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Abstract. In this paper we consider parabolic nonlocal problems in thin domains. Fix Ω ⊂
RN1 × RN2 and consider uε be the solution to ut(t, x) =

∫
Ω Jε(x − y)(uε(t, y) − uε(t, x))dy +

f(t, x) with initial condition u(0, x) = u0(x) and a kernel of the form Jε(x) = J(x1, εx2) with

J non-singular. This corresponds (via a simple change of variables) to the usual nonlocal

evolution problem vt(t, z) = 1
εN2

∫
Ωε
J(z − w)(v(w) − v(z)) dw + fε(t, z), in the thin domain

Ωε = {(x1, εx2) ∈ RN1 × RN2 : (x1, x2) ∈ Ω}. Our main result says that there is a limit as

ε → 0 of the solutions to our problem and that this limit, when we take its mean value in the
x2-direction, is a solution to a limit nonlocal problem in the projected set Ω1 ⊂ RN1 .

1. Introduction

Our main goal in this paper is to study parabolic nonlocal problems with non-singular kernels
and Neumann conditions in thin domains.

We consider the following nonlocal diffusion equation

(1.1)

ut(t, x) =

∫
Ω

Jε(x− y)(uε(t, y)− uε(t, x))dy + f(t, x),

u(0, x) = u0(x),

x ∈ Ω, t ∈ R,

where

Jε(x) = J(x1, εx2),

and ε > 0 is a parameter. The domain Ω ⊂ RN = RN1 × RN2 is a bounded domain. We take the
initial condition u0 in L2(Ω), and the local forcing term f in C(R;L2(Ω)). Also, we denote by
x = (x1, x2) a point in RN1 ×RN2 . Along the whole paper, the function J satisfies the hypotheses

(H)

J ∈ C(RN ,R) is non-negative with J(0) > 0, J(−x) = J(x) for every x ∈ RN , and∫
RN

J(x) dx = 1.

Existence and uniqueness of solutions uε : R × Ω 7→ R with uε ∈ C1([a, b], L2(Ω)) for every
bounded interval [a, b] ⊂ R, can be easily obtained (we will include some comments on this in
Section 2).

Notice that, since the kernel J is smooth, there is no regularizing effect in (1.1) and therefore
the problem is well posed for t ∈ R and not only for t ∈ R+ as happens for local equations like
the heat equation.

It is worth noting that we are calling (1.1) as a nonlocal thin domain problem due to its
equivalence with the nonlocal problem

(1.2)

 vt(t, z) =
1

εN2

∫
Ωε

J(z − w)(v(w)− v(z)) dw + f ε(t, z),

v(0, z) = vε0(z),

z ∈ Ωε, t ∈ R.
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Here the domain Ωε ⊂ RN is assumed to be a general thin domain defined as

Ωε = {(x1, εx2) ∈ RN1 × RN2 : (x1, x2) ∈ Ω}.
Also, we are taking here the initial condition

vε0(z1, z2) = u0(x1, ε
−1x2) in L2(Ωε),

and the family of forcing terms

f ε(t, z1, z2) = f(t, z1, ε
−1z2) in C(R;L2(Ωε)).

Notice that the equivalence between problems (1.1) and (1.2) is a direct consequence of the simple
change of variable

(x1, x2) ∈ Ω 7→ (x1, εx2) ∈ Ωε.

Furthermore, it is not difficult to see that (1.1), and then (1.2), are nonlocal singular problems
since the bounded domain Ωε degenerates to

Ω1 := π1(Ω) ⊂ RN2

when the positive parameter ε goes to zero. Here, the open set π1(Ω) is given by the projection
map onto the N1 first coordinates

π1 : RN = RN1 × RN2 7→ RN1 , π1(z1, z2) = z1.

We also note that our model is in agreement with pioneering and recent references on thin
domain problems, see [10, 22, 24, 26], which use the factor 1/εN2 as in (1.2) to preserve the
relative size of the open set Ωε. The convenience of using this approach is clear since the solutions
of (1.1) are defined in the fixed domain Ω which allows us to analyze its asymptotic behavior as
ε→ 0 in a fixed space of functions.

Now let us state our main result. It says that there is a limit as ε → 0 of the solutions to our
problem and that this limit, when we take its mean value in the x2-direction, is a solution to a
limit nonlocal problem in the projected set Ω1 = π1(Ω) ⊂ RN1 .

