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Abstract. In this paper we study the limit as p(x) →∞ of solutions to
−∆p(x)u = 0 in a domain Ω, with non-homogeneous Neumann bound-

ary conditions, |∇u|p(x) ∂u
∂η

= g(x). Our approach consists on consid-

ering sequences of variable exponents converging uniformly to +∞ and
then determining the equation satisfied by a limit of the corresponding
solutions.

To Jean Pierre Gossez, with our best wishes in his 65th birthday

1. Introduction

Let Ω ⊂ RN be a bounded smooth domain. Our goal is to study the limit,
as the exponent p(x) →∞, of solutions to the following problem

{ −∆p(x)u(x) = 0, x ∈ Ω ⊂ RN ,

|∇u|p(x) ∂u
∂η (x) = g(x), x ∈ ∂Ω,

(1.1)

where ∆p(x)u(x) := div
(|∇u(x)|p(x)−2∇u(x)

)
is the p(x)-Laplacian operator

with a variable exponent p(x) and the boundary datum g is assumed to be
continuous and verifies the compatibility assumption∫

∂Ω
g = 0, (1.2)

otherwise there is no solution to (1.1). To obtain uniqueness of the solution
we impose the additional condition∫

Ω
u = 0. (1.3)

When p is constant in Ω, the limit of p−harmonic functions as p → ∞
has been extensively studied in the literature (see [5] and the survey [3]) and
leads naturally to the infinity Laplacian given by ∆∞u =

(
D2u∇u

) · ∇u.
Infinity harmonic functions (solutions to −∆∞u = 0) are related to the
optimal Lipschitz extension problem (see [2] and the survey paper [3]) and
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find applications in optimal transportation, image processing and tug-of-
war games (see, e.g., [10], [13], [6], [21], [22] and the references therein).
Also limits of the eigenvalue problem related to the p-laplacian has been
exhaustively studied, see [7], [15], [16], [23].

On the other hand, problems related to PDEs involving variable expo-
nents are used in elasticity and electrorheological fluids. Meanwhile, the
underlying functional analytical tools have been extensively developed (cf.
[17] and [9]) and new applications to image processing have kept the subject
as the focus of an intensive research activity. Although a natural extension
of the theory, the problem addressed here is a continuation of recent papers
[19] (where the case of a variable exponent that equals infinity in a subdo-
main of Ω is considered) and [20] (where the Dirichlet case was treated).
Closely related to this work is [18], where the authors prove existence and
uniqueness (via a comparison principle), as well as the validity of a Har-
nack inequality, for solutions of our limit PDE in Ω. Concerning the limit
as p → ∞ for the Neumann problem we mention [13] where the limit as
p →∞ without dependence on x ∈ Ω is studied.

The approach in this paper is based on considering sequences pn(x) of
variable exponents converging uniformly to +∞, analyzing how the corre-
sponding solutions of the problem converge and identifying the equation
satisfied by the limit. Before introducing our main result, let us state the
assumptions on the sequence pn(x) that will be assumed from now on: pn(x)
is a sequence of C1 functions in Ω such that

pn(x) → +∞, uniformly in Ω, (1.4)

hence we may assume that,

pn(x) ≥ α > N, for all x ∈ Ω, (1.5)

in addition we impose

∇ ln pn(x) −→ ξ(x) ∈ C(Ω), uniformly in Ω, (1.6)

pn

n
(x) → q(x) > 0, q ∈ C(Ω), uniformly in Ω, (1.7)

and

lim sup
n→∞

p+
n

p−n
≤ k; (1.8)

where
p−n = min

x∈Ω
pn(x), p+

n = max
x∈Ω

pn(x). (1.9)

The following is the main result of this paper. We prove, under the
above assumptions, that the limit (along subsequences) of solutions of (1.1)
with p(x) = pn(x) exists and is a viscosity solution of a limit PDE with the
∞−Laplacian and an extra term in which the vector field ξ(x) = limn∇ ln pn(x)
appears, together with a boundary condition involving the normal derivative
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and the function q(x) = limn
pn

n (x), in which only the sign of the datum g
is relevant.

