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Abstract. We study the asymptotic behavior for solutions to
nonlocal diffusion models of the form ut = J ∗ u − u in the whole
Rd with an initial condition u(x, 0) = u0(x). Under suitable hy-
potheses on J (involving its Fourier transform) and u0, it is proved
an expansion of the form

∥∥∥u(u)−
∑

|α|≤k

(−1)|α|

α!

( ∫
u0(x)xα dx

)
∂αKt

∥∥∥
Lq(Rd)

≤ Ct−A,

where Kt is the regular part of the fundamental solution and the
exponent A depends on J , q, k and the dimension d. Moreover,
we can obtain bounds for the difference between the terms in
this expansion and the corresponding ones for the expansion of
vt(x, t) = −(−∆)

s
2 v(x, t).

Here we deal with the case 1 ≤ q ≤ 2. The case 2 ≤ q ≤ ∞ was
treated previously, by other methods, in [11].

1. Introduction

In this paper we study the asymptotic behavior as t →∞ of solutions
to the nonlocal evolution problem

(1.1)

{
ut(x, t) = J ∗ u− u(x, t), t > 0, x ∈ Rd,

u(x, 0) = u0(x), x ∈ Rd,

where J : Rd → R verifies
∫
Rd J(x)dx = 1.

For the heat equation, vt = ∆v, a precise asymptotic expansion in
terms of the fundamental solution and its derivatives was found in [8].
In fact, if Gt denotes the fundamental solution of the heat equation,
namely, Gt(x) = (4πt)−d/2e−|x|

2/(4t), under adequate assumptions on
the initial condition, we have,

(1.2)
∥∥∥u(x, t)−

∑

|α|≤k

(−1)|α|

α!

( ∫

Rd

u0(x)xα
)
∂αGt

∥∥∥
Lq(Rd)

≤ Ct−A
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with A = (d
2
)( (k+1)

d
+ (1 − 1

q
)). As pointed out by the authors in [8],

the same asymptotic expansion can be done in a more general setting,
dealing with the equations ut = −(−∆)

s
2 u, s > 0.

Our main objective here is to study if an expansion analogous to
(1.2) holds for the non-local problem (1.1). In this paper, that can be
viewed as a natural extension of [11], we deal with the case 1 ≤ q ≤ 2.
The cases 2 ≤ q ≤ ∞ are derived from Hausdorff-Young’s inequality
and Plancherel’s identity, see [11]. The cases analyzed here, 1 ≤ q ≤ 2,
are more tricky. They are reduced to L2-estimates on the momenta
of ∂αKt and therefore more restrictive assumptions on J have to be
imposed.

Now we need to introduce some notation. We will denote by f ∼ g
as ξ ∼ 0 if |f(ξ)− g(ξ)| = o(g(ξ)) when ξ → 0 and f . g if there exists
a constant c independent of the relevant quantities such that f ≤ cg.

We also use the standard notation Ĵ for the Fourier transform of J .
Concerning the first term in the expansion (1.2), in [4] it is proved

that if J verifies Ĵ(ξ) − 1 ∼ −|ξ|s as ξ ∼ 0, then the asymptotic
behavior can be described as follows,

lim
t→+∞

∥∥∥∥t
d
s u(yt

1
s , t)−

(∫

Rd

u0

)
Gs(y)

∥∥∥∥
L∞(Rd)

= 0,

where Gs(y) satisfies Ĝs(ξ) = e−|ξ|
s
. Also, it is proved in [4] that

the fundamental solution w(x, t) of problem (1.1) satisfies w(x, t) =
e−tδ0(x) + Kt(x), where the function Kt (the regular part of the fun-

damental solution) is given by K̂t(ξ) = e−t(et bJ(ξ) − 1).
Here we find a complete expansion for u(x, t), a solution to (1.1), in

terms of the derivatives of the regular part of the fundamental solu-
tion, Kt.

Theorem 1.1. Assume that J satisfies

(1.3) Ĵ(ξ)− 1 ∼ −|ξ|s, ξ ∼ 0

with [s] > d/2 and that for any m ≥ 0 and α there exists c(m,α) such
that

(1.4) |∂αĴ(ξ)| ≤ c(m,α)

|ξ|m , |ξ| → ∞.

