ASYMPTOTIC EXPANSIONS FOR NONLOCAL
DIFFUSION EQUATIONS IN LI-NORMS FOR 1 <g<2

LIVIU I. IGNAT AND JULIO D. ROSSI

ABSTRACT. We study the asymptotic behavior for solutions to
nonlocal diffusion models of the form u; = J x u — u in the whole
R? with an initial condition u(x,0) = ug(x). Under suitable hy-
potheses on J (involving its Fourier transform) and wy, it is proved
an expansion of the form

Hu(u) - Z (_;)!\al (/uo(x):vCY dx)@"Kt

lo| <k

<Cct A
La(Rd)

)

where K is the regular part of the fundamental solution and the
exponent A depends on J, ¢, k and the dimension d. Moreover,
we can obtain bounds for the difference between the terms in
this expansion and the corresponding ones for the expansion of
vi(w,t) = —(—=A)3v(x,t).

Here we deal with the case 1 < g < 2. The case 2 < ¢ < co was
treated previously, by other methods, in [11].

1. INTRODUCTION

In this paper we study the asymptotic behavior as t — oo of solutions
to the nonlocal evolution problem

u(w,t) = J xu —u(x,t), t>0, 2 € R
u(z,0) = up(x), z € RY,
where J : R? — R verifies [,, J(z)dz = 1.

For the heat equation, v; = Av, a precise asymptotic expansion in
terms of the fundamental solution and its derivatives was found in [§].
In fact, if G; denotes the fundamental solution of the heat equation,
namely, Gy(x) = (4mt)~¥2e~1#*/40) ynder adequate assumptions on
the initial condition, we have,

(1.2) Hu(az,t) - Z (—;!)“X' (/Rd uo(:c)a:a)(?aGt

| <k

(1.1)

<Ot 4
La(R4)
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with A = (%l)((kji'l) +(1— %)) As pointed out by the authors in [§],
the same asymptotic expansion can be done in a more general setting,
dealing with the equations u, = —(—A)3u, s > 0.

Our main objective here is to study if an expansion analogous to
(1.2) holds for the non-local problem (1.1)). In this paper, that can be
viewed as a natural extension of [11], we deal with the case 1 < ¢ < 2.
The cases 2 < ¢ < oo are derived from Hausdorff-Young’s inequality
and Plancherel’s identity, see [11]. The cases analyzed here, 1 < ¢ < 2,
are more tricky. They are reduced to L2-estimates on the momenta
of 0K, and therefore more restrictive assumptions on J have to be
imposed.

Now we need to introduce some notation. We will denote by f ~ ¢
as & ~ 0if [f(&) —g(&)| = 0o(g(€)) when € — 0 and f < g if there exists
a constant ¢ independent of the relevant quantities such that f < cg.
We also use the standard notation J for the Fourier transform of J.

Concerning the first term in the expansion (1.2), in [4] it is proved
that if J verifies J(&) — 1 ~ —|¢|* as € ~ 0, then the asymptotic
behavior can be described as follows,

tgu(yt%,t) - </Rd u0> G*(y)

where G*(y) satisfies é\s(f) = ¢ l¥°. Also, it is proved in [4] that
the fundamental solution w(x,t) of problem (1.1) satisfies w(z,t) =
e t9(x) + Ki(x), where the function K; (the regular part of the fun-
damental solution) is given by ?(\t(f) = et (PO — 1),

Here we find a complete expansion for u(z,t), a solution to (1.1), in
terms of the derivatives of the regular part of the fundamental solu-
tion, K.

lim
t——+o00

=0,

Loo(Re)

Theorem 1.1. Assume that J satisfies

~

(1.3) JE) —1~—lgf, &~0

with [s] > d/2 and that for any m > 0 and « there exists ¢(m, a) such
that

~ c(m, )

(1.4) 0% (§)] < g
Then for any 1 < q < 2, we have the asymptotic expansion
(_1)|Oé\ « «
(1.5) Hm%ﬂ—gj — (M%@n>am
loo| <k
for all ug € L*(R%, 1 + |z|F™1). Here A = ¢£0 4 41— %)

S

€] — oo.

< Ct™,

La(R4)
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Note that, when J has an expansion of the form j(f) — 1~ —|¢? as
¢ ~ 0 (this happens for example if J is compactly supported), then the
decay rate in L>°(R?) of the solutions to the non-local problem (1.1) and
the heat equation coincide (in both cases they decay as t_%). Moreover,
the first order term also coincide (in both cases it is a Gaussian).