Theorem 1.1. Let un be the solution of (1.1) normalized according to (1.3)
with p(x) = pn(x) satisfying (1.4)–(1.8). Then, along a subsequence,

un −→ u∞, uniformly in Ω, (1.10)

where u∞ is a solution of the problem
{
−∆∞u− |∇u|2 ln |∇u| 〈ξ,∇u〉 = 0, in Ω,

B(x, u,∇u) = 0, on ∂Ω,
(1.11)

in the viscosity sense. Here

B(x, u,∇u) ≡





min{|∇u|q − 1 , ∂u
∂η } if g > 0,

max{1− |∇u|q , ∂u
∂η } if g < 0,

H(|∇u|q)∂u
∂η if g = 0,

with H(a) given by

H(a) =
{

1 if a > 1,
0 if 0 ≤ a ≤ 1.

Moreover, the limit u∞ belong to W 1,∞(Ω) and verifies

‖∇u∞‖L∞(Ω) ≤ 1, (1.12)

and is a maximizer of the following variational problem

max
K

∫

∂Ω
gv dS, K =

{
v ∈ W 1,∞(Ω),

∫

Ω
v = 0, |∇v| ≤ 1

}
. (1.13)

Remark 1.2. Notice that we are taking G(0) = 0 for G(s) = s2 ln(s),
hence the term |∇u|2 ln |∇u| in (1.11) makes sense when evaluated at a test
function with vanishing gradient.

Remark 1.3. Note that hypothesis (1.7) can be replaced by pn(x)/an → q(x)
for a given sequence an → ∞ as n → ∞. The corresponding statements
can be rewritten in terms of an (instead of n) but we prefer to simplify the
notation.

Remark 1.4. In the limit problem we note the dependence in x of the
sequence pn. In fact, two limits play a role here, ∇ ln pn(x) → ξ(x) and
pn

n (x) → q(x).

Remark 1.5. The maximization problem (1.13) is also obtained by apply-
ing the Kantorovich optimality principle to a mass transfer problem for the
measures µ+ = g+HN−1x ∂Ω and µ− = g−HN−1x ∂Ω that are concentrated
on ∂Ω. The mass transfer compatibility condition µ+(∂Ω) = µ−(∂Ω) holds
since g fulfils the compatibility condition (1.2). See [1] and [10].

Let us end the introduction presenting some examples of sequences pn(x)
that fulfill the required conditions.
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(1) pn(x) = n; we have ξ = 0, q = 1 and k = 1.
(2) pn(x) = p(x) + n; we get ξ = 0, q = 1 and k = 1.
(3) pn(x) = np(x); this is a model case. We obtain a nontrivial vector

field ξ(x) = ∇(ln(p(x))), a nontrivial scalar q(x) = p(x) and k =
maxx∈Ω p

minx∈Ω p .
(4) pn(x) = nap(x/n) [scaling in x]; in this case, we have

∇(ln pn(x)) =
∇p

p
(x/n)

1
n
→ 0

and so ξ = 0. Moreover, we have also k = 1. However,

pn(x)
n

= na−1p(x/n)

that does not converge to any nontrivial q(x), unless a = 1 in which
case q(x) ≡ p(0). The conclusion also hold for pn(x) = na + p(x/n),
we have ξ = 0 and k = 1.

(5) pn(x) = nap(nx); we get

∇(ln pn(x)) =
n∇p

p
(nx),

which does not have a limit as n → ∞. The same happens with
pn(x) = n + p(nx), for which

∇(ln pn(x)) =
n∇p(nx)
n + p(nx)

,

that does not have a uniform limit (although it is bounded).
(6) We can modify the previous example to get a nontrivial limit. As-

sume that r = r(θ) is a function of the angular variable and that
0 6∈ Ω; then consider pn(x) = n + r(nx) to obtain

∇(ln pn(x)) =
n∇r(nx)
n + r(nx)

→ ∇r(θ).