Then for any 1 ≤ q ≤ 2, we have the asymptotic expansion

(1.5)
∥∥∥u(x, t)−

∑

|α|≤k

(−1)|α|

α!

( ∫

Rd

u0(x)xα
)
∂αKt

∥∥∥
Lq(Rd)

≤ Ct−A,

for all u0 ∈ L1(Rd, 1 + |x|k+1). Here A = (k+1)
s

+ d
s
(1− 1

q
).
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Note that, when J has an expansion of the form Ĵ(ξ)− 1 ∼ −|ξ|2 as
ξ ∼ 0 (this happens for example if J is compactly supported), then the
decay rate in L∞(Rd) of the solutions to the non-local problem (1.1) and

the heat equation coincide (in both cases they decay as t−
d
2 ). Moreover,

the first order term also coincide (in both cases it is a Gaussian).
Our next aim is to study if the higher order terms of the asymptotic

expansion that we have found in Theorem 1.1 have some relation with
the corresponding ones for the heat equation. Our next results say that
the difference between them is of lower order.

Theorem 1.2. Let J be as in Theorem 1.1 and assume in addition
that there exists r > 0 such that

(1.6) Ĵ(ξ)− (1− |ξ|s) ∼ |ξ|s+r, ξ ∼ 0.

We also assume that all the derivatives of Ĵ decay at infinity faster as
any polinomial:

|∂αĴ(ξ)| ≤ c(m,α)

|ξ|m , ξ →∞.

Then for any 1 ≤ q ≤ 2 and any multi-index α = (α1, . . . , αd), there
exists a positive constant C = C(q, d, s, r) such that the following holds

(1.7) ‖∂αKt − ∂αGs
t‖Lq(Rd) ≤ Ct−

d
s
(1− 1

q
)t−

|α|+r
s ,

where Gs
t is defined by its Fourier transform Ĝs

t(ξ) = exp(−t|ξ|s).
Note that these results do not imply that the asymptotic expansion∑
|α|≤k

(−1)|α|
α!

(∫
u0(x)xα

)
∂αKt coincides with the expansion that holds

for the equation ut = −(−∆)
s
2 u:

∑
|α|≤k

(−1)|α|
α!

(∫
u0(x)xα

)
∂αGs

t (see

[8]). They only say that the corresponding terms agree up to a better
order. When J is compactly supported or rapidly decaying at infinity,
then s = 2 and we obtain an expansion analogous to the one that holds
for the heat equation.

To end this introduction let us comment briefly on some of the avail-
able literature.

Equations like (1.1) and variations of it, have been recently widely
used to model diffusion processes, for example, in biology, disloca-
tions dynamics, etc. See, for example, [2], [3], [5], [6], [9], [10], [7],
[13] and [14]. As stated in [9], if u(x, t) is thought of as the den-
sity of a single population at the point x at time t, and J(x − y) is
thought of as the probability distribution of jumping from location y
to location x, then (J ∗ u)(x, t) =

∫
RN J(y − x)u(y, t) dy is the rate at

which individuals are arriving to position x from all other places and
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−u(x, t) = − ∫
RN J(y−x)u(x, t) dy is the rate at which they are leaving

location x to travel to all other sites. This consideration, in the ab-
sence of external or internal sources, leads immediately to the fact that
the density u satisfies equation (1.1). Equation (1.1), is called nonlocal
diffusion equation since the diffusion of the density u at a point x and
time t does not only depend on u(x, t), but on all the values of u in a
neighborhood of x through the convolution term J ∗ u.

2. Proofs of the results

2.1. Preliminaries. First, let us obtain a representation of the solu-
tion using Fourier variables. A proof of existence and uniqueness of
solutions using the Fourier transform (see [12]) is given in [4] (see also
[11]). We repeat the main arguments here for the sake of completeness.

Theorem 2.1. Let u0 ∈ L1(Rd) such that û0 ∈ L1(Rd). There exists a
unique solution u ∈ C0([0,∞); L1(Rd)) of (1.1), and it is given by

û(ξ, t) = e( bJ(ξ)−1)tû0(ξ).

Proof. We have

ut(x, t) = J ∗ u− u(x, t) =

∫

Rd

J(x− y)u(y, t) dy − u(x, t).

Applying the Fourier transform we obtain ût(ξ, t) = û(ξ, t)(Ĵ(ξ) − 1).