Our next aim is to study if the higher order terms of the asymptotic
expansion that we have found in Theorem 1.1/ have some relation with
the corresponding ones for the heat equation. Our next results say that
the difference between them is of lower order.

Theorem 1.2. Let J be as in Theorem |1.1l and assume in addition
that there exists r > 0 such that

(1.6) T - (=)~ et e~

We also assume that all the derivatives of J decay at infinity faster as
any polinomial:

c(m, @)

0°J (&) < g § — o0.
Then for any 1 < q < 2 and any multi-index o = (aq, ..., 0q), there
exists a positive constant C' = C(q,d, s,r) such that the following holds
(1.7) 107K, — 0°G | pageay < Ct 5070557

where G is defined by its Fourier transform é\f(f) = exp(—t[¢|®).

Note that these results do not imply that the asymptotic expansion
_1)lol - . :
> lal<k ol ([ uo(z)z*) 9> K, coincides with the expansion that holds

al
for the equation u; = —(—A)zu: Z|a|<k ;,‘al ([ uo(z)z™) 0G5 (see
[8]). They only say that the corresponding terms agree up to a better
order. When J is compactly supported or rapidly decaying at infinity,
then s = 2 and we obtain an expansion analogous to the one that holds
for the heat equation.

To end this introduction let us comment briefly on some of the avail-
able literature.

Equations like (1.1) and variations of it, have been recently widely
used to model diffusion processes, for example, in biology, disloca-
tions dynamics, etc. See, for example, [2], [3], [5], [6], [9], [10], [7],
[13] and [14]. As stated in [9], if u(x,t) is thought of as the den-
sity of a single population at the point = at time ¢, and J(z — y) is
thought of as the probability distribution of jumping from location y
to location x, then (J * u) = Jan J( Ju(y,t) dy is the rate at
which individuals are arrivmg to posmon x from all other places and
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—u(z,t) fRN u(x,t) dy is the rate at which they are leaving
locatlon x to travel to all other sites. This consideration, in the ab-
sence of external or internal sources, leads immediately to the fact that
the density u satisfies equation (1.1). Equation (1.1), is called nonlocal
diffusion equation since the diffusion of the density u at a point x and
time ¢ does not only depend on u(z,t), but on all the values of u in a
neighborhood of x through the convolution term J * wu.

2. PROOFS OF THE RESULTS

2.1. Preliminaries. First, let us obtain a representation of the solu-
tion using Fourier variables. A proof of existence and uniqueness of
solutions using the Fourier transform (see [12]) is given in [4] (see also
[11]). We repeat the main arguments here for the sake of completeness.

Theorem 2.1. Let ug € LY(R?) such that iy € L*(RY). There exists a
unique solution u € C°([0,00); LY(RY)) of (1.1), and it is given by

(&, 1) = POy ¢).
Proof. We have

w(z,t) = J xu—u(x,t) = /Rd J(x —y)uly,t)dy — u(x,t).

Applying the Fourier transform we obtain w;(&,t) = u(é, t)(j (&) —1).
Hence, u(¢,t) = e(‘b(@_l)tﬁb(f). Since wy € L'(RY) and ePO- g
continuous and bounded, the result follows by taking the inverse of the
Fourier transform. O

Now we prove a lemma concerning the fundamental solution of (1.1)).

Lemma 2.1. Let J € S(R?), the space of rapidly decreasing functions.
The fundamental solution of (1.1)), that is the solution of (1.1) with
wnitial condition ug = g, can be decomposed as

(2.8) w(z,t) = e '6(x) + Ki(x),

where the function K, is smooth and given by I (£) = e~t(et¥® — 1).
Moreover, if u is a solution of (1.1) it can be written as

u(z,t) = (w*up)(z,t) = /Rd w(x — z,t)up(z) dz.

Proof. By the previous result we have @,(¢,t) = @(&,)(J(€) — 1).
Hence, as the initial datum verifies @y = g = 1,

w(& t) = POt _ ot + eft(e‘b(g)t —1).
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The first part of the lemma follows applying the inverse Fourier trans-
form in S(R?).

To finish the proof we just observe that w * v is a solution of (1.1)
(just use Fubini’s theorem) with (w * ug)(z,0) = ug(x). O

~

Remark 2.1. The above proof together with the fact that J(§) — 0

(since J € L'(R%)) shows that if J € L!(R?) then the same decompo-
sition (2.8) holds and the result also applies.