Concerning q we obtain

pn(x)
n

= 1 +
r(nx)

n
→ 1.

In this case we get k = 1.
(7) Finally, we can combine examples (3) and (6). Let pn(x) = np(x) +

r(nx), with Ω as in (6). We get

∇(ln pn(x)) =
n∇p(x) + n∇r(nx)

np(x) + r(nx)
→ ∇p(x) +∇r(θ)

p(x)
,

and
pn(x)

n
= p(x) +

r(nx)
n

→ p(x).

In this case k =
maxx∈Ω p

minx∈Ω p .
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The rest of the paper is organized as follows: in Section 2 we collect some
properties of the approximate problems and prove that there is a uniform
limit (along subsequences) that is a maximizer in (1.13) and in Section 3 we
deal with the limit PDE.

2. Analysis of problem (1.1)

First of all, let us give some brief introduction to variable exponent
Sobolev and Lebesgue spaces, and some of their main properties, that we
will use in the sequel. See [9], [11], [12], [17] and the survey [14] for more
details. The variable exponent Lebesgue space Lp(x)(Ω) is defined as follows

Lp(x)(Ω) =
{

u such that
∫

Ω
|u(x)|p(x) < +∞

}
,

and is endowed with the norm

|u|p(x) = inf

{
τ > 0 such that

∫

Ω

∣∣∣∣
u(x)

τ

∣∣∣∣
p(x)

≤ 1

}
.

The variable exponent Sobolev space W 1,p(x)(Ω) is given by

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)
}

,

with the norm

‖u‖ = inf

{
τ > 0 such that

∫

Ω

∣∣∣∣
∇u(x)

τ

∣∣∣∣
p(x)

+
∣∣∣∣
u(x)

τ

∣∣∣∣
p(x)

≤ 1

}
.

The following result holds.

Proposition 2.1.

i) The spaces
(
Lp(x)(Ω), | · |p(x)

)
and

(
W 1, p(x)(Ω), ‖ · ‖

)
are separable,

reflexive and uniformly convex Banach spaces.
ii) Hölder inequality holds, namely

∫

Ω
|uv| ≤ 2|u|p(x)|v|q(x), ∀u ∈ Lp(x)(Ω), ∀v ∈ Lq(x)(Ω),

where 1
p(x) + 1

q(x) = 1.

iii) When p(x) ≥ α > N the embedding from W 1, p(x)(Ω) to Cβ(Ω) is
compact and continuous. In particular, W 1, p(x)(Ω) ↪→ C(Ω).

iv) There exists a constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x),

for every u ∈ W 1,p(x)(Ω) such that
∫
Ω u = 0. Therefore, |∇u|p(x)

and ‖u‖ are equivalent norms on W 1,p(x)(Ω) ∩ {∫Ω u = 0}.
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Let us introduce now the definition of a weak solution to (1.1). From now
on we assume that we deal with a sequence pn(x) verifying (1.4)–(1.8), but
we drop the subscript n when we can simplify the notation.

Definition 2.2. We say that u ∈ W 1,p(x)(Ω) is a weak solution to problem
(1.1) if ∫

Ω
|∇u|p(x)−2∇u∇v =

∫

∂Ω
gv, ∀v ∈ W 1,p(x)(Ω).

We have the following existence result.

Lemma 2.3. There exists a unique weak solution u to (1.1), which is the
unique minimizer of the functional

L(u) =
∫

Ω

|∇u|p(x)

p(x)
−

∫

∂Ω
gu (2.1)

in the set

S =
{

u ∈ W 1,p(·)(Ω) :
∫

Ω
u = 0

}
. (2.2)

Proof. Functions in the variable exponent Sobolev space W 1,p(·)(Ω) are nec-
essarily continuous thanks to the assumption pn(x) ≥ α > N . Indeed, the
continuous embedding in

W 1,p(·)(Ω) ↪→ W 1,α(Ω) ⊂ C
(
Ω

)
(2.3)

follows from [17, Theorem 2.8].

