.3) converge

uniformly to a limit function v` ∈ W 1,∞
0 (Ω). Moreover, λ1,∞(Ω) is, in fact, an

“eigenvalue” of a certain concave eigenvalue problem.

Theorem 1.2. Let q < p be such that

` := lim
p,q→∞

q

p
< 1.
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Then, for any sequence of eigenfunctions {up,q}p,q to (1.3) normalized such that
‖up,q‖Lq(Ω) = 1, there exists a limit v` (up to a subsequence),

lim
p,q→∞

up,q(x) = v`(x) uniformly in Ω,

which is a viscosity solution to

(1.6)

{
min

{
−∆∞v`, |∇v`| − λ1,∞(Ω)v``

}
= 0 in Ω

v` = 0 on ∂Ω,

with ‖v`‖L∞(Ω) = 1.

After proving this result we turn our attention to the behavior of {v`}`∈(0,1) as
` ↗ 1. We show that such a family is decreasing with `, and then there exists a
limit function v̂ as ` ↗ 1. As we have anticipated, this limit function v̂ has some
interesting properties:

X v̂ is a normalized eigenfunction for the ∞−eigenvalue problem with eigen-
value λ1,∞(Ω);

X v̂ is maximal in the sense of being greater or equal than any other normal-
ized solution to (1.2).

Our last and main result reads as follows:

Theorem 1.3. Let v` be an eigenfunction of (1.6) with corresponding “eigenvalue”

λ1,∞(Ω) and ‖v`‖L∞(Ω) = 1. Then, there exists a limit function v̂ ∈W 1,∞
0 ∩C(Ω̄),

lim
`↗1

v`(x) = v̂(x) uniformly in Ω,

such that v̂ is an eigenfunction for the ∞−eigenvalue problem normalized with
‖v̂‖L∞(Ω) = 1. Furthermore, v̂ is the maximal solution to (1.2) in the following
sense:

v̂ ≥ u∞ for any other solution u∞ of (1.2) with ‖u∞‖L∞(Ω) = 1.

Conjecture: We conjecture that the maximal solution is the unique variational
eigenfunction for the∞−eigenvalue problem, that is, the whole family of normalized
eigenfunctions {up}p>1 to (p-Eigenvalue) converges to v̂,

up(x)→ v̂(x) uniformly in Ω as p→∞.
Notice that this holds trivially when one has simplicity of the first eigenvalue
λ1,∞(Ω) (this happens in a ball, a stadium and other domains) but it also holds
for the counterexample to simplicity presented in [14] where the maximal solution
is also the limit of the {up}p>1 (this is due to symmetry reasons).

Remark 1.4. One could guess the existence of a result similar to Theorem 1.3
regarding minimal solutions to (1.2). Nevertheless, in a general context, such a
minimal solution could not exist as illustrates the example presented in [14].

Remark 1.5. Problem (1.6) also arises as limit when p, q →∞ of the sub-homogeneous
problems of p−Laplacian type

(1.7)

{
−∆pu = λuq−1 in Ω

u = 0 on ∂Ω
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with q < p, see [7]. This problem has a unique positive solution for every λ > 0,
see [2].

In addition, it can be easily checked that the solution uq to (1.7) that verifies
‖uq‖L∞(Ω) = 1 (that exists for some value λ = λq) converges as q ↗ p (p fixed)
to an eigenfunction of the p−Laplacian (normalized with ‖u‖L∞(Ω) = 1), notice
that we have λq → λ1,p(Ω) as q ↗ p. Therefore, our main result, Theorem 1.3,
can be regarded as an extension to this approximation of an eigenvalue problem by
sub-homogeneous problems to the case p =∞.

2. Preliminaries

Throughout this section we will introduce some definitions and auxiliary results
we will use in this paper. The material presented here is well-known to experts but
we include some details for completeness.

First of all, we present the notion of weak solution to

(2.1) −∆pu = gu(u) in Ω,

where gu : R→ R is the continuous function defined by

gu(s) = Λp,q(Ω)‖u‖p−qLq(Ω)|s|
q−2s.

Hereafter, since we are interested in the asymptotic behavior as p, q →∞, without
loss of generality we can assume that p > q ≥ max{2, n}.

Definition 2.1. A function u ∈ W 1,p(Ω) ∩ C(Ω) is said to be a weak solution to
(1.3) if it fulfillsˆ

Ω

|∇u|p−2∇u · ∇φdx =

ˆ
Ω

gu(u)φdx, ∀φ ∈ C∞0 (Ω).