Theorem 1.1. Let {uε}ε>0 be the family of solutions given by problem (1.1). Then, there exists
u∗ : R× Ω 7→ R, u∗ ∈ C1([a, b], L2(Ω)) for any closed interval [a, b] ⊂ R, such that we have

sup
t∈[a,b]

‖uε(t, ·)− u∗(t, ·)‖L2(Ω) → 0,

and

sup
t∈[a,b]

‖ (U ε(t, ·)− U∗(t, ·)) |Γ(·)|‖L2(Ω1) → 0

as ε → 0. Here the functions U ε and U∗ are given by the mean value of uε and u∗ in the x2-
direction, that is,

U ε(t, x1) =
1

|Γ(x1)|

∫
Γ(x1)

uε(t, x1, x2) dx2, and

U∗(t, x1) =
1

|Γ(x1)|

∫
Γ(x1)

u∗(t, x1, x2) dx2, a.e. in Ω1,

where Γ(x1) denotes the transversal section of Ω for each x1 ∈ Ω1, that is,

Γ(x1) = {(x1, x2) ∈ Ω : x1 ∈ Ω1}.

Furthermore, we have that U∗ satisfies the following nonlocal equation in Ω1

(1.3) U∗t (t, x1) =
1

|Γ(x1)|

∫
Ω1

J∗(x1, y1)(U∗(t, y1)− U∗(t, x1)) dy1 +
1

|Γ(x1)|

∫
Γ(x1)

f(t, x) dx2

with initial condition

U∗(0, x1) =
1

|Γ(x1)|

∫
Γ(x1)

u0(x) dx2
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where the limit kernel J∗ is given by

J∗(x1, y1) = J(x1 − y1, 0) |Γ(x1)| |Γ(y1)|.

Remark 1.1. As we have already mentioned, since the kernel J is smooth, there is no reg-
ularizing effect for this problem and therefore to obtain strong convergence in L2−norm is not
straightforward. Notice that we have strong convergence in L2 even when we consider the averages
of solutions on the transversal sections of Ω. These convergences are uniform in bounded intervals
of time. In addition we remark that, with the same arguments used to prove Theorem 1.1, one
can obtain weak convergence in L∞−norm (or in Ck−norm) when we take initial conditions in
L∞ (Ck) and forcing terms f ∈ C(R;L∞(Ω)) (f ∈ C(R;Ck(Ω))).

Also, we get at the limit a kernel J∗ which is symmetric and non-negative, but the limit nonlocal
problem is not of convolution type. We call equation (1.3) as the limit equation of problem (1.1).
Let us point its dependence with respect on the geometry of open set Ω given by the term |Γ(·)|,
the Lebesgue measure of the transversal section of Ω. In some sense, we see here how the geometry
of the thin domain Ωε affects the original problem (1.2) as it becomes thinner and thinner in the
vertical direction x2.

The study of equations in thin domains occurs in applications as they can be found in mathemat-
ical models for ocean dynamics (where one is dealing with fluid regions which are thin compared to
the horizontal length scales), lubrication, nanotechnology, blood circulation, material engineering,
meteorology, etc. Many techniques and methods have been developed in order to understand the
effect of the geometry and thickness of the domain on the solutions of such singular problems.
From pioneering works to recent ones we can mention [27, 19, 14, 5, 3] concerned with elliptic
and parabolic equations, as well as [2, 12, 4, 15, 18] where the authors considered Stokes and
Navier-Stokes equations from fluid mechanics.

Concerning references for nonlocal evolution problems with smooth kernels we refer to [6, 7, 8,
13, 25], the book [1] and references therein. This kind of equations have been considered recently
in connection with real applications (for example to peridynamics, a recent model for elasticity,
biology, etc.), we quote for instance [9, 16, 17, 20, 28, 29]. Let us point out that since we are
integrating in Ω the nonlocal problem considered here is a nonlocal analogous to the classical
elliptic problem for the Laplacian with homogeneous Neumann boundary conditions, that is,

{
ut = ∆u+ f,
∂u

∂n
= 0.

In fact, in [7] it is proved that solutions to the nonlocal problem (1.1) converge, as a rescaling
parameter that controls the size of the support of J goes to zero, to the solution to the local
problem.

This paper can be viewed as a natural continuation of [21] where the authors deal with the
elliptic nonlocal problem in a product domain, that is, when the thin domain Ωε is of the form
Ωε = Ω1 × εΩ2. Notice that in the case of a product domain we have that the measure of the
transversal section is constant |Γ(·)| = |Ω2| and hence the effect in the operator that appears in
the limit equation is just the multiplication by a constant. Our results here apply also to the
elliptic case, extending the previous results to general domains.