It is standard to show that the functional attains a minimum in S since
for every r such that 1 ≤ r < α(N−1)/(N−α), the embedding S ↪→ Lr(∂Ω)
is compact.

It is also standard to show that the minimizer of L in S is the unique
weak solution of (1.1). ¤

Let us now recall the definition of viscosity solution (cf. [8]) for a problem
like (1.1) or (1.11). Assume we are given continuous functions

F : Ω× RN × SN×N → R,

and
B : ∂Ω× R× RN → R.

Following [4] let us recall the definition of viscosity solution taking into
account general boundary conditions.

Definition 2.4. Consider the boundary value problem
{

F (x,∇u,D2u) = 0 in Ω,
B(x, u,∇u) = 0 on ∂Ω.

(2.4)
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(1) A lower semi-continuous function u is a viscosity supersolution if for
every φ ∈ C2(Ω) such that u− φ has a strict minimum at the point
x0 ∈ Ω with u(x0) = φ(x0) we have: If x0 ∈ ∂Ω the inequality

max{B(x0, φ(x0),∇φ(x0)), F (x0,∇φ(x0), D2φ(x0))} ≥ 0

holds, and if x0 ∈ Ω then we require

F (x0,∇φ(x0), D2φ(x0)) ≥ 0.

(2) An upper semi-continuous function u is a viscosity subsolution if for
every φ ∈ C2(Ω) such that u− ψ has a strict maximum at the point
x0 ∈ Ω with u(x0) = ψ(x0) we have: If x0 ∈ ∂Ω the inequality

min{B(x0, ψ(x0),∇ψ(x0)), F (x0,∇ψ(x0), D2ψ(x0))} ≤ 0

holds, and if x0 ∈ Ω then we require

F (x0,∇ψ(x0), D2ψ(x0)) ≤ 0.

(3) Finally, u is a viscosity solution if it is a super and a subsolution.

In the sequel, we will use the notation as in the definition: φ will always
stand for a test function touching the graph of u from below and ψ for a
test function touching the graph of u from above.

Proposition 2.5. Let u be a continuous weak solution of (1.1). Then u is
a viscosity solution of (1.1) in the sense of Definition 2.4.

Proof. Let x0 ∈ Ω and a let φ be a test function such that u(x0) = φ(x0)
and u− φ has a strict minimum at x0. We want to show that

−∆p(x0)φ(x0) = −|∇φ(x0)|p(x0)−2∆φ(x0)

−(p(x0)− 2)|∇φ(x0)|p(x0)−4∆∞φ(x0)

−|∇φ(x0)|p(x0)−2 ln(|∇φ|)(x0) 〈∇φ(x0),∇p(x0)〉
≥ 0.

Assume, ad contrarium, that this is not the case; then there exists a radius
r > 0 such that B(x0, r) ⊂ Ω and

−∆p(x)φ(x) = −|∇φ(x)|p(x)−2∆φ(x)

−(p(x)− 2)|∇φ(x)|p(x)−4∆∞φ(x)

−|∇φ(x)|p(x)−2 ln(|∇φ|)(x)〈∇φ(x),∇p(x)〉
< 0,

for every x ∈ B(x0, r). Set

m = inf
|x−x0|=r

(u− φ)(x)

and let Φ(x) = φ(x) + m/2. This function Φ verifies Φ(x0) > u(x0) and

−∆p(x)Φ = −div(|∇Φ|p(x)−2∇Φ) < 0 in B(x0, r). (2.5)
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Multiplying (2.5) by (Φ− u)+, which vanishes on the boundary of B(x0, r),
we get ∫

B(x0,r)∩{Φ>u}
|∇Φ|p(x)−2∇Φ · ∇(Φ− u) < 0.

On the other hand, taking (Φ− u)+, extended by zero outside B(x0, r), as
test function in the weak formulation of (1.1), we obtain∫

B(x0,r)∩{Φ>u}
|∇u|p(x)−2∇u · ∇(Φ− u) = 0.