To prove our result we need some estimates on the kernel K.

2.2. Estimates on K;. In this subsection we obtain the long time
behavior of the kernel K; and its derivatives.

As we have mentioned in the introduction, in [11] the authors study
the behavior of L4(R%)-norms with 2 < ¢ < oo. They use Hausdorff-
Young’s inequality in the case ¢ = oo and Plancherel’s identity for
q=2.

However the case 1 < ¢ < 2 is more tricky. In order to evaluate the
LY(R%)-norm of the kernel K; we use the following inequality

-4 d

(2.9 1l S Ui 2l £1125 g

which holds for n > d/2 and which is frequently attributed to Carlson
(see for instance [1]). The use of the above inequality with f = K;
imposes that |z|"0*K; belongs to L?(R?). To guarantee that property
and to obtain the decay rate for the L?(R%)-norm of |z|"9*K; we need
to impose the hypotheses (1.3) and (1.4) in Theorem 1.1l

Lemma 2.2. Assume that J verifies (1.4) and
JEO -1~ —leF, €~
with [s] > d/2. Then for any index o = (ay, ..., )
o _lal
(210) Ha Kt”Ll(Rd) 5 t s .

Moreover, for 1 < q < 2 we have

_ el

[0“ K| Laray S 00
for large t.

Remark 2.2. There is no restriction on s if J is such that

0°7(€)] < min{j¢[*7l 1}, [¢] < 1.

This happens if s is a positive integer and J(£) = 1 — |£]® in a neigh-
borhood of the origin.
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Remark 2.3. The case a = (0,...,0) can be easily treated when J is
nonnegative. As a consequence of the mass conservation (just integrate
the equation and use Fubini’s theorem, see [4]), [p.w(z,t) = 1, we
obtain [5, |K;| <1 and therefore (2.10) follows with a = (0,...,0).

Remark 2.4. The condition (1.4) imposed on .J is satisfied, for exam-
ple, for any smooth, compactly supported function J.

Proof of Lemma 2.2. The estimates for 1 < ¢ < 2 follow from the cases
q = 1 and ¢ = 2 by interpolation.

The case ¢ = 2 was analyzed in [11], we refer to that paper for details
but include here the main argument for the reader’s convenience.

By Plancherel’s identity we have

||aaKt||%2(Rd) < o2t /d |€tp(f) — 1|2|€|2|a\d€_
R

Now, let us choose R > 0 such that

(2.11) 17(6)] <1— "5| for all |¢] < R.

Putting out the exponentially small terms, it remains to estimate

[ Ol

where R is given by (2.11). The behavior of J near zero gives

/ ‘et(ﬁ(s>1>|2|§|2|ad5§/ o HIEl
gI<r <R

To deal with ¢ = 1, we use inequality (2.9) with f = 9*K,; and n
such that [s] > n > d/2. We get

¢2eldg < e

0% K| 1 (RT) S S |0°K; H|$|naaKt

HL2 HL2 (R4) -

The condition n < [s] guarantees that 8ng makes sense near £ = 0

and thus the derivatives 8&?(:, j =1,...,d, exist. Observe that the
moment of order n of K; imposes the existence of the partial derivatives
Ky j=1,....d

We have, using the decay in L? previously proved,

(4 lol -
10° Kol gy S ¢S 030 a0 B 5 gy
Thus it is sufficient to prove that

d _ o

2] 0% K| L2 (ray S the s
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for all sufficiently large t. Observe that by Plancherel’s theorem

/ |lz|?"|0° Ky () |Pde < c(n)/ (:E?"%—---+xfln)|3aKt(x)|2dx
R4 Rd
d —~
— an oth 2d
c<n>;Ad| p (T P

where &% = & ...¢5". Therefore, it remains to prove that for any
j=1,...,d, it holds

d_ 2|e|

(2.12) / |0, (f’o‘Kt)\ ¢ St I for t large.

