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Abstract

In this paper we find a possible continuation for quenching solutions to a system of heat equa-

tions coupled at the boundary condition. This system exhibits simultaneous and non-simultaneous

quenching. For non-simultaneous quenching our continuation is a solution of a parabolic prob-

lem with Neumann boundary conditions. We also give some results for simultaneous quenching

and present some numerical experiments that suggest that the approximations are not uniformly

bounded in this case.
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1 Introduction and main results

Our main concern in this paper is to look for a possible continuation after quenching of solutions
to a system of heat equations coupled at the boundary.

We consider the following parabolic system: two heat equations,
{
ut = uxx

vt = vxx
0 < x < 1 , 0 < t < T, (1.1)

coupled through a non linear flux at x = 0,
{
ux(0, t) = v−p(0, t)
vx(0, t) = u−q(0, t)

0 < t < T, (1.2)
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and zero flux at x = 1, {
ux(1, t) = 0
vx(1, t) = 0

0 < t < T. (1.3)

As initial condition we take

{
u(x, 0) = u0(x)
v(x, 0) = v0(x)

0 < x < 1. (1.4)

being u0, v0 positive, smooth and satisfying the compatibility conditions with the boundary
data. We also assume that u′0, v

′
0 ≥ 0 and u′′0, v

′′
0 < 0. By classical theory, local existence for the

solutions up to some time t = T (maximal existence time) is easily deduced. Moreover, solutions
are decreasing in time and increasing in space.

In [FPQR] the authors study this problem and find that, due to the absorption generated
by the boundary condition at x = 0, the solutions decrease to zero at this point. If they vanish
in finite time t = T0, the boundary condition (1.2) blows up and the solution, being classical up
to t = T , no longer exists (as a classical solution) for greater times, thus the maximal existence
time of a classical solution is T = T0.

This phenomenon of existence of a finite time t = T at which some term of the problem ceases
to make sense is known as quenching (T denotes the quenching time). It was studied for the first
time in [K]. Since then, the phenomenon of quenching for different problems has been the issue
of intensive study in recent years, see for example, [C, CK, DX, FPQR, FL, KN, L, L2, L3, PQR],
and the references therein.

Some questions related to this situation naturally arise. For instance: how rapidly the
solutions tend to zero, the quenching rate, see [CK, L]; the extinction set for the solutions and
their behavior near these points, the quenching set and the quenching profile, see [L, L2]; the
possibility of extending the solution in some weak sense after quenching, see [FG].

Dealing with a system of equations it is also interesting to guess whether the components
of the solution quench (reach zero) at the same time (simultaneous quenching) or if some com-
ponent quenches at time T while the other components remain bounded away from zero (non-
simultaneous quenching), [FPQR, PQR]. In the case of non-simultaneous quenching, the flux
at the boundary of the quenching variable remains bounded. Nevertheless, its time derivative
blows up. In fact, both time derivatives blow up, see [FPQR]. Hence quenching is always si-
multaneous in the sense of [K]. Simultaneous vs. non-simultaneous phenomenon has been also
analyzed in the case of blow-up, see for instance [PQR, QR1, QR2, ST].

We enclose in the following theorem the results obtained in [FPQR] concerning simultaneous
vs. non-simultaneous quenching for our problem (1.1)–(1.4).

Theorem ([FPQR])
i) If p, q ≥ 1 the quenching is always simultaneous, while if p < 1, we can find initial conditions
giving rise to non-simultaneous quenching, i.e., such that u quenches and v remains bounded
below (analogous result when q < 1).
ii) If q < 1 and p ≥ p0 = (1+q)/(1−q) > 1, simultaneous quenching is not possible. Nevertheless,
if 0 ≤ p, q ≤ 1 simultaneous quenching occurs for some initial conditions.

The restriction p ≥ p0 instead of p ≥ 1 in ii) seems to be technical. We will not require such
a condition in the present work.
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Another important issue, as we have mentioned, is to see if it is possible in some sense to
continue the solution (u, v) beyond t = T . This question was raised first for blow-up problems,
see [BC, GV1, GV2, L, QRV], etc. In [FG] it was answered for a quenching problem for the heat
equation with a nonlinear boundary condition. There the authors find that the continuation is
a solution to the heat equation with a Dirichlet boundary condition, u(0, t) = 0, replacing the
nonlinear flux at x = 0 and as initial condition at t = T the final profile of the original solution,
u(x, T ).

