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ABSTRACT. We study the asymptotic behavior for solutions to
nonlocal diffusion models of the form u; = J x u — u in the whole
R? with an initial condition u(x,0) = ug(x). Under suitable hy-
potheses on J (involving its Fourier transform) and wy, it is proved
an expansion of the form

Hu(u) - Z (_;)!\al (/uo(x):vCY dx)@"Kt

lo| <k

<ot A
La(R4)

)

where K is the regular part of the fundamental solution and the
exponent A depends on J, ¢, k and the dimension d.

Moreover, we can obtain bounds for the difference between the
terms in this expansion and the corresponding ones for the expan-
sion of the evolution given by fractional powers of the Laplacian,

vi(z,t) = —(=A)2v(x, t).

1. INTRODUCTION

In this paper we study the asymptotic behavior as ¢ — oo of solutions
to the nonlocal evolution equation

(11) w(z,t) = Jxu—u(x,t), t>0, 2 €R?
' u(z,0) = ug(x), z € RY,

where J : R — R verifies [, J(x)dz = 1.

Equations like (1.1) and variations of it, have been recently widely
used to model diffusion processes, for example, in biology, disloca-
tions dynamics, etc. See, for example, [3], [4], [6], [7], [11], [12], [§],
[14] and [15]. As stated in [11], if u(x,t) is thought of as the den-
sity of a single population at the point x at time ¢, and J(x — y) is
thought of as the probability distribution of jumping from location y
to location x, then (J xu)(z,t) = [pn J(y — x)u(y,t) dy is the rate at
Which individuals are arriving to position z from all other places and
—u(x,t) = — fRN u(z, t) dy is the rate at which they are leaving

Key words and phrases. Nonlocal diffusion, asymptotic behavior, fractional
Laplacian.
2000 Mathematics Subject Classification. 35B40, 45A05, 45M05.
1



2 L. I. IGNAT AND J.D. ROSSI

location x to travel to all other sites. This consideration, in the absence
of external or internal sources, leads immediately to the fact that the
density u satisfies equation (1.1).

Equation (1.1)), is called nonlocal diffusion equation since the diffu-
sion of the density u at a point x and time ¢ does not only depend on
u(z,t), but on all the values of u in a neighborhood of x through the
convolution term J x u. When J is nonnegative and compactly sup-
ported, this equation shares many properties with the classical heat
equation, u; = cug,, such as: bounded stationary solutions are con-
stant, a maximum principle holds for both of them and perturbations
propagate with infinite speed, see [11]. However, there is no regulariz-
ing effect in general. For instance, if J is rapidly decaying (or compactly
supported) the singularity of the source solution, that is a solution of
(1.1) with initial condition a delta measure, uy = Jp, remains with an
exponential decay. In fact, this fundamental solution can be decom-
posed as w(z,t) = e tdy+ K;(x) where K;(z) is smooth, see Lemma 2.1.
In this way we see that there is no regularizing effect since the solution
w of (1.1) can be written as u(t) = w(t) * ug = e "ug + K; * ug with K
smooth, which means that u(-,t) is as regular as wy is.

For the heat equation a precise asymptotic expansion in terms of
the fundamental solution and its derivatives was found in [9]. In fact,
if GGy denotes the fundamental solution of the heat equation, namely,
Gy(z) = (4mt)~%2e1+1/(0) yunder adequate assumptions on the initial
condition, we have,

12 |- (_%!)'M(/Rduo( Jr)orc,

|| <k

<Ot

La Rd)

with A = (§ )((kH) +(1— q)). As pointed out by the authors in [9],
the same asymptotic expansion can be done in a more general setting,
dealing with the equations u; = —(—A)zu, s > 0.

Now we need to introduce some notation. We will say that f ~ g as
E~0if |f(&) —g(&)] = 0(g(§)) when £ — 0 and f < g if there exists a
constant ¢ independent of the relevant quantities such that f < cg. In
the sequel we denote by J the Fourier transform of J.

Our main objective here is to study if an expansion analogous to
(1.2) holds for the non-local problem (1.1). Concerning the first term,
n [5] it is proved that if J verifies J(&) — 1 ~ —|¢|* as & ~ 0, then the
asymptotic behavior of the solution to (1.1), u(z,t), is given by

lim 5 max |u(z,t) — v(z,t)| =0,
t——+4o00 T
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where v is the solution of v,(x,t) = —(—A)2v(x,t) with initial con-
dition v(z,0) = wo(z). As a consequence, the decay rate is given by
llu(-, ) || oo (mey < C't~% and the asymptotic profile is as follows,

tru(yts,t) — (/Rd uO) G*(y)

where G*(y) satisfies G5(&) = e~ I¢°,

Here we find a complete expansion for u(x,t), a solution to (1.1), in
terms of the derivatives of the regular part of the fundamental solu-
tion, K;. As we have mentioned, the fundamental solution w(x,t) of
problem (1.1) satisfies

w(z,t) = e op(x) + Ki(z),

where the function K; (the regular part of the fundamental solution)
is given by

lim
t——+00

:(:]7

Loo(R)

Ki(§) =@M —1).
In contrast with the previous analysis done in [5] where the long time
behavior is studied in the L>(R%)-norm, here we also consider L7(R?)
norms. We focus in the case 2 < ¢ < oo where we use Hausdorff-
Young’s inequality and Plancherel’s identity as main tools. The case
1 < ¢ < 2 will be treated elsewhere.