We analyze the case 7 = 1, the others follow by the same arguments.
Leibnitz’s rule gives

n

o (TN = €87 ... zzdz()agx NorH () )

k=0
and guarantees that
08 (KNP S &7 ...&™ Z OF, (&5 Plog FKu(©)?
mm{n a1} Y
5 2042. 20!d Z 51 (a1— | on— IcKt( )| ‘
The last inequality reduces (2.12) to the following one:

/ é-l 011 k 2042' 2ad|an th< )’ d€<t2:7%72‘sal

for all 0 < k < min{ay,n}. Using the elementary inequality (it follows
from the convexity of the log function)

gi(alfk)fgaz o gjad 5 (f% 4ot 53)041—k+o¢2+~..+ad _ ’5‘2(\04—16)

it remains to prove that for any r nonnegative and any m such that
n — min{ay,n} < m < n the following inequality is valid,

2 -4 2TTL—T
(2.13) I(r,m,t)z/w €17 |OF B 2de S s e men,

First we analyze the case m = 0. In this case

,0,0) = [ I — a7 [ e - 1pag
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Using that |e? — 1| < 2Jy| for |y| small, say |y| < ¢o, we obtain that

2t
O — 1 < 26].J(6)| < @

for all |€] > h(t) = (cot)m. Then

2r
G—Qt/ |€|2T|6tf(§) o 1|2 df 5 t2€—2t/ ’5‘ dg < te_tc(m 27“)
|€1>h(t) |€]>R(t) |5|

provided that 2r < m — d.
It remains to estimate

6—2t/ |§|2r|6t‘b(£) . 1|2d§.
[§1<h(t)

We observe that the term e 2
we concentrate on

el<h(s) 1€ |?rd¢ is exponentially small, so

1(t) = e / RO el e,
|€]<h(t)

Now, let us choose R > 0 such that

(2.14) 17O <1- ‘5’ for all || < R.
Once R is fixed, there exists § > 0 with
(2.15) 1J(¢)] < 1—6for all |¢| > R.
Then
1] < e [ jeRopigrag e [ o
I€I<R R<|¢|<h(¢)
< / e2t(ﬁ(§)|—l)’§‘2rd€+€—2t5/ ‘6’27'd§
I§I<R R<[€I<h(?)
S / eI+ es.
lEl<R

_2r_d || _2r_d
= [ s gt
[n|<Rts

Observe that under hypothesis (1.4) no restriction on r is needed.
In what follow we analyze the case m > 1. First we recall the
following elementary identity

o) =e¢ > ai.i.(049)" (9 9)". (O g)

i1+2i2+...+mim=m
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where a;, _;, are universal constants independent of g. Tacking into
account that K, (&) = e!PO=1 _ =t we obtain for any m > 1 that

e = PO N et T T ()

11+2i0+...4+Mmim=m 7j=1
and hence
m7e Pe)- i1+ tim iy ey
(P S PO N Pl TT (9] J ()P
i142ip+ ... Mim=m j=1

Using that all the partial derivatives of J decay, as |€] — oo, faster
than any polinomial in |£|, we obtain that

/| RO e e
EI>R

where R and ¢ are chosen as in (2.14) and (2.15). Tacking into account

~

that n < [s] and that |J(&) — 1 + |£]°] < o(|¢]°) as |£] — O we obtain
0L O <P, j=1,...n

for all |¢] < R. Then for any m < n and for all |{] < R the following
holds

m

ERAOP S et ST e T e

i1+2i+...Amim=m j=1

< tlel 3 i) || 2=
i14+2i0+...4+mipm=m

Using that for any [ > 0

_ s
ol
Rd
2r

/§|<R|§|2r|87?Kt(§)|2d§ < s Z 2P(01i)— 2

i1+2i2+-+mim=m

_d_1
glldg St

we obtain

where
m

p(it, .. yim) = (i1+---+im)—§2(s—j)ij

j=1
m
12‘. -
= - J1 = —.
s 4 ! s
J=1

This ends the proof. O
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Now we are ready to prove Theorem [1.1.

Proof of Theorem [1.1. Following [8] we obtain that the initial condition
ug € LY(RY, 1 + |z|**1) has the following decomposition

—1)led
Uy = Z ( a!) ( / Uz dx) D%y + Z D°F,

lal <k laf=k-+1

where
HFaHLl(Rd) S ||U()||L1(Rcl7 |$|k+1)
for all multi-indexes « with |a| = k + 1.
In view of (2.8) the solution u of (1.1) satisfies
u(x,t) = e tug(z) + (K; * ug)(z).