Since p is large, then (1.3) is not singular at points where the gradient vanishes.
Consequently, the mapping

x 7→ ∆pφ(x) = |∇φ(x)|p−2∆φ(x) + (p− 2)|∇φ(x)|p−4∆∞φ(x)

is well-defined, as well as it is continuous for all φ ∈ C2(Ω).

Next, we introduce the notion of viscosity solution to (1.3). We refer the survey
[8] for the general theory of viscosity solutions.

Definition 2.2. An upper (resp. lower) semi-continuous function u : Ω→ R is said
to be a viscosity sub-solution (resp. super-solution) to (1.3) if, whenever x0 ∈ Ω
and φ ∈ C2(Ω) are such that u − φ has a strict local maximum (resp. minimum)
at x0, then

−∆pφ(x0) ≤ gu(φ(x0)) (resp. ≥ gu(φ(x0))).

Finally, a u ∈ C(Ω) is said to be a viscosity solution to (1.3) if it is simultaneously
a viscosity sub-solution and a viscosity super-solution.

Definition 2.3. A non-negative function u ∈ C(Ω) is said to be a viscosity solution
to (1.6) if:
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(1) It is a sub-solution, that is, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such that
u(x0) = φ(x0) and u(x) < φ(x), when x 6= x0, then

−∆∞φ(x0) ≤ 0 or |∇φ(x0)| − λ1,∞(Ω)φ`(x0) ≤ 0.

(2) It is a super-solution, that is, whenever x0 ∈ Ω and φ ∈ C2(Ω) are such
that u(x0) = φ(x0) and u(x) > φ(x), when x 6= x0, then

−∆∞φ(x0) ≥ 0 and |∇φ(x0)| − λ1,∞(Ω)φ`(x0) ≥ 0.

The following lemmas will be used below.

Lemma 2.4. Assume n < p <∞ and let u ∈W 1,p
0 (Ω) be a weak solution to (1.3).

Then u ∈ C0,α(Ω), where α = 1− n
p . Moreover, the following holds

(1) L∞-bounds

‖u‖L∞(Ω) ≤ C1,

(2) Hölder estimate

|u(x)− u(y)|
|x− y|α

≤ C2,

where C1 and C2 are constants depending on n, p
√

Λp,q(Ω) and ‖u‖Lq(Ω).

Proof. Using the weak form of (1.3) with u as test function we obtainˆ
Ω

|∇u|p dx = Λp,q(Ω)‖u‖pLq(Ω).

Next, by Morrey’s estimates and the previous sentence, there exists a positive
constant C = C(n,Ω) independent on p such that

‖u‖L∞(Ω) ≤ C‖∇u‖Lp(Ω) = C p

√
Λp,q(Ω)‖u‖Lq(Ω),

which proves the first statement.

On the other hand, since p > n, combining the Hölder’s inequality and Morrey’s
estimates we have

|u(x)− u(y)|
|x− y|α

≤ C‖∇u‖Lp(Ω) ≤ Ĉ p

√
Λp,q(Ω)‖u‖Lq(Ω),

where Ĉ depends only on n and Ω. �

The last result gives that any family of weak solutions to (1.3) is pre-compact

provided we have a uniform bound for p
√

Λp,q(Ω) and ‖up,q‖Lq(Ω). Therefore, the
existence of a uniform limit for our main theorem is guaranteed.

Lemma 2.5. Let {up}p>1 be a sequence of weak solutions to (1.3). Suppose that
p
√

Λp,q(Ω), ‖up,q‖Lq(Ω) ≤ C for all 1 < p < ∞ . Then, there exists a subsequence
pi, qi →∞ and a limit function u∞ such that

lim
pi,qi→∞

upi,qi(x) = u∞(x)
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uniformly in Ω. Moreover, u∞ is Lipschitz continuous with

|u∞(x)− u∞(y)|
|x− y|

≤ C lim sup
pi,qi→∞

pi

√
Λpi,qi(Ω)‖upi,qi‖Lqi (Ω).

Proof. Existence of u∞ as an uniform limit is a direct consequence of the Lemma 2.4
combined with an Arzelà-Ascoli compactness criteria. Finally, the last statement
holds by passing to the limit in the Hölder’s estimates from Lemma 2.4. �

The following lemma establishes a relation between weak and viscosity sub and
super-solutions to (1.3). We include the details for completeness.