The purpose of this work is to find, if possible, a natural continuation for problem (1.1)–(1.4)
for times beyond T . To this end we approximate the involved powers by bounded functions and
then try to pass to the limit in the approximations. Let

fn(s) =






s−q, if s > 1/n,
nq+1s, if 0 < s ≤ 1/n,
0 if s < 0,

(1.5)

and

gn(s) =






s−p, if s > 1/n,
np+1s, if 0 < s ≤ 1/n,
0 if s < 0,

(1.6)

and let (un, vn) be the solution to problem (1.1) − (1.4) with fn and gn as boundary data, i.e.,

(un)x(0, t) = gn(vn(0, t)), (vn)x(0, t) = fn(un(0, t)).

Since fn and gn are bounded functions the solution (un, vn) is defined for all t > 0. A natural
attempt to obtain a continuation of (u, v) after quenching is to pass to the limit as n → ∞ in
(un, vn).

Our first result assures that it is possible to take this limit and that it indeed gives a
continuation of (u, v) after T when blow-up is non-simultaneous. Moreover, we identify the
PDE system verified by the continuation after quenching.

Theorem 1.1 Assume that u quenches while v remains bounded from below. Then the approx-
imations (un, vn) have a finite limit

(u, v) = lim
n→∞

(un, vn), for all 0 ≤ x ≤ 1, t > 0, (1.7)

which is an extension of (u, v), that is, for every t < T it holds that (u, v) ≡ (u, v).
Moreover, for every t > T , (u, v) is the solution to the system






ut = uxx,
ux(0, t) = (v)−p(0, t),
ux(1, t) = 0,
u(x, T ) = u(x, T ),

vt = vxx, 0 < x < 1, t > T,
vx(0, t) = 0, t > T,
vx(1, t) = 0, t > T,
v(x, T ) = v(x, T ), 0 ≤ x ≤ 1.

(1.8)

This result provides us with a natural continuation (u, v) of (u, v) after quenching. Note
that the v variable does not quench and continues as a solution of the heat equation with
zero boundary flux, while the quenching variable u continues with boundary flux given by v−p.
Therefore the system becomes partially decoupled.
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For a single equation, see [FG], it happens that the continuation verifies a Dirichlet boundary
condition at x = 0. However, in Theorem 1.1 the boundary conditions verified by the contin-
uation are of Neumann type. This says that a possible continuation for systems may strongly
differ from a possible continuation for a single equation.

In the simultaneous quenching case the situation becomes more involved.
As we have mentioned, when p = q and u0 = v0, the system reduces to a single equation, and

the continuation verifies a Dirichlet problem after T . We can show that this type of continuation
is not generic.

In the general case, we can only prove that un, vn are bounded in compact intervals of time
when p and q are less than one. However, passing to the limit in the system seems delicate,
since we cannot find a priori estimates uniformly in n that ensure that the fluxes fn(un(0, t))
and gn(vn(0, t)) converge to some limits.

The situation can be even worse for p or q greater than one. We conjecture in this case that
the sequence (un, vn) is not bounded below near T (and therefore we cannot take the limit).
Numerical experiments support this conjecture, see Section 4.

Remark 1.1 All the results in this article are also valid if we replace the flux at the boundary of
the regularized problems, fn and gn, by smooth approximating functions, fn and gn, respectively,
such that fn ≤ Cfn and gn ≤ Cgn, for some C > 0.

The rest of the paper is organized as follows: in Section 2 we prove Theorem 1.1 that
deals with the non-simultaneous quenching case; in Section 3 we present some partial results
concerning the simultaneous case and finally in Section 4 we perform some numerical experiments
that illustrate our results.

2 Non-simultaneous quenching.

Recall that we are considering the approximating problems (Pn) where we have replaced the
involved powers by continuous and bounded functions, that is,

(Pn)






(un)t = (un)xx, ,
(un)x(0, t) = gn(vn(0, t)),
(un)x(1, t) = 0,
un(x, 0) = u0(x),

(vn)t = (vn)xx, 0 < x < 1, t > 0,
(vn)x(0, t) = fn(un(0, t)), t > 0,
(vn)x(1, t) = 0, t > 0,
vn(x, 0) = v0(x), 0 ≤ x ≤ 1,

where fn and gn are given by (1.5) and (1.6), respectively.

Solutions to this problem satisfy the following lemma.