Theorem 1.1. Let be s and m positive such that

~

(1.3) J(&) — 1~ —[¢]%, E~0
and
(1.4) 7)) < @ €] — co.

Then for any 2 < ¢ < 0o and k+ 1 < m — d there exists a constant
C = C(q, k)|||z[* uol| 1 ey such that

(1.5) Hu(m,t) - Z (_;!)M </]Rd ug(x)xo‘)ﬁaKt

ol <k

<ot
La(R4)

S S

for all ug € LY(RE, 1 + |z|**1). Here A = (k4D o 41— %)

Remark 1.1. The condition k£ + 1 < m — d guarantees that all the
partial derivatives 0*K; of order |a| = k + 1 make sense. In addition

if J decays at infinity faster than any polynomial,

(1.6)  ¥m >0, 3 c(m) such that | J(€)| < ng}

€] — oo,

then the expansion (1.5) holds for all k.
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~

Note that, when J has an expansion of the form J(§) —1 ~ —[¢|? as
¢ ~ 0 (this happens for example if J is compactly supported), then the
decay rate in L>°(R?) of the solutions to the non-local problem (1.1) and
the heat equation coincide (in both cases they decay as t_%). Moreover,
the first order term also coincide (in both cases it is a Gaussian). See [5]
and Theorem [1.1.

Our next aim is to study if the higher order terms of the asymptotic
expansion that we have found in Theorem [1.1/ have some relation with
the corresponding ones for the heat equation. Our next results say
that the difference between them is of lower order. Again we deal with
2 < g < oo

Theorem 1.2. Let J as in Theorem 1.1 and assume in addition that
there exists r > 0 such that

(1.7) J(€) — (1 —[€]*) ~ Blel+, €~

for some real number B. Then for any 2 < ¢ < o0 and |a] < m —d
there exists a positive constant C' = C(q,d, s,r) such that the following
holds

_leltr
s

(1.8) 10° K, — 0°Gf | paqeay < Ct 070455
where G is defined by its Fourier transform é}‘(g) = exp(—t[¢|®).

Note that these results do not imply that the asymptotic expansion
D lal<k (i—),la‘ ([ uo(z)z*) 9* K, coincides with the expansion that holds

for the equation u; = —(—A)2u: D lal<k (_i—),la‘ ([ uo(z)z™) 9*G;. They
only say that the corresponding terms agree up to a better order. When
J is compactly supported or rapidly decaying at infinity, then s = 2
and we obtain an expansion analogous to the one that holds for the
heat equation.

Finally, we present a result that gives the first two terms in the
asymptotic expansion with very weak assumptions on J.

Theorem 1.3. Let ug € L*(RY) with iy € L*(R?) and s < | be two
positive numbers such that J(€) — (1 — [€]*) ~ B|[!, when € ~ 0, for
some real number B.

Then for any 2 < g < o0

(1L9)  Jim #5070 u(t) — v(t) = Bt[(=A)50)(0)] ore) — O,

t—o00

where v is the solution to vy = —(—A)2v with v(z,0) = ug(z).



ASYMPTOTICS FOR NONLOCAL DIFFUSION 5

Moreover

(1.10)
e (ulyt ) = ol 0) = B ([ o)

¢l

Let us point out that the asymptotic expansion given by (1.5) in-
volves K; (and its derivatives) which is not explicit. On the other hand,
the two-term asymptotic expansion (1.9) involves G, a well known ex-
plicit kernel (v is just the convolution of G§ and ug). However, our ideas
and methods allow us to find only two terms in the latter expansion.

lim ‘

t—o0

=0,

Lo (RE)

where h is given by E(g) = e IEF

2. PROOFS OF THE RESULTS

2.1. Preliminaries. First, let us obtain a representation of the solu-
tion using Fourier variables. A proof of existence and uniqueness of
solutions using the Fourier transform (see [13]) is given in [5]. We
repeat the main arguments here for the sake of completeness.