Lemma 2.6. A continuous weak sub-solution (resp. super-solution) u ∈ W 1,p
loc (Ω)

to (1.3) is a viscosity sub-solution (resp. super-solution) to

−
[
|∇u|p−2∆u+ (p− 2)|∇u(x)|p−4∆∞u

]
= Λp,q(Ω)‖u‖p−qLq(Ω)|u|

q−2u in Ω.

Proof. Let us proceed for the case of super-solutions. Fix x0 ∈ Ω and φ ∈ C2(Ω)
such that φ touches u by bellow, i.e., u(x0) = φ(x0) and u(x) > φ(x) for x 6= x0.
Our goal is to establish that

−
[
|∇φ(x0)|p−2∆φ(x0) + (p− 2)|∇φ(x0)|p−4∆∞φ(x0)

]
− gu(φ(x0)) ≥ 0.

Let us suppose, for sake of contradiction, that the inequality does not hold. Then,
by continuity there exists r > 0 small enough such that

−
[
|∇φ(x)|p−2∆φ(x) + (p− 2)|∇φ(x)|p−4∆∞φ(x)

]
− gu(φ(x)) < 0,

provided that x ∈ Br(x0). Now, we define the function

Ψ(x) := φ(x) +
1

100
m, where m := inf

∂Br(x0)
(u(x)− φ(x)).

Notice that Ψ verifies Ψ < u on ∂Br(x0), Ψ(x0) > u(x0) and

(2.2) −∆pΨ(x) < gu(φ(x)).

By extending by zero outside Br(x0), we may use (Ψ − u)+ as a test function in
(1.3). Moreover, since u is a weak super-solution, we obtain

(2.3)

ˆ
{Ψ>u}

|∇u|p−2∇u · ∇(Ψ− u)dx ≥
ˆ
{Ψ>u}

gu(u)(Ψ− u)dx.

On the other hand, multiplying (2.2) by Ψ− u and integrating by parts we get

(2.4)

ˆ
{Ψ>u}

|∇Ψ|p−2∇Ψ · ∇(Ψ− u)dx <

ˆ
{ψ>u}

gu(φ)(Ψ− u)dx.

Next, subtracting (2.4) from (2.3) we obtainˆ

{Ψ>u}

(|∇Ψ|p−2∇Ψ− |∇u|p−2∇u) · ∇(Ψ− u)dx <

ˆ

{ψ>u}

G(φ, u)(Ψ− u)dx,(2.5)

where we have denoted G(φ, u) = gu(φ)− gu(u). Finally, since the left hand side in
(2.5) is bounded from below by

C(p)

ˆ
{Ψ>u}

|∇Ψ−∇u|pdx,
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and the right hand side in (2.5) is negative, we can conclude that Ψ ≤ u in Br(x0).
However, this contradicts the fact that Ψ(x0) > u(x0). Such a contradiction proves
that u is a viscosity super-solution.

Analogously we can prove that a continuous weak sub-solution is a viscosity
sub-solution. �

The next comparison result plays an essential role in our approach.

Theorem 2.7 ([7, Theorem 10]). Let v and u be respectively a super-solution and
a sub-solution to

(2.6) min
{
−∆∞w, |∇w| − λ1,∞(Ω)w`

}
= 0 in Ω

Suppose that both u and v are strictly positive in Ω, continuous up to the boundary
and satisfy u ≤ v on ∂Ω. Then u ≤ v in Ω.

3. Proofs of the main results

We prove Theorem 1.1 following the ideas in [16].

Proof of Theorem 1.1. Fix x ∈ Ω and consider δ(x) = dist(x, ∂Ω) the distance
function. Recall that such a function always is a solution to the minimization
problem

(3.1) λ1,∞(Ω) =
‖∇δ‖L∞(Ω)

‖δ‖L∞(Ω)
.

However, it is not (always) a genuine eigenfunction corresponding to λ1,∞(Ω), be-
cause, in some cases, it is not a solution to the equation (1.2) as mentioned in the
Introduction.

Since δ(x) is Lipschitz continuous and satisfies |∇δ(x)| = 1 a.e. x ∈ Ω, putting
it as a test function in (1.4) we obtain that

p

√
Λp,q(Ω) = inf

u∈W 1,p
0 (Ω)\{0}

(ˆ
Ω

|∇u|p dx
) 1

p

(ˆ
Ω

|u|q dx
) 1

q

≤ 1(ˆ
Ω

|δ(x)|q
) 1

q

,

which from (3.1) implies that

lim sup
p,q→∞

p

√
Λp,q(Ω) ≤ λ1,∞(Ω).