Hence, û(ξ, t) = e( bJ(ξ)−1)tû0(ξ). Since û0 ∈ L1(Rd) and e( bJ(ξ)−1)t is
continuous and bounded, the result follows by taking the inverse of the
Fourier transform. ¤

Now we prove a lemma concerning the fundamental solution of (1.1).

Lemma 2.1. Let J ∈ S(Rd), the space of rapidly decreasing functions.
The fundamental solution of (1.1), that is the solution of (1.1) with
initial condition u0 = δ0, can be decomposed as

(2.8) w(x, t) = e−tδ0(x) + Kt(x),

where the function Kt is smooth and given by K̂t(ξ) = e−t(et bJ(ξ) − 1).
Moreover, if u is a solution of (1.1) it can be written as

u(x, t) = (w ∗ u0)(x, t) =

∫

Rd

w(x− z, t)u0(z) dz.

Proof. By the previous result we have ŵt(ξ, t) = ŵ(ξ, t)(Ĵ(ξ) − 1).

Hence, as the initial datum verifies û0 = δ̂0 = 1,

ŵ(ξ, t) = e( bJ(ξ)−1)t = e−t + e−t(e
bJ(ξ)t − 1).
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The first part of the lemma follows applying the inverse Fourier trans-
form in S(Rd).

To finish the proof we just observe that w ∗ u0 is a solution of (1.1)
(just use Fubini’s theorem) with (w ∗ u0)(x, 0) = u0(x). ¤

Remark 2.1. The above proof together with the fact that Ĵ(ξ) → 0

(since J ∈ L1(Rd)) shows that if Ĵ ∈ L1(Rd) then the same decompo-
sition (2.8) holds and the result also applies.

To prove our result we need some estimates on the kernel Kt.

2.2. Estimates on Kt. In this subsection we obtain the long time
behavior of the kernel Kt and its derivatives.

As we have mentioned in the introduction, in [11] the authors study
the behavior of Lq(Rd)-norms with 2 ≤ q ≤ ∞. They use Hausdorff-
Young’s inequality in the case q = ∞ and Plancherel’s identity for
q = 2.

However the case 1 ≤ q ≤ 2 is more tricky. In order to evaluate the
L1(Rd)-norm of the kernel Kt we use the following inequality

(2.9) ‖f‖L1(Rd) . ‖f‖1− d
2n

L2(Rd)
‖|x|nf‖

d
2n

L2(Rd)
,

which holds for n > d/2 and which is frequently attributed to Carlson
(see for instance [1]). The use of the above inequality with f = Kt

imposes that |x|n∂αKt belongs to L2(Rd). To guarantee that property
and to obtain the decay rate for the L2(Rd)-norm of |x|n∂αKt we need
to impose the hypotheses (1.3) and (1.4) in Theorem 1.1.

Lemma 2.2. Assume that J verifies (1.4) and

Ĵ(ξ)− 1 ∼ −|ξ|s, ξ ∼ 0

with [s] > d/2. Then for any index α = (α1, . . . , αd)

(2.10) ‖∂αKt‖L1(Rd) . t−
|α|
s .

Moreover, for 1 < q < 2 we have

‖∂αKt‖Lq(Rd) . t−
d
s
(1− 1

q
)− |α|

s

for large t.

Remark 2.2. There is no restriction on s if J is such that

|∂αĴ(ξ)| . min{|ξ|s−|α|, 1}, |ξ| ≤ 1.

This happens if s is a positive integer and Ĵ(ξ) = 1 − |ξ|s in a neigh-
borhood of the origin.



6 L. I. IGNAT AND J.D. ROSSI

Remark 2.3. The case α = (0, . . . , 0) can be easily treated when J is
nonnegative. As a consequence of the mass conservation (just integrate
the equation and use Fubini’s theorem, see [4]),

∫
Rd w(x, t) = 1, we

obtain
∫
Rd |Kt| ≤ 1 and therefore (2.10) follows with α = (0, . . . , 0).

Remark 2.4. The condition (1.4) imposed on J is satisfied, for exam-
ple, for any smooth, compactly supported function J .

Proof of Lemma 2.2. The estimates for 1 < q < 2 follow from the cases
q = 1 and q = 2 by interpolation.

The case q = 2 was analyzed in [11], we refer to that paper for details
but include here the main argument for the reader’s convenience.