Upon subtraction and using a well know inequality, we conclude

0 >

∫

B(x0,r)∩{Φ>u}

(
|∇Φ|p(x)−2∇Φ− |∇u|p(x)−2∇u

)
· ∇(Φ− u)

≥ c

∫

B(x0,r)∩{Φ>u}
|∇Φ−∇u|p(x),

a contradiction.

If x0 ∈ ∂Ω we want to prove

max
{
|∇φ(x0)|p(x0)−2 ∂φ

∂η
(x0)− g(x0),−∆p(x0)φ(x0)

}
≥ 0.

Assume that this is not the case. We proceed as before and we obtain∫

{Φ>u}
|∇Φ|p−2∇Φ∇(Φ− u) <

∫

∂Ω∩{Φ>u}
g(Φ− u),

and ∫

{Φ>u}
|∇u|p−2∇u∇(Φ− u) ≥

∫

∂Ω∩{Φ>u}
g(Φ− u).

From where we can reach again again a contradiction.

This proves that u is a viscosity supersolution. The proof that u is a
viscosity subsolution runs as above and we omit the details. ¤
Remark 2.6. If B is monotone in the variable ∂u

∂ν (this is indeed the case
for solutions to (1.1)) Definition 2.4 takes a simpler form, see [4]. More
precisely, if u is a supersolution and φ ∈ C2(Ω) is such that u − φ has a
strict minimum at x0 with u(x0) = φ(x0), then

(1) if x0 ∈ Ω, then

−∆p(x)φ(x) = −|∇φ(x)|p(x)−2∆φ(x)
−(p(x)− 2)|∇φ(x)|p(x)−4∆∞φ(x)
−|∇φ(x)|p(x)−2 ln(|∇φ|)(x)〈∇φ(x),∇p(x)〉 ≥ 0

and
(2) if x0 ∈ ∂Ω, then

|∇φ(x0)|p(x0)−2 ∂φ

∂η
(x0) ≥ g(x0).
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Theorem 2.7. There exists a subsequence {upni
} of solutions that converge

to some nontrivial function u∞ in Cβ(Ω), for some 0 < β < 1. Moreover,
the limit u∞ belongs to W 1,∞(Ω), verifies

‖∇u∞‖L∞(Ω) ≤ 1, (2.6)

and is a maximizer of the following problem

max
K

∫

∂Ω
gv, K =

{
v ∈ W 1,∞(Ω),

∫

Ω
v = 0, |∇v| ≤ 1

}
. (2.7)

Proof. If we consider the trivial function in the variational problem verified
by upn we get ∫

Ω

1
pn(x)

|∇upn |pn(x) −
∫

∂Ω
gupn ≤ 0.

Then, ∫

Ω

1
pn(x)

|∇upn |pn(x) ≤
∫

∂Ω
gupn

≤ ‖g‖L1(∂Ω)‖upn‖L∞(∂Ω)

≤ C(Ω, g)‖∇upn‖Lq(Ω),

where pn(x) ≥ q > N . Now we claim that

‖∇upn‖Lq(Ω) ≤ C(Ω, g)|∇upn |pn(x). (2.8)

Indeed, if we apply Hölder inequality for variable exponent Sobolev spaces,
see Proposition 2.1, we get

‖∇upn‖q
Lq(Ω) ≤ 2|1|a′n(x)||∇upn |q|an(x) ≤ 2max{1, µ(Ω)}|∇upn |qpn(x), (2.9)

where qan(x) = pn(x) and 1
an(x) + 1

a′n(x) = 1. Hence, from the above estimate
(2.8) straight follows. Summing up we have shown that

∫

Ω

1
pn(x)

|∇upn |pn(x) ≤ C(Ω, g)|∇upn |pn(x). (2.10)

Next, we take τ0 such that

1
2
≤

∫

Ω

∣∣∣∣
∇upn

τ0

∣∣∣∣
pn(x)

≤ 1. (2.11)