Lemma 2.1 There exists a unique global in time solution to (Pn), such that

un, vn ∈ C2,1((0, 1) × [0, τ ]),

for every τ > 0, verifying:
i) (un, vn) is uniformly bounded from above;
ii) (un, vn) ≥ (u, v), for (x, t) ∈ [0, 1] × [0, T ).
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Proof. To prove i) we only note that both functions are subsolutions of problem





wt = wxx, 0 < x < 1, t > 0,
wx(0, t) = wx(1, t) = 0, t > 0,
w(x, 0) = max(‖v0‖∞ , ‖u0‖∞), 0 ≤ x ≤ 1.

In order to prove ii), let us denote ψ = u−un and ω = v− vn, with (un, vn) solution to (Pn)
with initial condition (u0 − ε, v0 − ε) for some ε > 0. So ψ(x, 0), ω(x, 0) < 0.

Let us suppose that there exists a first time t0 and some point x0 ∈ [0, 1] such that ψ(x0, t0) =
0 and ω(x, t0) ≤ 0 (the opposite situation is similar). By the Strong Maximum Principle
x0 ∈ {0, 1}. This cannot happen at x0 = 1, since ψx(1, t) = 0 and it contradicts Hopf’s Lemma.
Thus, x0 = 0 and from Hopf’s Lemma it follows that ψx(0, t0) < 0.

But, on the other hand

ψx(0, t) = v−p(0, t) − gn(un(0, t)) ≥ v−p − (vn)−p ≥ −p|ξ|−p−1ω(0, t) ≥ 0

and we arrive to a contradiction. Finally, taking ε→ 0 we obtain de desired result. 2

The estimate proved in the last lemma allows us to consider the limit in (1.7), at least for
0 < t < T . This limit coincides with the solution (u, v) for t < T as we show now.

Lemma 2.2 Let (u, v) be the function defined in (1.7). Then, for every t < T it holds that
(u, v) ≡ (u, v).

Proof. For any fixed t0 < T there exists a constant c > 0 such that u(x, t), v(x, t) ≥ c, for
every 0 ≤ x ≤ 1 and t ≤ t0. If we take n0 verifying 1/n0 < c, then for every n ≥ n0 (u, v) solves
problem (Pn) in (0, t0] × (0, 1) and by uniqueness of the solution we conclude (un, vn) = (u, v)
in [0, t0] × [0, 1] for n ≥ n0. Therefore

(u, v) = lim
n→∞

(un, vn) = (u, v), (2.1)

for every t ∈ [0, t0] and every x ∈ [0, 1]. The arbitrariness of t0 gives that (2.1) holds for any
t < T . 2

Note that (un, vn) verifies (un)t, (vn)t ≤ 0 and (un)xx, (vn)xx ≤ 0 for times smaller than τn,
the first time where one of the components reaches 1/n.

Let us suppose, from now on, that u quenches while v does not, i.e., v(0, t) ≥ c > 0 for all
0 ≤ t ≤ T . Note that, by the results of [FPQR] this fact implies q < 1.

We want to show that the possible extension, (u, v), of the solution for t > T is the unique
pair of functions satisfying the system (1.8). To this end we prove that, for n large enough
(un, vn) is a solution to the same system (1.8). We remark that, since v does not quench gn

remains being the power (vn)−q(0, t) for all t > 0 while the function fn in (Pn) turns to be
np+1 un(0, t).

The next lemma will play a crucial role in our arguments. It says that for n large enough, in
the approximating problems the un variable reaches zero, while vn stays positive and bounded
away from zero uniformly in n.

Lemma 2.3 For each n sufficiently large, there exists a time Tn, such that un(0, t) ≤ 0, for all
t ≥ Tn. Moreover, at that time c ≤ vn(0, Tn) ≤ C for some constants c, C > 0 independent of n.
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Proof. Since the quenching is non-simultaneous there exists a time τn < T (with τn → T ) such
that u(0, τn) = 1/n and v(0, τn) = cn ≥ c. Notice that we have (un, vn) = (u, v) for t ∈ (0, τn).
Then, at time t = τn the functions un and vn are increasing and concave. Therefore,

c ≤ vn(x, τn) ≤ vn(0, τn) + nqx ≤ C + nqx ,

1

n
≤ un(x, τn) ≤ 1

n
+ (vn)−p(0, τn)x ≤ 1

n
+Cx .