By Plancherel’s identity we have

‖∂αKt‖2
L2(Rd) ≤ e−2t

∫

Rd

|et bJ(ξ) − 1|2|ξ|2|α|dξ.

Now, let us choose R > 0 such that

(2.11) |Ĵ(ξ)| ≤ 1− |ξ|s
2

for all |ξ| ≤ R.

Putting out the exponentially small terms, it remains to estimate∫

|ξ|≤R

|et( bJ(ξ)−1)|2|ξ|2|α|dξ,

where R is given by (2.11). The behavior of Ĵ near zero gives
∫

|ξ|≤R

|et( bJ(ξ)−1)|2|ξ|2|α|dξ .
∫

|ξ|≤R

e−t|ξ|s|ξ|2|α|dξ . t−
d
s
− 2|α|

s .

To deal with q = 1, we use inequality (2.9) with f = ∂αKt and n
such that [s] ≥ n > d/2. We get

‖∂αKt‖L1(Rd) . ‖∂αKt‖1− d
2n

L2(Rd)
‖|x|n∂αKt‖

d
2n

L2(Rd)
.

The condition n ≤ [s] guarantees that ∂n
ξj

Ĵ makes sense near ξ = 0

and thus the derivatives ∂n
ξj

K̂t, j = 1, . . . , d, exist. Observe that the
moment of order n of Kt imposes the existence of the partial derivatives

∂n
ξj

K̂t, j = 1, . . . , d.

We have, using the decay in L2 previously proved,

‖∂αKt‖L1(Rd) . t−( d
2s

+
|α|
s )(1− d

2n)‖|x|n∂αKt‖
d
2n

L2(Rd)
.

Thus it is sufficient to prove that

‖|x|n∂αKt‖L2(Rd) . t
n
s
− d

2s
− |α|

s
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for all sufficiently large t. Observe that by Plancherel’s theorem
∫

Rd

|x|2n|∂αKt(x)|2dx ≤ c(n)

∫

Rd

(x2n
1 + · · ·+ x2n

d )|∂αKt(x)|2dx

= c(n)
d∑

j=1

∫

Rd

|∂n
ξj

(ξαK̂t)|2dξ

where ξα = ξα1
1 . . . ξαd

d . Therefore, it remains to prove that for any
j = 1, . . . , d, it holds

(2.12)

∫

Rd

|∂n
ξj

(ξαK̂t)|2dξ . t
2n
s
− d

s
− 2|α|

s , for t large.

We analyze the case j = 1, the others follow by the same arguments.
Leibnitz’s rule gives

∂n
ξ1

(ξαK̂t)(ξ) = ξα2
2 . . . ξαd

d

n∑

k=0

(
n

k

)
∂k

ξ1
(ξα1

1 )∂n−k
ξ1

(K̂t)(ξ)

and guarantees that

|∂n
ξ1

(ξαK̂t)(ξ)|2 . ξ2α2
2 . . . ξ2αd

d

n∑

k=0

|∂k
ξ1

(ξα1
1 )|2|∂n−k

ξ1
K̂t(ξ)|2

. ξ2α2
2 . . . ξ2αd

d

min{n,α1}∑

k=0

ξ
2(α1−k)
1 |∂n−k

ξ1
K̂t(ξ)|2.

The last inequality reduces (2.12) to the following one:
∫

Rd

ξ
2(α1−k)
1 ξ2α2

2 . . . ξ2αd
d |∂n−k

ξ1
K̂t(ξ)|2dξ . t

2n
s
− d

s
− 2|α|

s

for all 0 ≤ k ≤ min{α1, n}. Using the elementary inequality (it follows
from the convexity of the log function)

ξ
2(α1−k)
1 ξ2α2

2 . . . ξ2αd
d . (ξ2

1 + · · ·+ ξ2
d)

α1−k+α2+···+αd = |ξ|2(|α|−k)

it remains to prove that for any r nonnegative and any m such that
n−min{α1, n} ≤ m ≤ n the following inequality is valid,

(2.13) I(r,m, t) =

∫

Rd

|ξ|2r|∂m
ξ1

K̂t|2dξ . t−
d
s
+ 2

s
(m−r).

First we analyze the case m = 0. In this case

I(r, 0, t) =

∫

Rd

|ξ|2r|et( bJ(ξ)−1) − e−t|2dξ = e−2t

∫

Rd

|ξ|2r|et bJ(ξ) − 1|2dξ.



