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Abstract. In this paper we discuss a nonlocal approximation to the classical heat equation with Neumann bound-

ary conditions. We consider

wεt (x, t) =
1

εN+2

∫
Ω
J
(x− y

ε

)
(wε(y, t)− wε(x, t))dy +

C1

εN

∫
∂Ω

J
(x− y

ε

)
g(y, t) dSy , (x, t) ∈ Ω× (0, T ),

w(x, 0) = u0(x), x ∈ Ω,

and we show that the corresponding solutions, wε, converge to the classical solution of the local heat equation
vt = ∆v with Neumann boundary conditions, ∂v

∂n
(x, t) = g(x, t),and initial condition v(0) = u0, as the parameter ε

goes to zero. The obtained convergence is in the weak star on L∞ topology.

1. Introduction

The nonlocal evolution equation

(1.1)
ut(x, t) =

∫
Ω

J(x− y)[u(y, t)− u(x, t)]dy, (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

see [19], can be seen as similar to the local heat equation with homogeneous Neumann boundary conditions

(1.2)

vt(x, t) = 4v(x, t), (x, t) ∈ Ω× (0, T ),

∂v

∂n
(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

v(x, 0) = u0(x), x ∈ Ω.

Here, J is a symmetric continuous nonnegative real function defined on RN , compactly supported in the unit
ball, and such that

∫
RN J(x)dx = 1, Ω is a bounded smooth domain in RN and u0 stands for the initial condition.

The problem is known as a nonlocal model since the diffusion of the density u at a point x and time t not only
depends on u(x, t) locally, but also on all values of u through the convolution like term

∫
Ω
J(x − y)u(y, t) dy.

Following [19], the model (1.1) can be interpreted as follows: If u(x, t) is the density of a population at point x and
time t, and J(x− y) is thought as the probability distribution of jumping from location y to location x, then the
convolution

∫
Ω
J(y−x)u(y, t) dy, is the rate at which the individuals are arriving to location x from all other places

y ∈ Ω (notice that no individuals may arrive to x coming from outside Ω). In the same way, −
∫

Ω
J(y−x)u(x, t)dy,

is the rate at which individuals are leaving the location x to travel to other sites y ∈ Ω (notice that no individual
can jump outside Ω). So, in absence of external or internal sources, the density u satisfies the nonlocal equation
(1.1). Now we remark that the fact that there is no individuals that enter or leave the domain makes this problem
a zero flux diffusion problem and therefore the total mass is preserved,

∫
Ω
u(x, t) dx =

∫
Ω
u0(x) dx, as happens

with solutions to (1.2). The model (1.1) shares more properties with (1.2) such as: bounded stationary solutions
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are constant, a maximum principle is satisfied and perturbations propagate with infinite speed ([19]). Concerning
applications, (1.1) and some variants of it have been used, for instance, in Biology [12], image processing, [21], and
particle systems, [9]; see also [4] and [20]. For the mathematical analysis of nonlocal models the list of references
is large and we refer to [1], [2], [3], [6], [8], [10], [11], [13], [17], [18], [22], and to the book [5] and references therein.

Moreover, when one rescales the kernel J considering J(ξ) = 1
εN+2 J( ξε ), it was shown in [15] that the corre-

sponding solutions to (1.1) with a fixed initial condition converge to the solution to (1.2) as ε → 0. In addition,
concerning the non-homegeneous problem, that is, (1.2) with ∂v

∂n (x, t) = g(x, t), in [15] it is proved that this problem
can be approximated with

(1.3)
(uε)t(x, t) =

1

εN+2

∫
Ω

J
(x− y

ε

)
(uε(y, t)− uε(x, t)) dy +

K

εN+1

∫
RN\Ω

J
(x− y

ε

)
g(y, t) dy,

uε(x, 0) = u0(x),

as ε→ 0 (with an appropriate choice of the constant K). Notice that in this model there are individuals that enter
the domain coming from outside (this is the meaning of the integral in RN \ Ω). This model has the following
disadvantage: when one tries to approximate solutions to (1.2) with ∂v

∂n (x, t) = g(x, t) the datum g(x, t) is given

only for x ∈ ∂Ω and therefore one has to extend it outside (to a strip around ∂Ω inside RN \Ω of width of order ε)
in order to consider (1.3). An easy way to obtain such extension is to consider g(ỹ + n(ỹ)s) = g(ỹ) where ỹ ∈ ∂Ω
and s ∈ [0, δ] (with δ small), being n the exterior normal vector to ∂Ω at ỹ.

To overcome the fact that an extension of the Neumann datum g outside Ω is needed, recently, following [16],
the authors of [10] have introduced the nonlocal diffusion model

(1.4)
ut(x, t) =

∫
Ω

J(x− y)(u(y, t)− u(x, t))dy +

∫
∂Ω

G(x− y)g(y, t) dSy, (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain, J : RN 7→ R and G : RN 7→ R are continuous, nonnegative, radially sym-
metric functions compactly supported in the unit ball and such that

∫
RN J(z)dz = 1,

∫
RN G(z)dz = 1, and

g ∈ L∞loc[(0,∞);L1(∂Ω)].