Theorem 2.1. Let ug € LY(R?) such that iy € L'(R?). There exists a
unique solution u € C°([0,00); LY(RY)) of (1.1), and it is given by

a(E 1) = MO ¢).
Proof. We have
w(z,t) = J xu—u(x,t) = / J(z —y)u(y,t) dy — u(z,t).
R4

~

Applying the Fourier transform we obtain u;(&,t) = u(&,t)(J(§) — 1).
Hence, 4(¢,t) = ePO-Dtgy(€). Since @y € L'(R?) and ePO-Dt ig
continuous and bounded, the result follows by taking the inverse of the
Fourier transform. U

Now we prove a lemma concerning the fundamental solution of (1.1).

Lemma 2.1. Let J € S(R?), the space of rapidly decreasing functions.
The fundamental solution of (1.1)), that is the solution of (1.1) with
initial condition ug = dg, can be decomposed as

(2.11) w(z,t) = e oo(x) + Ki(z),
where the function K, is smooth and given by

K, (&) = e (™9 — 1),
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Moreover, if u is a solution of (1.1) it can be written as

w(z,t) = (w*ug)(x,t) = /]Rd w(z — z,t)ug(2) dz.

Proof. By the previous result we have w,(&,t) = w(&,t)(J(§) — 1).
Hence, as the initial datum verifies 1y = dy = 1, we get

w(E,t) = POt — o=t e_t(e‘b@)t —1).

The first part of the lemma follows applying the inverse Fourier trans-
form in S(RY).

To finish the proof we just observe that w  ug is a solution of (1.1)
(just use Fubini’s theorem) with (w * ug)(x,0) = ug(z). O

~

Remark 2.1. The above proof together with the fact that J(§) — 0

(since J € LY(R?)) shows that if Je L*(R9) then the same decompo-
sition (2.11) holds and the result also applies.

To prove our result we need some estimates on the kernel K.

2.2. Estimates on K;. In this subsection we obtain the long time
behavior of the kernel K; and its derivatives.

The behavior of LI(R%)-norms with 2 < ¢ < oo follows by Hausdorff-
Young’s inequality in the case ¢ = oo and Plancherel’s identity for
q=2.

Lemma 2.2. Let 2 < ¢ < oo and J satisfying (1.3) and (1.4). Then
for all indexes o such that |o| < m — d there exists a constant c(q, )
such that

1]

_d(g_1y_
0% K| Laray < c(q,a)t S1-9)-%

holds for sufficiently large t. Moreover, if J satisfies (1.6) then the
same result holds with no restriction on .

Proof of Lemma |2.2. We consider the cases ¢ = 2 and ¢ = oo. The
other cases follow by interpolation. We denote by e.s. the exponentially
small terms.

First, let us consider the case ¢ = oco. Using the definition of K,

K, (&) = et (et®© — 1), we get, for any 2 € RY,
oK) < et [ 1 ~ 1),
Rd

Using that |e? — 1| < 2Jy| for |y| small, say |y| < ¢o, we obtain that

~ 2t
€O — 1] < 21 T(€)] < Ha
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for all |¢] > h(t) = (cot)w. Then

lal
e_t/ |§|‘a||et“b(£) —1]1d¢ < te_t/ |£|m dé < te"fe(m — |al)
|€]>R (1) |€]>h(t) €]

provided that |a| < m —d.

Is easy to see that if (1.6) holds no restriction on the indexes « has
to be assumed.

It remains to estimate

64/ HGIELCITES
[€]<h(t)

We observe that the term e~
we concentrate on

£|<h(t) €|leld¢ is exponentially small, so

1@:64/ €29 ¢l de.
|€]<h(t)

Now, let us choose R > 0 such that

(2.12) 17(6)] < 1— % for all €] < R.
Once R is fixed, there exists § > 0 with
(2.13) 17()] < 1—6for all |¢| > R.
Then
1(2)] <e4/ kﬂ@MW%+éf/ "] ¢ 1ol dg
IEI<R R[¢I<h(t)
< / (191D lol g e—ta/ €]l de
I€I<R R[EI<h(t)
< / 6—@|§‘Ial + e.s.
IEI<R

_lol_d _nl® _lel_d
T e
In|<Rts

Now, for ¢ = 2, by Plancherel’s identity we have
HaothH%Q(Rd) < e /Rd ‘etﬁ’(i) 1P e[l e

Putting out the exponentially small terms, it remains to estimate

L O DPepelas
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where R is given by (2.12). The behavior of J near zero gives
/ |6t(j’(§)—1)|2|§|2|a\d§ < / 6—t|£|s|§|2\ald§ < t—%—2'5‘7
€<k

€<k
which finishes the proof. U

Now we are ready to prove Theorem [1.1.

Proof of Theorem [1.1. Following [9] we obtain that the initial condition
ug € LY(R? 1 + |z|*1) has the following decomposition

—1)led
Uy = Z ( a!) (/ ugx® dx) D% + Z DYF,

ol <k |o|=k+1

where
HFaHLl(Rd) < ||u0||L1(Rd7|$|k+1)
for all multi-indexes o with |a| = k + 1.
In view of (2.11) the solution u of (1.1)) satisfies

u(z,t) = e tug(z) + (Ky * ug)(z).