The first term being exponentially small it suffices to analyze the
long time behavior of K; * uy. Using the above decomposition and
Lemma 2.2/ we get

HKt * Uy — Z (_Olé!)m </u0(x)a:°‘d:c>8°‘[(t

|| <K La(®e) —
< Y 10K * Fallpoee)
|a|=k+1
< Z 10 K¢l Lagray | Fall L1 (re
|a|=k+1
5 t_g(l_%)t_(ktl) ||1,L0||L1(Rd7 || FH1) -
This ends the proof. O

2.3. Asymptotics for the higher order terms. In this subsection
we prove Theorem [1.2] (recall that 1 < ¢ << 2).

Proof of Theorem 1.2. Using the same ideas as in the proof of Lemma
2.2it remains to prove that for some d/2 < n < [s] the following holds
n (oo QYS 4 n=(altr)
2" (0" Ky — 0°G) || 2y S T2 = .
Applying Plancherel’s identity the proof of the last inequality is reduced
to the proof of the following one
n—(la|+r)

T s _d n=(ajtr) .
/Rd |ag[§a(Kt_G§)”2d§§t 2t y J = 17"-d7

provided that all the above terms make sense. This means that all the
partial derivatives 82[(,5 and ang;:, j=1,...,d, k=0,...,n have to
be defined. And thus we need n < [s].
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We consider the case j = 1 the other cases being similar. Applying
again Leibnitz’s rule we get

min{n,o }

el — G < &gt Y MoK, - G)P?
k=0

min{n,a1}

S Y (PRl - G

k=0
In the following we prove that

2(m—mq—r)

[ ePmion (R - Gpag s ¢t

for all |o| — min{n, a1} < m; <|a| and n — min{n, a1} < m < n.
Using that the integral outside of a ball of radius R decay exponen-
tially, it remains to analyze the decay of the following integral

AMMM@A G e

where R is as before. Using the definition of K, and G} we obtain that

KL (€) = e RO~ > iyt T 102, T(E)]
i1+ 20+ A mim=m =1
and

orGi(€) = ¢© S T [0 0]

i14+2i0+...4+mipm=m j=1
where py(§) = —[¢|*. Then
08K (€) — ORG3 ()P < L(Et) + L(E.1)

where

L&) = |6t(ﬁ(§)—1) _ etp5(§)|2 Z 2001+ +im) H |8‘7 s |22]
) 1 S
7j=1

11+2i2+...+mim=m

and
]2(57 t) = €2tps(§) Z t2(i1+...+im) %
i1+2i2+...+mim=m 2
VRISl G0N
j=1 j=1

First, let us analyze I1(&,t).
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Tacking into account that |8§1p5(§)| < €57 for all j < m < [s],
€| < R, and that

BO-D _ @2 2lel €t<ﬁ<s)—1+§|s>_1‘2
o~ 2
< eEHI(E) — 1+ [¢))

5 t2€—2t\§|5 6‘2(1“-%5)

the same arguments as in the proof of Lemma 2.2/ give us the right
decay.

It remains to analyze I5(&,t). We make use of the following elemen-
tary inequality

m m m
HCL]'—Hbj SZ|b1...bj_1||aj—bj||aj+1...am|.
j=1 j=1 j=1

Then by Cauchy’s inequality we also have

m m m
HCLj—Hbj §Zb%...b?fl(aj—bj)2a?+1...afn.
=1 =1

Applying the last inequality with a; = 8§1 J (€) and b; = E%ps(ﬁ) we
obtain

L&) e © YT iy, )

11+2i0+...4+mim=m

where
m j—1 n R
= 110k ps(&)P (08, ()] — [0 ps()]) T] 108 T(£)**
j=1 k=1 k=j+1

and i = (i17. .. ,im).

Choosing eventually a smaller R we can guarantee that for [{| < R
and k < [s] the following inequalities hold:

08, 7€) — Ok ps(E)] S 11 F, 10, T(E) S €1, 10Eps(€)] S 1€l

Hence, we get

(08 J(&)]™ — [0 ps(&)]™] < |0 T(€) — OF ps(&)| x

ip—1

X Z (0F T (€)]'[0% ps(€)) 1
< |£|s+’" k|£|<“» DER) — [e]7e]nts®)
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This yields to the following estimate on the function g(iy, ..., %y, &):

P,
glin, - yim, &) < [ [E[F 700,

and consequently

/Rd I(t, §)d§ < /Rd 2l

% Z t2(i1+--~+im)’£|27’+2 P;nzl zk(sfk)dg

i1+2i24+...4+mim=m

Making a change of variable and using similar arguments as in the
proof of Lemma 2.2 we obtain the desired result. 0
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