Remark 1.1. The main advantage of the model given by (1.4) compared with (1.3) is that when one deals with
a nonlinear datum of the form g(y, t) = f(u(y, t)) it is necessary to use an extension of the solution u from Ω to
RN \ Ω in the case of (1.3) (notice that such an extension is not trivial since g depends on the solution itself).
However, it is not necessary to perform such extension when dealing with (1.6).

For the problem (1.4) in [10] it is proved existence and uniqueness of solutions for u0 ∈ L1(Ω), that a comparison
principle is satisfied and it is also studied the asymptotic behavior of the solutions as t→∞.

Our main goal in this paper is to study the behaviour of solutions to this nonlocal model when the involved
kernels are rescaled appropriately. If we consider the new kernels

(1.5)

J(ξ) =
1

εN+2
J(
ξ

ε
),

G(ξ) =
C1

εN
J(
ξ

ε
),

then we arrive to

(1.6)
wεt(x, t) =

1

εN+2

∫
Ω

J
(x− y

ε

)
(wε(y, t)− wε(x, t))dy +

C1

εN

∫
∂Ω

J
(x− y

ε

)
g(y, t) dSy, (x, t) ∈ Ω× (0, T ),

w(x, 0) = u0(x), x ∈ Ω.

We have the following existence and uniqueness result:

Theorem 1.1. For every u0 ∈ L1(Ω) and every g ∈ L∞loc[(0,∞);L1(∂Ω)] there exists a unique solution wε ∈
C[[0,∞);L1(Ω)] to problem (1.6).



A NONLOCAL DIFFUSION PROBLEM 3

The proof follow the same lines of Theorem 2.2 in [10] and then we omit the details here.

As we have mentioned, our main objective is to show that the solution of the non-homogeneous Neumann
problem for the heat equation (1.2), can be approximated by solutions of (1.6) when the parameter ε goes to zero.
We have the following theorem:

Theorem 1.2. Let Ω be a bounded C2+α domain, g ∈ C1+α, 1+α2 ((RN \ Ω)× [0, T ]), let v the solution to (1.2) and
assume that v ∈ C2+α,α2 (Ω× [0, T ]), for some 0 < α < 1. Let wε be the solution to (1.6). Then, for each t ∈ [0, T ]

wε(x, t) ⇀ v(x, t) as ε→ 0 ∗ −weakly in L∞(Ω).

We remark that the obtained convergence is the weak−∗ topology is the same that was obtained in [15] for the
problem (1.3).

2. Proof of Theorem 1.2. Weak−∗ convergence in L∞

In this section we give the proof of Theorem 1.2. To this end we use a result proved in [15] for the problem
(1.3). More precisely, we will use the following theorem:

Theorem 2.1. Let Ω be a bounded C2+α domain, g ∈ C1+α, 1+α2 ((RN \ Ω) × [0, T ]), v ∈ C2+α,α2 (Ω × [0, T ]) the
solution to (1.2), for some 0 < α < 1. Let uε be a solution to (1.3). Then, there is an adequate constant K such
that, for each t ∈ [0, T ],

uε(x, t) ⇀ v(x, t) ∗ −weakly in L∞(Ω).

We fix K in such a way that the conclusion of Theorem 2.1 holds.

Proof of Theorem 1.2. With the aim to prove Theorem 1.2, we just want to obtain that wε(x, t) the solution to
(1.6) is close to uε(x, t) the solution to (1.3). To this end we consider equation verified by the difference

uε(x, t)− wε(x, t)
that is,

(2.1)
(uε(x, t)− wε(x, t))t =

1

εN+2

∫
Ω

J
(x− y

ε

)
((uε(y, t)− wε(y, t))− (uε(x, t)− wε(x, t)))dy +Aε(x, t)

(uε(x, 0)− wε(x, 0)) = 0,

where, from the fact that wε, uε satisfies (1.6) and (1.3) respectively, we get that

Aε(x, t) =
K

εN+1

∫
RN\Ω

J
(x− y

ε

)
g(y)dy − C1

εN

∫
∂Ω

J
(x− y

ε

)
g(y)dSy.

After integration in Ω of (2.1), we consider Aε(x, t) and we decompose it as follows:

(2.2)

∫
Ω

Aε(x, t) = I1 − I2,

with

I1 =
K

εN+1

∫
Ω

∫
RN−\Ω

J
(x− y

ε

)
g(y)dy dx,

and

I2 =
C1

εN

∫
Ω

∫
∂Ω

J
(x− y

ε

)
g(y)dSy dx.