Taking into account (2.10) and (2.11) we deduce that

min{τp+
n

0 , τp−n
0 }

2p+
n

≤
∫

Ω

1
pn(x)

|∇upn |pn(x) ≤ C(Ω, g)τ0, (2.12)

with p+
n , p−n defined in (1.9). Now we claim that

|∇upn |pn(x) ≤ C(n), with C(n) → 1, as n →∞. (2.13)
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If |∇upn |pn(x) ≤ 1, then (2.13) is immediate. Then let us assume that
|∇upn |pn(x) > 1 and let τ0 > 1 such that (2.11) holds. Note that, from (1.8),
we get

lim sup
n→∞

log(p+
n )

p−n − 1
= 0. (2.14)

Therefore, by (2.12) and (2.14) we obtain that

τ0 ≤ (C(f, Ω, q)p+
n )

1

p−n−1 → 1, as n →∞,

and then (2.13) follows. By Proposition 2.1 it follows that upn is uniformly
bounded in W 1,pn(Ω). Since pn ≥ α > N we have that W 1,pn(Ω) embeds
compactly into Cβ(Ω), for some 0 < β < 1. Then, from (2.13) we get for
a subsequence {upni (x)} such that upni(x) ⇀ u∞, weakly in W 1,q(Ω) and
upni (x) → u∞, strongly in Cβ(Ω). Moreover, by the lower semicontinuity of
the norm, we have that

|∇u∞|Lq(Ω) ≤ lim inf
n→∞ |∇upn |Lq(Ω).

Passing to the limit as q →∞ using (2.9) and (2.13) in the previous estimate
we obtain (2.6).

It just remains to see that u∞ maximizes (2.7), (thus u∞ is nontrivial
when g 6≡ 0). Note that for n fixed we have that∫

Ω

1
pn(x)

|∇upn |pn(x) −
∫

∂Ω
gupn ≤

∫

Ω

1
pn(x)

−
∫

∂Ω
gv,

for any v ∈ K. Neglecting the first positive term on the left hand side and
rearranging we obtain ∫

∂Ω
gv ≤

∫

∂Ω
gupn +

∫

Ω

1
pn(x)

.

Now, passing to the limit as n →∞ in the previous expression we get∫

∂Ω
gv ≤

∫

∂Ω
gu∞,

for any function v ∈ K, thus (2.7) holds. ¤

3. Passing to the limit in the viscosity sense

From the results introduced in the previous section we know that, ex-
tracting a subsequence if necessary,

un −→ u∞, uniformly in Ω,

for a certain continuous function u∞.

To prove that u∞ is a viscosity supersolution of (1.11), let φ be such that
u − φ has a strict local minimum at x0 ∈ Ω, with φ(x0) = u(x0). We want
to prove that

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉 ≥ 0. (3.1)
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Since un → u uniformly, there is a sequence (xn)n such that xn → x0 and
un−φ has a local minimum at xn. As un is a viscosity solution of (1.1) (cf.
Proposition 2.5), we have

− |∇φ(xn)|2∆φ(xn)
pn(xn)− 2

−∆∞φ(xn)

−|∇φ(xn)|2 ln |∇φ(xn)|
〈
∇φ(xn),

∇pn(x)
pn(xn)− 2

〉
≥ 0.

Using the fact that xn → x0 and the assumptions (1.4) and (1.6), we obtain
the following convergences

|∇φ(xn)|2∆φ(xn)
pn(xn)− 2

−→ 0,

∆∞φ(xn) −→ ∆∞φ(x0),
|∇φ(xn)|2 ln(|∇φ(xn)|) −→ |∇φ(x0)|2 ln(|∇φ(x0)|),

and 〈
∇φ(xn),

∇pn(x)
pn(xn)− 2

〉
−→ 〈∇φ(x0), ξ(x0)〉 .

Hence (3.1) follows. This proves that u is a viscosity supersolution; the fact
that it is also a viscosity subsolution follows analogously.