(2.2)

Now, we estimate the time τ̂n at which vn reaches the level c/2 (if there is such a time).
Denote by s(x, t) = vn(x, t + τn). Since s(x, 0) = v(x, τn) ≥ c and sx(0, t) = fn(un(0, t)) ≤ nq,
we have that s is supersolution to the problem






ht = hxx, 0 < x < 1, 0 < t <∞,
hx(0, t) = nq, 0 ≤ t <∞,
hx(1, t) = 0, 0 ≤ t <∞,
h(x, 0) = c, 0 ≤ x ≤ 1.

It is easy to see that the function h is decreasing in time and then, it is concave and increasing.
Moreover, integrating the equation we have that

d

dt

∫ 1

0
h(x, t) dx = −nq .

Therefore, h(0, t) vanishes in finite time. Let us denote by τ0 a time such that h(0, τ0) = c/2.
We wish now to estimate τ0, that is, a lower bound for τ̂n. Rescaling h as follows we take off
the dependence on n in the boundary condition. Let

ψ(y, τ) = h(y/nq, τ/n2q).

which satisfies the problem






ψτ = ψyy, 0 < y < nq, 0 < τ <∞,
ψy(0, τ) = 1, 0 ≤ τ <∞,
ψy(n

q, τ) = 0, 0 ≤ τ <∞,
ψ(y, 0) = c, 0 ≤ y ≤ nq.

Then, there exists a time τ1 at which ψ(0, τ1) = c/2. We have also that ψ(0, τ1) = h(0, τ1/n
2q),

thus,
τ̂n ≥ τ0 = τ1/n

2q.

We claim that, for n large enough, there exists a time τ̄n ≤ τ̂n such that u(0, τ̄n) = 0.
We observe that for t ∈ (0, τ̂n) the function un verifies that (un)x(0, t) = v−p

n (0, t). Therefore,
denoting r(x, t) = un(x, t+ τn), we have that r is subsolution to the linear problem






rt = rxx, 0 < x < 1, 0 < t < τ̂n,
rx(0, t) = C−p, 0 < t ≤ τ̂n
rx(1, t) = 0, 0 < t ≤ τ̂n,
r(x, 0) = u(x, τn), 0 ≤ x ≤ 1,

(2.3)
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for a constant C > 0 such that vn(0, t) ≤ C. Integrating the equation in (2.3) we obtain that

d

dt

∫ 1

0
r(x, t) dx = −C−p,

which implies that there exists a time τ0 such that r(0, τ0) = 0. Moreover r(0, t) < 0 from this
time on. In order to estimate τ0, which is an upper bound for τn, we rescale r as follows

ω(y, τ) = n r(y/n, τ/n2) .

The problem satisfied by ω is





ωτ = ωyy, 0 < y < n, 0 < τ <∞,
ωy(0, τ) = C−p, 0 ≤ τ <∞,
ωy(n, τ) = 0, 0 ≤ τ <∞,
ω(y, 0) = n u(y/n, τn), 0 ≤ y ≤ n.

Using (2.2) to estimate the initial value ω(y, 0) = n u(y/n, τn) ≤ Cy + 1, it is easy to see that
there exists a time τ1 (bounded independently of n), such that ω(0, τ 1) = 0.

Observe that 0 = ω(0, τ 1) = n r(0, τ 1/n
2). Thus

τn ≤ τ0 = τ1/n
2 ≤ C/n2.

Finally, from our bounds on τn and τ̂n, using precisely that q < 1, for n large enough it holds
that

τn ≤ τ̂n.

This fact means that at the time Tn at which un vanishes, vn remains positive. Note that
for times greater than Tn, vn is a solution to the heat equation with homogeneous Neumann
boundary conditions. The proof is now complete. 2

To finish this section we have to prove that we can pass to the limit as in (1.7) and that
(u, v) is indeed a solution to (1.8).

Proof.[End of the proof of Theorem 1.1] From the previous lemma we obtain that the sequence
vn are uniformly bounded away zero uniformly in n. On the other hand, by Lemma 2.1 the
sequence vn are uniformly bounded from above. Thus, we have that

C1 < vn(x, t) < C2.

Also from Lemma 2.1, we obtain that un(x, t) < C3. To obtain a lower bound, we note that,
for n large, un is supersolution of






wt = wxx 0 < x < 1, t > 0,

wx(0, t) = C−p
1 , t > 0,

wx(1, t) = 0, t > 0,
w(x, 0) = u0(x).