Now, we can consider the eigenfunction up,q corresponding to Λp,q(Ω) normalized
such that ‖up,q‖Lq(Ω) = 1. Consequently,(ˆ

Ω

|∇up,q|p dx
) 1

p

≤ p

√
Λp,q(Ω).
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Hence we have an uniform bound in p and q. Next, fix m > n and for p > q > m
by Hölder’s inequality, we obtain(ˆ

Ω

|∇up,q|m dx
) 1

m

≤ |Ω|
1
m−

1
p p

√
Λp,q(Ω)..

Thus, {up,q}p,q≥m is uniformly bounded in W 1,m
0 (Ω), for which, up to subsequences,

we have that
up,q ⇀ u∞ in W 1,m(Ω)

and
up,q → u∞ uniformly in C0,α(Ω) for α := 1− n

m
.

Now, for M,N > m large enough, using the weak lower semi-continuity of the LM

norm and uniform convergence we get that

‖∇u∞‖LM (Ω)

‖u∞‖LN (Ω)

≤ lim inf
p,q→∞

(ˆ
Ω

|∇up,q|M dx

) 1
M

(ˆ
Ω

|up,q|N dx
) 1

N

.

Next, multiplying and dividing by (
´

Ω
|up,q|q dx)

1
q and using Hölder’s inequality we

obtain that

‖∇u∞‖LM (Ω)

‖u∞‖LN (Ω)
≤ lim inf

p,q→∞

(
|Ω|

1
M−

1
p p

√
Λp,q(Ω)

‖up,q‖Lq(Ω)

‖up,q‖LN (Ω)

)
≤ |Ω| 1

M
‖u∞‖L∞(Ω)

‖u∞‖LN (Ω)

(
lim inf
p,q→∞

p

√
Λp,q(Ω)

)
for fixed values of M,N . Finally, letting M,N → ∞ and using the variational
characterization of λ1,∞(Ω) we obtain that

λ1,∞(Ω) ≤ lim inf
p,q→∞

p

√
Λp,q(Ω).

This ends the proof. �

Next, we will deduce the limit equation coming from (1.3) as p, q →∞, provided

that ` := lim
p,q→∞

p

q
.

Proof of Theorem 1.2. First, we will show that v` is a viscosity sub-solution to
(1.6). To this end, fix x0 ∈ Ω and a test function φ ∈ C2(Ω) such that v`(x0) =
φ(x0) and the inequality v`(x) < φ(x) holds for x 6= x0.

We want to prove that

(3.2) −∆∞φ(x0) ≤ 0 or |∇φ(x0)| − λ1,∞(Ω)φ(x0)` ≤ 0.

Since up,q converges locally uniformly to v`, there exists a sequence xp,q → x0 such
that up,q − φ has a local maximum at xp,q. Moreover, since up,q is a weak sub-
solution (resp. viscosity sub-solution according to Lemma 2.6) to (1.3), we have
that

−|∇φ(xp,q)|2∆φ(xp,q)

p− 2
−∆∞φ(xp,q) ≤

1

p− 2

(
Λp,q(Ω)

1
p−4φ(xp,q)

q−1
p−4

|∇φ(xp,q)|

)p−4

.
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If −∆∞φ(x0) ≤ 0 we have finished, hence we can assume that −∆∞φ(x0) > 0.
Hence we get that there is a positive constant c such that −∆∞φ(xp,q) ≥ c > 0 as
p, q →∞. Then, we obtain,

0 <
c

2
≤ 1

p− 2

(
Λp,q(Ω)

1
p−4φ(xp,q)

q−1
p−4

|∇φ(xp,q)|

)p−4

,

for p, q large. Hence, we get

|∇φ(x0)| − λ1,∞(Ω)φ(x0)` ≤ 0

(otherwise, we have that the right hand side of the previous inequality goes to zero,
yielding a contradiction). Therefore (3.2) holds.

Now, it remains to prove that v` is a viscosity super-solution, i.e. we must show
that, for each x0 ∈ Ω and φ ∈ C2(Ω) such that v` − φ achieves a strict local
minimum at x0, then

(3.3) −∆∞φ(x0) ≥ 0 and |∇φ(x0)| − λ1,∞(Ω)φ(x0)` ≥ 0.