Let us check the boundary condition. There are six cases to be considered.
Assume that u∞−φ has a strict minimum at x0 ∈ ∂Ω with g(x0) > 0. Using
the uniform convergence of upi to u∞ we obtain that upi−φ has a minimum
at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many i, we can
argue as before and obtain

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉 ≥ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|i( pi
i

(xi)− 2
i
)(xi)

∂φ

∂η
(xi) = |∇φ|pi(xi)−2(xi)

∂φ

∂η
(xi) ≥ g(xi).

Since g(x0) > 0, we have ∇φ(x0) 6= 0, and we obtain, using that pi

i (xi) →
q(x0),

|∇φ|q(x0)(x0) ≥ 1.

Moreover, we also have
∂φ

∂η
(x0) ≥ 0.

Hence, if u∞ − φ has a strict minimum at x0 ∈ ∂Ω with g(x0) > 0, we get

max
{

min
{
− 1 + |∇φ|q(x0)(x0),

∂φ

∂η
(x0)

}
,

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉
}
≥ 0.

(3.2)

Next assume that u∞−ψ has a strict maximum at x0 ∈ ∂Ω with g(x0) > 0.
Using the uniform convergence of upi to u∞ we obtain that upi − ψ has a
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maximum at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many
i, we can argue as before and obtain

−∆∞ψ(x0)− |∇ψ(x0)|2 ln |∇ψ(x0)|〈ξ(x0),∇ψ(x0)〉 ≤ 0.

On the other hand if xi ∈ ∂Ω we have

|∇ψ|i( pi
i

(xi)− 2
i
)(xi)

∂ψ

∂η
(xi) = |∇ψ|pi−2(xi)

∂ψ

∂η
(xi) ≤ g(xi).

If 1 < |∇ψ(x0)|q(x0) we obtain

∂ψ

∂η
(x0) ≤ 0.

Hence, the following inequality holds

min
{

min
{
− 1 + |∇ψ|q(x0)(x0),

∂ψ

∂η
(x0)

}
,

−∆∞ψ(x0)− |∇ψ(x0)|2 ln |∇ψ(x0)|〈ξ(x0),∇ψ(x0)〉
}
≤ 0.

(3.3)

For the following case assume that u∞ − ψ has a strict maximum at x0

with g(x0) < 0. Using the uniform convergence of upi to u∞ we obtain that
upi − ψ has a maximum at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for
infinitely many i, we can argue as before and obtain

−∆∞ψ(x0)− |∇ψ(x0)|2 ln |∇ψ(x0)|〈ξ(x0),∇ψ(x0)〉
}
≤ 0.

On the other hand if xi ∈ ∂Ω we have

|∇ψ|i( pi
i

(xi)− 2
i
)(xi)

∂ψ

∂η
(xi) = |∇ψ|pi−2(xi)

∂ψ

∂η
(xi) ≤ g(xi).

As g(x0) < 0, ∇ψ(x0) 6= 0 and we obtain, using that pi
i (xi) → q(x0),

|∇ψ|q(x0)(x0) ≥ 1,

and
∂ψ

∂η
(x0) ≤ 0.

Hence, the following inequality holds

min
{

max
{

1− |∇ψ|q(x0)(x0),
∂ψ

∂η
(x0)

}
,

−∆∞ψ(x0)− |∇ψ(x0)|2 ln |∇ψ(x0)|〈ξ(x0),∇ψ(x0)〉
}
≤ 0.

(3.4)

Now assume that u∞−φ has a strict minimum at x0 ∈ ∂Ω with g(x0) < 0.
Using the uniform convergence of upi to u∞ we obtain that upi − φ has a
minimum at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many
i, we can argue as before and obtain

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉 ≥ 0.



LIMITS AS p(x) →∞ OF p(x)-HARMONIC FUNCTIONS 13

On the other hand if xi ∈ ∂Ω we have

|∇φ|i( pi
i

(xi)− 2
i
)(xi)

∂φ

∂η
(xi) = |∇φ|pi(xi)−2(xi)

∂φ

∂η
(xi) ≥ g(xi).