8 L. I. IGNAT AND J.D. ROSSI

Using that |ey − 1| ≤ 2|y| for |y| small, say |y| ≤ c0, we obtain that

|et bJ(ξ) − 1| ≤ 2t|Ĵ(ξ)| ≤ 2t

|ξ|m

for all |ξ| ≥ h(t) = (c0t)
1
m . Then

e−2t

∫

|ξ|≥h(t)

|ξ|2r|et bJ(ξ)− 1|2 dξ . t2e−2t

∫

|ξ|≥h(t)

|ξ|2r

|ξ|m dξ ≤ te−tc(m− 2r)

provided that 2r < m− d.
It remains to estimate

e−2t

∫

|ξ|≤h(t)

|ξ|2r|et bJ(ξ) − 1|2dξ.

We observe that the term e−2t
∫
|ξ|≤h(t)

|ξ|2rdξ is exponentially small, so
we concentrate on

I(t) = e−2t

∫

|ξ|≤h(t)

|et bJ(ξ)|2|ξ|2rdξ.

Now, let us choose R > 0 such that

(2.14) |Ĵ(ξ)| ≤ 1− |ξ|s
2

for all |ξ| ≤ R.

Once R is fixed, there exists δ > 0 with

(2.15) |Ĵ(ξ)| ≤ 1− δ for all |ξ| ≥ R.

Then

|I(t)| ≤ e−2t

∫

|ξ|≤R

|et bJ(ξ)|2|ξ|2rdξ + e−2t

∫

R≤|ξ|≤h(t)

|et bJ(ξ)|2|ξ|2rdξ

.
∫

|ξ|≤R

e2t(| bJ(ξ)|−1)|ξ|2rdξ + e−2tδ

∫

R≤|ξ|≤h(t)

|ξ|2rdξ

.
∫

|ξ|≤R

e−t|ξ|s|ξ|2r + e.s.

= t−
2r
s
− d

s

∫

|η|≤Rt
1
s

e−|η|
s|η|2r + e.s. . t−

2r
s
− d

s .

Observe that under hypothesis (1.4) no restriction on r is needed.
In what follow we analyze the case m ≥ 1. First we recall the

following elementary identity

∂m
ξ1

(eg) = eg
∑

i1+2i2+...+mim=m

ai1,...,im(∂1
ξ1

g)i1(∂2
ξ1

g)i2 ...(∂m
ξ1

g)im
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where ai1,...,im are universal constants independent of g. Tacking into

account that K̂t(ξ) = et( bJ(ξ)−1) − e−t we obtain for any m ≥ 1 that

∂m
ξ1

K̂t(ξ) = et( bJ(ξ)−1)
∑

i1+2i2+...+mim=m

ai1,...,imti1+···+im

m∏
j=1

[∂j
ξ1

Ĵ(ξ)]ij

and hence

|∂m
ξ1

K̂t(ξ)|2 . e2t| bJ(ξ)−1| ∑
i1+2i2+...+mim=m

t2(i1+···+im)

m∏
j=1

[∂j
ξ1

Ĵ(ξ)]2ij .

Using that all the partial derivatives of Ĵ decay, as |ξ| → ∞, faster
than any polinomial in |ξ|, we obtain that∫

|ξ|>R

|ξ|2r|∂m
ξ1

K̂t(ξ)|2dξ . e−δtt2m

where R and δ are chosen as in (2.14) and (2.15). Tacking into account

that n ≤ [s] and that |Ĵ(ξ)− 1 + |ξ|s| ≤ o(|ξ|s) as |ξ| → 0 we obtain

|∂j
ξ1

Ĵ(ξ)| ≤ |ξ|s−j, j = 1, . . . , n

for all |ξ| ≤ R. Then for any m ≤ n and for all |ξ| ≤ R the following
holds

|∂m
ξ1

K̂t(ξ)|2 . e−t|ξ|s ∑
i1+2i2+...+mim=m

t2(i1+···+im)

m∏
j=1

|ξ|2(s−j)ij

. e−t|ξ|s ∑
i1+2i2+...+mim=m

t2(i1+···+im)|ξ|
Pm

j=1 2(s−j)ij .