Again, there exists a sequence of points xp,q → x0 such that (up,q−φ)(xp,q) is a local
minimum for each p and q. Then, as up,q is a weak super-solution (consequently a
viscosity super-solution according to Lemma 2.6), we get

(3.4)
−
[
|∇φ(xp,q)|p−2∆φ(xp,q) + (p− 2)|∇φ(xp,q)|p−4∆∞φ(xp,q)

]
≥ Λp,q(Ω)φ(xp,q)

q−1.

Now, if φ(x0) = 0 and |∇φ(x0)| = 0 then (3.3) holds. Hence, we can assume that
φ(x0) > 0 or |∇φ(x0)| > 0. Notice that when φ(x0) > 0, taking the 1/(q−1) power
in (3.4) and then passing to the limit as p, q → ∞, we obtain that |∇φ(x0)| > 0
(if φ(x0) > 0 and |∇φ(x0)| = 0 we get a contradiction since the left hand side
goes to zero while the right hand side goes to a positive constant). Therefore, we
may divide by (p− 2)|∇φ(xp,q)|p−4 the previous inequality to obtain the following
relation,

−|∇φ(xp,q)|2∆φ(xp,q)

p− 2
−∆∞φ(xp,q) ≥

1

p− 2

(
Λp,q(Ω)

1
p−4φ

q−1
p−4 (xp,q)

|∇φ(xp,q)|

)p−4

.

Passing to the limit as p, q → ∞ in the left hand side of this expression (that
is nonnegative thanks to the previous inequality) we get that −∆∞φ(x0) ≥ 0.
Moreover, as the right hand side is bounded, then we must have

|∇φ(x0)| − λ1,∞(Ω)φ(x0)` ≥ 0.

Hence (3.3) holds. �

Example 3.1. In order to illustrate Theorem 1.2 let us consider Ω = B1(0) (the
unit ball centered at the origin). In this context, the infinity ground state is precisely

v(x) = 1− |x|.

In fact, we have that −∆∞v(x) = 0, when x 6= 0. Moreover, λ1,∞(Ω) = 1. Since
there are no test functions φ touching v from below at x0 = 0, condition (2) in
Definition 2.3 is automatically fulfilled. Now, if the function

φ(x) = 1 + a · x+ o(|x|2)



MAXIMAL SOLUTIONS FOR THE ∞-EIGENVALUE PROBLEM 11

touches v from above, then we must have

1 + a · x ≥ 1− |x| as x→ 0.

Hence, |a| ≤ 1 and consequently

|∇φ(0)| − λ1,∞(Ω)φ`(0) = |a| − 1 ≤ 0,

which assures that condition (1) in Definition 2.3 is satisfied.

Finally, the proof of Theorem 1.3 will be a direct consequence of the following
two lemmas.

Lemma 3.2. Let v` be the unique viscosity solution to (1.6). Then,

v` ≥ v∞ in Ω̄,

for any v∞ viscosity solution to (1.2) normalized by ‖v∞‖L∞(Ω) = 1.

Proof. Since ` < 1 then v∞ ≤ v`∞ for any v∞ normalized viscosity solution to (1.2).
Consequently, being λ1,∞(Ω) > 0 we obtain (in the viscosity sense) that

min{−∆∞v∞, |∇v∞| − λ1,∞(Ω)v`∞} ≤ 0 in Ω,

i.e., v∞ is a viscosity sub-solution to (1.6). Recall that both v∞ and v` verify
v` = v∞ = 0 on ∂Ω. Hence, by the Comparison Principle for sub-linear equations
(Theorem 2.7) we obtain that v` ≥ v∞ in the whole Ω. This finishes the proof. �

Lemma 3.3. For each ` < 1 let v` be the unique viscosity solution to (1.6). Then,

there exists v̂ ∈W 1,∞
0 (Ω) ∩ C(Ω̄) such that

(3.5) v̂(x) = lim
`↗1

v`(x) uniformly in Ω.

Furthermore, v̂ is a viscosity solution to (1.2).

Proof. Let us see that {v`}`∈(0,1) is monotone decreasing in `.

Let 0 < `1 < `2 < 1 and v`i be a solution of (1.6) with ` = `i for i = 1, 2

normalized such that ‖v`i‖L∞(Ω) = 1. It follows that v`2`1 < v`1`1 . Moreover, since

λ1,∞(Ω) > 0 it follows (in the viscosity sense) that

min
{
−∆∞v`1 , |∇v`1 | − λ1,∞(Ω)v`2`1

}
≥ min

{
−∆∞v`1 , |∇v`1 | − λ1,∞(Ω)v`1`1

}
= 0

= min
{
−∆∞v`2 , |∇v`2 | − λ1,∞(Ω)v`2`2

}
,

i.e., v`1 is a viscosity super-solution to (1.6) with ` = `2. Since v`i = 0, i = 1, 2
on ∂Ω, from the Comparison Principle for sub-linear equations (Theorem 2.7) we
obtain that v`1 ≥ v`2 in the whole Ω.