The first term being exponentially small it suffices to analyze the
long time behavior of K; % ug. Using the above decomposition and
Lemma 2.2/ we get

HKt * Uy — Z (_;3|a (/uo(x)xadx> 0K,

S
jal<h L@
< ) 07K * Follogeay
|a|=k+1
< Z 10° K|l Lorey | Fall L1 ey
|a|=k+1
<t 50D S g pr g, o
This ends the proof. O

2.3. Asymptotics for the higher order terms. In this subsection
we prove Theorem [1.2.

Proof of Theorem |1.2. Recall that we have defined G by its Fourier
transform G = exp(—t|&|*).
We consider the case ¢ = 0o, the case ¢ = 2 can be handled similarly
and the rest of the cases, 2 < ¢ < 0o, follow again by interpolation.
Writing each of the two terms in Fourier variables we obtain

|0° Ky = 0°Gy || 1o (may < /d €]l et (RO — 1) — e8|,
R
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Let us choose a positive R such that
7€) — 1+ gl <Ol for [¢] < R,

satisfying (2.13) for some § > 0. For [£| > R all the terms are exponen-
tially small as t — oo. Thus the behavior of the difference 0*K; — 0°G,
is given by the following integral:

I(t) = / |5|\oc|‘et(ﬁ’(€)—1) — e tler
lEI<R

In view of the elementary inequality |e¥ — 1| < ¢(R)|y| for all |y| < R
we obtain that

_ lo| ,—t|€®
1(t) /5 _ Jae

d¢.

o (PO-1+E*) _ 1|de

~

S|l (I (€) — 1+ [¢l)|dg
€<k
St €[l ] ag
EISR
< it
This finishes the proof. U

2.4. A different approach. In this final subsection we obtain the
first two terms in the asymptotic expansion of the solution under less
restrictive hypotheses on J.

Proof of Theorem |1.3. The method that we use here is just to estimate
the difference ||u(t)—v(t) — Bt(—A)2v(t) | o (ray using Fourier variables.
As before, it is enough to consider the cases ¢ = 2 and ¢ = co. We
analyze the case ¢ = oo, the case ¢ = 2 follows in the same manner by
applying Plancherel’s identity.
By Hausdorff-Young’s inequality we get

u(t) — v(t) — tB(=A)20(t)]| poe o)

</
R4
_/Rd

As before, let us choose R > 0 such that

. 55
el <1-EF

Then there exists d > 0 such that

[J(Ol<1-46, =R

—

i(t, §) = 9(t. ) — tB(=A)5u(t, )|

O I (1 41 BIe] ]y (€) | de.

€| < R.
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Hence
A}yM&W@@m<5wwmm
>

and

/1 ]et(‘b(g)_l)||ﬁ\o(€)|d5< HUAOHLOO(Rd)/ ) e tEl"/2

7T <EI<R T <[EI<R

>t 1

Also

&' de

/|| 16_”“(1+tB!£\l)|zTo(§)|d§5”mmm/l ety
g>t1 1

d 1 s
< pi-t I
S t7 s s L e
[n|>ts"1

1-4-L 472 —Inl*/2(.11
StTsse L€ In|" d€.
In[>ts"1

nl d¢

We write J(€) =1 — |€]* + BIE|' + €' f(€) where f(€) — 0 as €] — 0.
Thus
1(t) < I () + L(t)

where
hmZ/ eI BT — (14 Brle]! + tle] £(9)| [ (€)] €
[€]<t™ 1

and
b@Z/ e () n(©)) de.
lE]<t™ 1

For I; we have

Mﬂ<\mmmyéqmﬂﬂwwwwWMV@

1

< —t|€]5 12 ¢121 < 42422
Nlégf 2l de S t
and then o l

L) St — 0, t— oo
It remains to prove that

£ () — 0, t— .
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Making a change of variable we obtain

) < e [,
lgl<ts T
The integrand is dominated by || f|| 1o ®a)|€|" exp(—[€]*), which belongs
to L'(R?). Hence, as f(£/t+) — 0 when ¢t — oo, this shows that
t%—i_é_l]Z(t) - 0)

and finishes the proof of (1.9).
Thanks to (1.9), the proof of (1.10) is reduced to show that

=)l 0 - ) ([ o)

For any 3 € R? by making a change of variables we obtain

e|'f(et+) de.

=0.

Lo°(R9)

lim

t—o00

d

I(y,t) = t++5[(=A)20](yt =, 1) = /Rd oI |l (¢ /).

Thus, using the dominated convergence theorem we obtain
Hf<y,t> ~h(y) / g < / e el 1 (€/1) — @ (0)] dE — 0
R4 Lo (R4) R4

as t — oo. O
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