Therefore, (un, vn) are uniformly bounded in compact sets. So, taking a subsequence if
necessary, we have that there exists the limit (un, vn) → (u, v).
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Our next aim is to identify the PDE system verified by this limit after T .
Now we just observe that (un, vn) is a solution to






(un)t = (un)xx, ,
(un)x(0, t) = (vn)−p(0, t),
(un)x(1, t) = 0,

(vn)t = (vn)xx, 0 < x < 1, t > Tn,
(vn)x(0, t) = 0, t > Tn,
(vn)x(1, t) = 0, t > Tn,

(2.4)

where Tn is the first time at which un(x, Tn) = 0. From the estimates obtained in the previous
lemma, we have that τn < Tn < τn + C/n2. Thus, it holds that

lim
n→∞

Tn = T.

First, we want to pass to the limit in the v-variable. To this end we write down the integral
version of the problem for vn,

−
∫ t

Tn

∫ 1

0
vnϕt +

∫ 1

0
vn(t)ϕ(t) −

∫ 1

0
vn(Tn)ϕ(Tn) =

∫ t

Tn

∫ 1

0
vnϕxx −

∫ t

Tn

vnϕx

∣∣∣
1

0
. (2.5)

It is easy to see that we can pass to the limit in all the terms of the above identity, the only
tricky point is to show that

vn(x, Tn) → v(x, T ). (2.6)

In order to prove this we just consider the Green function of the Neumann problem, G. Therefore,
for times τn ≤ t ≤ Tn we can write

vn(x, t) =

∫ 1

0
G(x− y, t)v(y, τn) dy +

∫ t

τn

G(x, t− s)(vn)x(0, s) ds. (2.7)

We have that the first integral goes uniformly to v(x, T ) while the second one is bounded by
Cnq−1 (we are using here that Tn − τn ≤ Cn−2 and that (vn)x = fn(un) ≤ Cnq+1). Since q < 1
this last term goes to zero. This completes the proof for the v-component.

For the u-component passing to the limit is even easier since vn are uniformly bounded below
away from zero. Thus we can pass to the limit in the weak form of the problem (analogous to
(2.5)) beginning at t = 0. 2

3 Simultaneous quenching

In this section we collect some results concerning the simultaneous case. Hence, let us suppose
that u and v quench at the same time T .

Now we state a lemma that shows that, under certain conditions on the exponents and the
initial conditions, we can compare un and vn.

Lemma 3.1 i) Let q ≤ p and u0(x) < v0(x) with ‖v0‖∞ ≤ 1. Then un(x, t) ≤ vn(x, t)
ii) Let q ≥ p and u0(x) > v0(x) with u0(0) ≤ 1. Then un(x, t) ≥ vn(x, t)

Proof. To prove i), let us denote ψ = un − vn. So ψ(x, 0) < 0. Assume that there exists a first
time t0 and some point x0 ∈ [0, 1] such that ψ(x0, t0) = 0. By the Strong Maximum Principle
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x0 ∈ {0, 1}. This cannot happen at x0 = 1, since ψx(1, t) = 0 and it contradicts Hopf’s Lemma.
Thus x0 = 0 and from Hopf’s Lemma it follows that ψx(0, t0) < 0.

In order to get a contradiction we consider 3 different cases:
1) If no truncation takes place, then ψx(0, t0) = v−p

n (0, t0)(1 − vp−q
n (0, t0)) ≥ 0; in this case

vn(0, t0) ≤ 1 (since the initial data are both bounded by one).
2) if only one truncation takes place, then un(0, t0) ≤ 1/n < vn(0, t0);
3) if both truncations take place, then ψx(0, t0) = np+1vn(0, t0)(1 − nq−p) ≥ 0.
Interchanging the roles of p and q, un and vn, we obtain the second statement. 2

We define for n fixed the sets

An = {(u0, v0) | ∃tn such that : un(0, tn), vn(0, tn) ≤ 0},
Bn = {(u0, v0) | ∃tn such that : un(0, tn) ≤ 0, and vn(0, t) > 0, ∀t},
B̂n = {(u0, v0) | ∃tn such that : vn(0, tn) ≤ 0, and un(0, t) > 0, ∀t},
Cn = {(u0, v0) | un(0, t) > 0, vn(0, t) > 0,∀t}.