Using that for any l ≥ 0∫

Rd

e−t|ξ|s|ξ|ldξ . t−
d
s
− l

s ,

we obtain∫

|ξ|≤R

|ξ|2r|∂m
ξ1

Kt(ξ)|2dξ . t−
d
s

∑
i1+2i2+···+mim=m

t2p(i1,...,id)− 2r
s

where

p(i1, . . . , im) = (i1 + · · ·+ im)− 1

s

m∑
j=1

(s− j)ij

=
1

s

m∑
j=1

j ij =
m

s
.

This ends the proof. ¤
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Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Following [8] we obtain that the initial condition
u0 ∈ L1(Rd, 1 + |x|k+1) has the following decomposition

u0 =
∑

|α|≤k

(−1)|α|

α!

(∫
u0x

α dx

)
Dαδ0 +

∑

|α|=k+1

DαFα

where
‖Fα‖L1(Rd) ≤ ‖u0‖L1(Rd, |x|k+1)

for all multi-indexes α with |α| = k + 1.
In view of (2.8) the solution u of (1.1) satisfies

u(x, t) = e−tu0(x) + (Kt ∗ u0)(x).

The first term being exponentially small it suffices to analyze the
long time behavior of Kt ∗ u0. Using the above decomposition and
Lemma 2.2 we get

∥∥∥Kt ∗ u0 −
∑

|α|≤k

(−1)|α|

α!

( ∫
u0(x)xαdx

)
∂αKt

∥∥∥
Lq(Rd)

≤

≤
∑

|α|=k+1

‖∂αKt ∗ Fα‖Lq(Rd)

≤
∑

|α|=k+1

‖∂αKt‖Lq(Rd)‖Fα‖L1(Rd)

. t−
d
s
(1− 1

q
)t−

(k+1)
s ‖u0‖L1(Rd, |x|k+1).

This ends the proof. ¤

2.3. Asymptotics for the higher order terms. In this subsection
we prove Theorem 1.2 (recall that 1 ≤ q <≤ 2).

Proof of Theorem 1.2. Using the same ideas as in the proof of Lemma
2.2 it remains to prove that for some d/2 < n ≤ [s] the following holds

‖|x|n(∂αKt − ∂αGs
t)‖L2(Rd) . t−

d
2s

+
n−(|α|+r)

s .

Applying Plancherel’s identity the proof of the last inequality is reduced
to the proof of the following one∫

Rd

|∂n
ξj

[ξα(K̂t − Ĝs
t)]|2dξ . t−

d
2s

+
n−(|α|+r)

s , j = 1, . . . d,

provided that all the above terms make sense. This means that all the

partial derivatives ∂k
ξj

K̂t and ∂k
ξj

Ĝs
t , j = 1, . . . , d, k = 0, . . . , n have to

be defined. And thus we need n ≤ [s].
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We consider the case j = 1 the other cases being similar. Applying
again Leibnitz’s rule we get

|∂n
ξ1

[ξα(K̂t − Ĝs
t)]|2 . ξ2α2

2 . . . ξ2αd
d

min{n,α1}∑

k=0

ξ
2(α1−k)
1 |∂n−k

ξ1
(K̂t − Ĝs

t)|2

.
min{n,α1}∑

k=0

|ξ|2(|α|−k)|∂n−k
ξ1

(K̂t − Ĝs
t)|2.

In the following we prove that∫

Rd

|ξ|2m1|∂m
ξ1

(K̂t − Ĝs
t)|2dξ . t−

d
s
+

2(m−m1−r)
s

for all |α| −min{n, α1} ≤ m1 ≤ |α| and n−min{n, α1} ≤ m ≤ n.
Using that the integral outside of a ball of radius R decay exponen-

tially, it remains to analyze the decay of the following integral∫

|ξ|≤R

|ξ|2m1|∂m
ξ1

(K̂t − Ĝs
t)|2dξ

where R is as before. Using the definition of K̂t and Gs
t we obtain that

∂m
ξ1

K̂t(ξ) = et( bJ(ξ)−1)
∑

i1+2i2+...+mim=m

ai1,...,imti1+···+im

m∏
j=1

[∂j
ξ1

Ĵ(ξ)]ij

and

∂m
ξ1

Ĝs
t(ξ) = etps(ξ)