If 1 < |∇φ|q(x0)(x0) we obtain
∂φ

∂η
(x0) ≥ 0.

Hence, the following inequality holds.

max
{

max
{
− 1 + |∇φ|q(x0)(x0),

∂φ

∂η
(x0)

}
,

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉
}
≥ 0.

(3.5)

For the next case assume that u∞ − φ has a strict minimum at x0 ∈ ∂Ω
with g(x0) = 0. Using the uniform convergence of upi to v∞ we obtain that
upi − φ has a minimum at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for
infinitely many i, we can argue as before and obtain

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉
}
≥ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|i( pi
i

(xi)− 2
i
)(xi)

∂φ

∂η
(xi) = |∇φ|pi(xi)−2(xi)

∂φ

∂η
(xi) ≥ g(xi).

If ∇φ(x0) = 0, then we have
∂φ

∂η
(x0) = 0.

If |∇φ(x0)|q(x0) > 1 then, as before, we obtain
∂φ

∂η
(x0) ≥ 0.

Therefore, the following inequality holds

max
{

H(|∇φ|q(x0)(x0))
∂φ

∂η
(x0)

}
,

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉
}
≥ 0.

(3.6)

Finally, assume that u∞ − ψ has a strict maximum at x0 with g(x0) = 0
Using the uniform convergence of upi to u∞ we obtain that upi − ψ has a
maximum at some point xi ∈ Ω with xi → x0. If xi ∈ Ω for infinitely many
i, we can argue as before and obtain

−∆∞ψ(x0)− |∇ψ(x0)|2 ln |∇ψ(x0)|〈ξ(x0),∇ψ(x0)〉
}
≤ 0.

On the other hand if xi ∈ ∂Ω we have

|∇ψ|i( pi
i

(xi)− 2
i
)(xi)

∂ψ

∂η
(xi) = |∇ψ|pi(xi)−2(xi)

∂ψ

∂η
(xi) ≤ g(xi).
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If ∇ψ(x0) = 0, then we have

∂ψ

∂η
(x0) = 0.

If |∇ψ(x0)|q(x0) > 1 we obtain

∂ψ

∂η
(x0) ≤ 0.

Hence, the following inequality holds

min
{

H(|∇ψ|q(x0)(x0))
∂ψ

∂η
(x0)

}
,

−∆∞ψ(x0)− |∇ψ(x0)|2 ln |∇ψ(x0)|〈ξ(x0),∇ψ(x0)〉
}
≤ 0.

(3.7)

This ends the proof. ¤

3.1. Examples. In 1−d we find that the limit can be easily computed and,
surprisingly, does not depend on the sequence pn(x) →∞.

Assume that Ω = (−1, 1) and that g(1) = −g(−1) > 0. We get as the
limit variational problem

max
v

g(1)(v(1)− v(−1)), with
∫ 1

−1
v = 0, |v′| ≤ 1.

It is immediate that the unique solution to this problem is

u∞(x) = x.

Note that u∞(x) = x is also a solution to the limit ODE that in this case
reads as 




u′′(x) + ln |u′(x)| 〈ξ(x), u′(x)〉 = 0, x ∈ (−1, 1),

min
{|u′(1)|q(1) − 1 , u′(1)

}
= 0,

max
{
1− |u′(−1)|q(−1) , −u′(−1)

}
= 0.

This example can be easily generalized to the case where Ω is an annulus,
Ω = {r1 < |x| < r2} and the function g is a positive constant g1 on |x| = r1

and a negative constant g2 on |x| = r2 with the constraint
∫

∂Ω
g =

∫

|x|=r1

g +
∫

|x|=r2

g = 0.

The solutions un of (1.1) in the annulus converge uniformly as n →∞ to a
cone

u∞(x) = C − |x|
that is the unique maximizer in (1.13).

Remark 3.1. Note that in general there is non uniqueness of solutions the
limit PDE, (1.11), even when ξ = 0 and q = 1, see [13] for a counterexample.
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