(3.1)

Notice that from Lemma 3.1 we deduce that Bn ∪ B̂n are nonempty. In the next lemma we
study the sets An and Cn.

Lemma 3.2 For a fixed n, let us consider the sets defined above. It holds that
i) An is empty.
ii) The conditions ensuring that the initial data belong to Cn are, in general, quite difficult to
be fulfilled. Hence, Cn is a nongeneric set.

Proof. We start by proving i). Let us argue by contradiction and let (u0, v0) ∈ An. Then, there
must exist a first time t∗ such that un(0, t∗) = 0, and vn(0, t∗) ≤ 0, (the opposite possibility
vn(0, t∗) = 0, and un(0, t∗) ≤ 0 can be regarded analogously). However, by Hopf’s Lemma
(un)x(0, t∗) > 0 , which is a contradiction.

To prove ii) and complete the proof let us take first p = q and suppose that (u0, v0) ∈ Cn.
We define z = un + vn and ω = un − vn. Denote by tn the first time at which un(0, tn) = 1/n
and vn(0, tn) ≤ 1/n (the reverse situation is analogous). Performing the change of variables
y = np+1x, τ = (np+1)2t, we have that z and ω verify the following linear problems






zτ = zyy, ωτ = ωyy, 0 < y < np+1, τn < τ <∞,
zy(0, τ) = z(0, τ), ωy(0, τ) = −ω(0, τ), τn ≤ τ <∞,
zy(n

p+1, τ) = 0, ωy(n
p+1, τ) = 0, τn ≤ τ <∞,

(3.2)

with τn = (np+1)2tn. We can expand the solution z as

z(y, τ) =
∞∑

k=1

cke
−λkτϕk(y) ,

with λk solving the equation tan(
√
λkn

p+1) = 1/
√
λk, with k ≥ 1. Consequently, all the eigen-

values are positive, λk > 0, and then z(y, τ) → 0 as τ → ∞. Since both un(0, t) and vn(0, t) are
positive, this convergence implies that

un(0, t) → 0 and vn(0, t) → 0 as t→ ∞. (3.3)
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On the other hand, expanding the solution w as

ω(y, τ) =
∑

k

dke
−αkτφk(y), (3.4)

we obtain that the first eigenvalue is negative and the rest of them are positive. More precisely,
the eigenvalues αk are given by

√
|α1| + 1√
|α1| − 1

e2np+1
√

|α1| = 1, tan(
√
αkn

p+1) = −1/
√
αk.

This fact implies that un(x, t) − vn(x, t) → 0 as t → ∞, just in the case that the coefficient
d1 corresponding to the eigenvalue α1 is equal to zero. This coefficient is determined for each n
by the initial datum ω(0, τn) = un(0, τn) − vn(0, τn).

As example of such a solution whose both components remain positive, we take the corre-
sponding solution to the initial condition u0 = v0, (recall that we are considering p = q). This
implies un = vn for all t > 0 and all n. Thus, they are positive, [FG].

However, generally it holds that d1 6= 0 and then un(x, t) − vn(x, t) is unbounded. But this
is a contradiction with (3.3). Therefore, un and vn cannot be both positive for all times and we
conclude that (u0, v0) ∈ Bn ∪ B̂n.

Notice that (u0, v0) ∈ Cn if d1 = 0, which implies that Cn is a closed set.

For the general case p 6= q it is always possible to find positive constants a, b, c, d such that,
the new functions z = aun + bvn and ω = cun − dvn, satisfy the boundary conditions at x = 0

zx(0, t) = k1z(0, t), ωx(0, t) = −k2ω(0, t),

for some k1, k2 determined by the relations

bnq+1 = k1a, cnp+1 = k2d,
anp+1 = k1b, dnq+1 = k2c.

As before, changing variables, we get that z and ω solve problems similar to (3.2), and the
previous conclusion follows also for p 6= q. 2

Let us conclude by summing up the results obtained through this section up to this point.
As before, denote by tn the first time at which both truncations, fn and gn, take part. By
Lemma 3.2, if (u0, v0) is such that the initial datum ω(0, τn) given in (3.2) with τn = np+1tn,
makes the coefficient in (3.4), d1 = d1(n) = 0, for every n, then un(0, t), vn(0, t), remain positive
for every n and t.