Let δ such that 2ε < δ. We consider the following sets:

Γ+
δ = {x̃ ∈ Ω � d(x̃, ∂Ω) ≤ δ},

Γ−δ = {x̃ ∈ (RN \ Ω) �d(x̃, ∂Ω) ≤ δ},
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and
Γ[−δ,δ] = {x̃ ∈ RN�d(x̃, ∂Ω) ≤ δ} = Γ+

δ ∪ Γ−δ .

Note that

I1 =
K

εN+1

∫
Γ+
ε

∫
Γ−ε

J
(x− y

ε

)
g(y)dy dx.

When ỹ ∈ ∂Ω and s ∈ [−δ, δ], we use the change of variables

y = ỹ + n(ỹ)s

being n(ỹ) the normal vector at ỹ to obtain

(2.3) I1 =
1

εN

∫
Γ+
ε

[
1

ε

∫ ε

0

∫
∂Ω

KJ
(x− (ỹ + n(ỹ)s)

ε

)
g(ỹ + n(ỹ)s)|J(ỹ, s)|dSỹ ds

]
dx,

where |J(ỹ, s)| is the Jacobian of the change of variable. In the same way we can transform I2 and obtain

(2.4) I2 =
C1

εN

∫
Γ+
ε

∫
∂Ω

J
(x− ỹ

ε

)
g(ỹ)dSỹ dx.

Now we consider the extension of g given by

g(ỹ + n(ỹ)s) = g(ỹ)

and from (2.3) and (2.4) we get

(2.5) I1 − I2 =
1

εN

∫
Γ+
ε

[ ∫
∂Ω

(
I3

)
dỹ

]
dx,

being

I3 =
1

ε

∫ ε

0

KJ
(x− ỹ

ε
− n(ỹ)

s

ε

)
g(ỹ + n(ỹ)s)|J(ỹ, s)|ds− C1J

(x− ỹ
ε

)
g(ỹ + n(ỹ)s).

Using the change of variables

s̃ =
s

ε
in the first integral we obtain

(2.6) I3 =

∫ 1

0

KJ
(x− ỹ

ε
− n(ỹ)s̃

)
g(ỹ + n(ỹ)s)|J(ỹ, εs̃)|ds̃− C1J

(x− ỹ
ε

)
g(ỹ + n(ỹ)s).

Taking into account (2.2), (2.5) and (2.6), making the change of variables

z =
x− ỹ
ε

and considering that
x = ỹ + εz

we obtain

(2.7)

∫
Ω

Aε(x, t) =

∫
∂Ω

[ ∫
{z� (ỹ+εz)∈Ω}

(∫ 1

0

KJ(z − n(ỹ)s̃)|J(ỹ, εs̃)|ds̃− C1J(z)

)
dz

]
g(ỹ)dSỹ.

Choosing C1 appropriately in such a way that

lim
ε→0

∫
{z� (ỹ+εz)∈Ω}

(∫ 1

0

KJ(z − n(ỹ)s̃)|J(ỹ, εs̃)|ds̃− C1J(z)

)
dz = 0,

we conclude

(2.8) lim
ε→0

∫
Ω

Aε(x, t) = 0.

With this estimate we can control
uε(x, t)− wε(x, t).
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In fact, let zε be a nonnegative solution of the problem

(2.9)
zεt (x, t) =

1

εN+2

∫
Ω

J
(x− y

ε

)
(zε(y, t)− zε(x, t))dy + |Aε(x, t)| (x, t) ∈ Ω× (0, T ),

z(x, 0) = 0, x ∈ Ω.

Integrating (2.9) in Ω and using the symmetry of J we have

∂

∂t

∫
Ω

zε(x, t)dx =

∫
Ω

|Aε(x, t)|dx

and therefore ∫
Ω

zε(x, t)dx =

∫ T

0

∫
Ω

|Aε(x, t)|dxdt.

From (2.8) we obtain that

(2.10)

∫
Ω

zε(x, t)dx→ 0 when ε→ 0.

Now, since
Aε(x, t) ≤ |Aε(x, t)|,

we get that
|uε(x, t)− wε(x, t)| ≤ zε(x, t).

Hence, from (2.10), it holds that

(2.11)

∫
Ω

|uε(x, t)− wε(x, t)|dx→ 0, when ε→ 0.

To finish the proof of the theorem, let θ ∈ L∞(Ω), then∫
Ω

wεθ dx ≤
∫

Ω

|wε(x, t)− uε(x, t)||θ(x)|dx+

∫
Ω

uε(x, t)θ(x) dx.

Taking into account (2.11) and Theorem 2.1 we conclude that∫
Ω

wεθ dx→
∫

Ω

v(x, t)θ dx, when ε→ 0,

as we wanted to show. �X

Remark that we obtained ‖uε −wε‖L∞(0,T );L1(Ω) → 0 in (2.11). This says that solutions to the nonlocal models
(1.3) and (1.6) are close for ε small in a topology that is stronger than weak−∗ in L∞.
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