∑
i1+2i2+...+mim=m

ai1,...,imti1+···+im

m∏
j=1

[∂j
ξ1

ps(ξ)]
ij

where ps(ξ) = −|ξ|s. Then

|∂m
ξ1

K̂t(ξ)− ∂m
ξ1

Ĝs
t(ξ)|2 . I1(ξ, t) + I2(ξ, t)

where

I1(ξ, t) = |et( bJ(ξ)−1) − etps(ξ)|2
∑

i1+2i2+...+mim=m

t2(i1+···+im)

m∏
j=1

|∂j
ξ1

ps(ξ)|2ij

and

I2(ξ, t) = e2tps(ξ)
∑

i1+2i2+...+mim=m

t2(i1+···+im)×

×
∣∣∣∣∣

m∏
j=1

[∂j
ξ1

Ĵ(ξ)]ij −
m∏

j=1

[∂j
ξ1

ps(ξ)]
ij

∣∣∣∣∣

2

.

First, let us analyze I1(ξ, t).
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Tacking into account that |∂j
ξ1

ps(ξ)| ≤ |ξ|s−j for all j ≤ m ≤ [s],
|ξ| ≤ R, and that

|et( bJ(ξ)−1) − etps(ξ)|2 = e−2t|ξ|s
∣∣∣et( bJ(ξ)−1+|ξ|s) − 1

∣∣∣
2

. e−2t|ξ|s
∣∣∣t(Ĵ(ξ)− 1 + |ξ|s)

∣∣∣
2

. t2e−2t|ξ|s|ξ|2(r+s)

the same arguments as in the proof of Lemma 2.2 give us the right
decay.

It remains to analyze I2(ξ, t). We make use of the following elemen-
tary inequality∣∣∣∣∣

m∏
j=1

aj −
m∏

j=1

bj

∣∣∣∣∣ ≤
m∑

j=1

|b1 . . . bj−1||aj − bj||aj+1 . . . am|.

Then by Cauchy’s inequality we also have
∣∣∣∣∣

m∏
j=1

aj −
m∏

j=1

bj

∣∣∣∣∣

2

.
m∑

j=1

b2
1 . . . b2

j−1(aj − bj)
2a2

j+1 . . . a2
m.

Applying the last inequality with aj = ∂j
ξ1

Ĵ(ξ) and bj = ∂j
ξ1

ps(ξ) we
obtain

I2(ξ, t) . e2tps(ξ)
∑

i1+2i2+...+mim=m

t2(i1+···+im)g(i1, . . . , im, ξ)

where

g(i, ξ) =
m∑

j=1

j−1∏

k=1

|∂k
ξ1

ps(ξ)|2ik([∂k
ξ1

Ĵ(ξ)]ik − [∂k
ξ1

ps(ξ)]
ik)2

n∏

k=j+1

[∂k
ξ1

Ĵ(ξ)]2ik

and i = (i1, . . . , im).
Choosing eventually a smaller R we can guarantee that for |ξ| ≤ R

and k ≤ [s] the following inequalities hold:

|∂k
ξ1

Ĵ(ξ)− ∂k
ξ1

ps(ξ)| . |ξ|s+r−k, |∂k
ξ1

Ĵ(ξ)| . |ξ|s−k, |∂k
ξ1

ps(ξ)| . |ξ|s−k.

Hence, we get

|[∂k
ξ1

Ĵ(ξ)]ik − [∂k
ξ1

ps(ξ)]
ik | ≤ |∂k

ξ1
Ĵ(ξ)− ∂k

ξ1
ps(ξ)|×

×
ik−1∑

l=0

[∂k
ξ1

Ĵ(ξ)]l[∂k
ξ1

ps(ξ)]
ik−l−1

. |ξ|s+r−k|ξ|(ik−1)(s−k) = |ξ|r|ξ|ik(s−k).
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This yields to the following estimate on the function g(i1, . . . , im, ξ):

g(i1, . . . , im, ξ) ≤ |ξ|2r|ξ|2
Pm

j=1 ik(s−k),

and consequently
∫

Rd

I2(t, ξ)dξ .
∫

Rd

e−2t|ξ|s×

×
∑

i1+2i2+...+mim=m

t2(i1+···+im)|ξ|2r+2
Pm

j=1 ik(s−k)dξ.

Making a change of variable and using similar arguments as in the
proof of Lemma 2.2 we obtain the desired result. ¤
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