Now, we consider the case in which one of the components changes its sign. We study the
case (u0, v0) ∈ Bn, the other case is analogous. Let Tn be the first time for which un(0, Tn) = 0.

Lemma 3.3 If (u0, v0) ∈ Bn for every n, and p < 1 then both components un and vn are
bounded below.

Proof. We begin by observing that 0 ≤ vn(x, t) ≤ C. Now, consider the explicit solution of the
heat equation

w(x, t) = a
(
1 − cos(πx)e−π2(t−Tn)

)
.
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Taking a small enough we have that vn(x, Tn) > w(x, Tn) for every n.
Therefore, by comparison with the problem with homogeneous Neumann boundary condi-

tions, we have that w(x, t) < vn(x, t) for Tn < t < t∗ fixed.
On the other hand, integrating the equation verified by un we obtain

∫ 1

0
un(x, t) dx −

∫ 1

0
un(x, Tn) dx = −

∫ t

Tn

fn(v(0, s)) ds ≥ −
∫ t

Tn

v−p
n (0, s) ds

≥ −
∫ t

Tn

w−p(0, s) ds ≥ −C.

We have used the fact that p < 1.
Consequently, using the variation of constants formula associated with the heat semigroup

we deduce that un(0, t) ≥ −C with C independent of n. 2

Remark 3.1 We conjecture that for p > 1, un is not bounded below in general. Numerical
experiments support this conjecture, as shown in the next section.

4 Numerical experiments

In this section we perform some numerical experiments that illustrate our results. We use finite
elements with mass lumping (that, as is well known, coincides with a classical finite differences
method in one space dimension). Taking a uniform space discretization of the interval [0, 1] of
size h we get an ODE system that can be integrated with some adaptive solver. For similar
analysis for blow-up problem we refer to [BQR], [FGR] and the survey [BB].

First, we take p = 1, q = 1/3 and initial conditions u0 = 1 + x and v0 = 1 + x − x2. We
obtain the following pictures for the approximate problem with n = 100.
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We can observe that the v component converges to the mean value of v(x, T ) as t → ∞
(it is a solution to the heat equation with homogeneous Neumann boundary data), while the u
component goes to −∞ (it is a solution to the heat equation with boundary flux (vn)−p(0, t)).
Also it can be observed that the time derivative of both components at x = 0 becomes very
large at times t ≈ T .

Next, we take p = q = 1/3 and u0 = v0 = 1 + x. In this case we have u(x, t) = v(x, t) and
therefore simultaneous quenching with continuation given by a solution to the Dirichlet problem.
We remark again that this case is not generic.
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These pictures illustrate the Dirichlet condition taken by the limit after T .

Finally, we take p = 2, q = 2 and u0(x) = x + 1 and v0(x) = x + 1 − x2. We obtain the
following results for different values of n, which suggest that solutions are not uniformly bounded
from below in this case. Indeed it can be observed that minun → −∞ as n increases.
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Gakkōtosho, Tokyo, 501–512.

[L2] Levine, H. A. The phenomenon of quenching: a survey. In “Trends in the Theory and
Practice of Nonlinear Analysis”, (V. Lakshmikantham, ed.), Elsevier Science Publ.,
North Holland, 1985, pp. 275–286.

[L3] Levine, H. A. The quenching of solutions of nonlinear parabolic and hyperbolic equa-
tions with nonlinear boundary conditions. SIAM J. Math. Anal. 14 (1983), 1139–1153.

[PQR] de Pablo, A., Quiros, F. and Rossi, J. D. Nonsimultaneous quenching. Appl. Math.
Lett. 15 (2002), no. 3, 265–269.

[QR1] Quiros, F. and Rossi, J. D. Non-simultaneous blow-up in a semilinear parabolic system.
Z. Angew. Math. Phys. 52 (2001), no. 2, 342–346.

[QR2] Quiros, F. and Rossi, J. D. Non-simultaneous blow-up in a nonlinear parabolic system.
Adv. Nonlinear Stud. 3 (2003), no. 3, 397–418.

14



[QRV] Quiros, F., Rossi, J. D. and Vazquez, J. L. Thermal avalanche for blow-up solutions
of semilinear heat equations. Comm. Pure Appl. Math. LVII, (2004), 59–98.

[ST] Souplet, P and Tayachi, S. Optimal condition for non-simultaneous blow-up in a
reaction-diffusion system. J. Math. Soc. Japan 56 (2004), no. 2, 571–584.

15