Finally, since {v`}`∈(0,1) ⊂W 1,∞
0 (Ω)∩C(Ω̄) is decreasing in ` and bounded below

by any ∞−ground state, (3.5) follows from standard uniform convergence results.

Furthermore, the fact that the limit v̂ satisfies (1.2) in the viscosity sense follows
from uniform convergence using the same steps used in the proof of Theorem 1.2
(we leave the details to the reader). �
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Remark 3.4. Explicit solutions for the limit problem (1.6) for a wide class of do-
mains including the ball and the torus, among others, can be obtained as follows.
Consider the “ridge set” of Ω defined as

RΩ =
{
x ∈ Ω : dist(x,Ω) is not differentiable at x

}
=

{
x ∈ Ω : ∃x1, x2 ∈ ∂Ω, x1 6= x2, s.t |x− x1| = |x− x2| = dist(x, ∂Ω)

}
,

as well as the set where the distance achieves its maximum

MΩ =

{
x ∈ Ω : dist(x, ∂Ω) = max

x∈Ω
dist(x, ∂Ω)

}
.

Under the previous definition, we have that if RΩ =MΩ, then

v`(x) =

[
λ1,∞(Ω)

(
max
x∈Ω

dist(x, ∂Ω)

)`] 1
1−`

dist(x, ∂Ω)

is the unique positive viscosity solution to (1.6), see [7, Proposition 19].

Since

λ1,∞(Ω) =
1

R
=

1

max
x∈Ω

dist(x, ∂Ω)
,

we get that in this case all the v` coincide: for any ` ∈ (0, 1) we have that

v`(x) =

[
λ1,∞(Ω)

(
max
x∈Ω

dist(x, ∂Ω)

)`] 1
1−`

dist(x, ∂Ω) =
1

R
dist(x, ∂Ω),

being R the radius of the biggest ball contained inside Ω.

The last expression is the unique eigenfunction corresponding to the ground state
for the ∞−eigenvalue problem. See [26] for a proof of the simplicity of λ1,∞(Ω) in
this case.

4. Closing remarks

We just mention that our approach is flexible enough in order to be applied for
other classes of degenerate operators of p-laplacian type. Some interesting examples
include the following:

(1) Anisotropic p-Laplacian operator

−Qpu := −div(Fp−1(∇u)Fξ(∇u)),

where F is an appropriate (smooth) norm of Rn and 1 < p < ∞. The
necessary tools in order to study the anisotropic eigenvalue problem, as
well as its limit as p → ∞ can be found in [4]. In particular, taking

F(ξ) = (
∑n
i=1 |ξi|p)

1/p
we include here the operator

−∆̃pu := −
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

)
,

that is known as the pseudo p−Laplacian in the literature. The associated
eigenvalue problem and its limit as p→∞ is studied in [3].
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(2) Degenerate non-local operators of Fractional p-Laplacian type

(−∆)sKu(x) := Cn,p,s.P.V.

ˆ
Rn

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y)dy,

where K : Rn × Rn → R is a general singular kernel fulfilling the following
properties: there exist constants Λ ≥ λ > 0 and M, ς > 0 fulfilling the
following hypothesis
X [Symmetry] K(x, y) = K(y, x) for all x, y ∈ Rn;
X [Growth condition] λ ≤ K(x, y).|x−y|n+ps ≤ Λ for x, y ∈ Rn, x 6= y;
X [Integrability at infinity] 0 ≤ K(x, y) ≤ M

|x−y|n+ς for x ∈ B2 and

y ∈ Rn \B 1
4
.

X [Translation invariance] K(x+z, y+z) = K(x, y) for all x, y, z ∈ Rn,
x 6= y.

X [Continuity] The map x 7→ K(x, y) is continuous in Rn \ {y}.
Clearly this previous class of operators have as prototype to the fractional
p-Laplacian operator provided that K(x, y) = |x − y|−(n+ps). The mathe-
matical machinery in order to study the eigenvalue problem for this class
of operators can be found in the following articles [10], [12] and [23].
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