The paper is organized as follows: in Section 2 we include some preliminary results (we discuss
existence and uniqueness of the solutions to (1.1) and obtain a crucial estimate that is uniform in
ε > 0); while in Section 3 we deal with the proof of our main result concerning the limit as ε→ 0
for the Neumann problem, Theorem 1.1.
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2. Preliminary results

In this section we discuss existence and uniqueness of the solutions of the nonlocal Neumann
problem (1.1). We also get a uniform in ε > 0 estimate.

Proposition 2.1. Let us assume hypotheses (H) and take f ∈ C(R;L2(Ω)). Then, for each
u0 ∈ L2(Ω), the nonlocal problem (1.1) possesses a unique global solution uε : R × Ω 7→ R such
that, for all bounded interval [a, b] ⊂ R, we have

uε ∈ C1([a, b], L2(Ω))

and satisfies the equation in an integral sense, that is,

(2.4)

uε(t, x) = e−Aε(x)tu0(x) +

∫ t

0

e−Aε(x)(t−s)
∫

Ω

Jε(x− y)uε(s, y) dyds

+

∫ t

0

e−Aε(x)(t−s)f(s, x) ds

for (t, x) ∈ R× Ω, where Aε ∈ L∞(Ω) is the positive function

Aε(x) =

∫
Ω

Jε(x− y) dy, x ∈ Ω.

Moreover, there exist positive constants α and C, independent of ε, and ε0 such that

(2.5)

∥∥∥∥uε(t, ·)− 1

|Ω|

∫
Ω

u0(x) dx

∥∥∥∥
L2(Ω)

≤ e−αt
[∥∥∥∥u0 −

1

|Ω|

∫
Ω

u0(x) dx

∥∥∥∥
L2(Ω)

+ C

∫ t

0

‖f(s, ·)‖2L2(Ω) ds

]
for any ε ∈ (0, ε0].

If we also assume that u0 ∈ L∞(Ω) and

(2.6)

∫ ∞
0

‖eγsf(s, ·)‖L∞(Ω)ds <∞

for γ = ‖J‖L∞(RN ) |Ω|, then

(2.7)

∥∥∥∥uε(t, ·)− 1

|Ω|

∫
Ω

u0(x) dx

∥∥∥∥
L∞(Ω)

≤ C e−mt

for some constant m > 0 and any t ≥ 0.

Proof. First we note that the solutions of (1.1) can be written in the integral form as in (2.4). In
fact, for each ε > 0, the solution can be obtained as the fixed point of the map

F (u)(t, x) = e−Aε(x)tu0(x) +

∫ t

0

e−Aε(x)(t−s)
∫

Ω

Jε(x− y)uε(s, y) dyds

+

∫ t

0

e−Aε(x)(t−s)f(s, x) ds.

The proof that F possesses a fixed point globally defined with t ∈ R is analogous to that one
given, for instance, in [25, Section 4]. See also [1, Section 3.2.1]. We omit the details here.

Thus, let us prove estimate (2.5). Consider

H(t) =
1

2

∫
Ω

(
uε(t, ·)− 1

|Ω|

∫
Ω

u0(x) dx

)2

dx.
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Then, due to Young’s inequality, for any δ > 0 we have

(2.8)

H ′(t) =

∫
Ω

(
u(t, x)− 1

|Ω|

∫
Ω

u0(x) dx

)∫
Ω

Jε(x− y)(u(t, y)− u(t, x))2dydx

+

∫
Ω

(
u(t, x)− 1

|Ω|

∫
Ω

u0(x) dx

)
f(t, x) dx

= −1

2

∫
Ω

∫
Ω

Jε(x− y)(u(t, y)− u(t, x))2dydx

+

∫
Ω

(
u(t, x)− 1

|Ω|

∫
Ω

u0(x) dx

)
f(t, x) dx

≤ 2(δ2 − λε1)H(t) + δ−2‖f(t, ·)‖2L2(Ω)

where λε1 is the first nontrivial eigenvalue of the nonlocal Neumann problem given by

λε1 = inf
u∈W

1

2

∫
Ω

∫
Ω

Jε(x− y)(u(y)− u(x))2dy dx∫
Ω

u2(x) dx

in the space

W =

{
u ∈ L2(Ω) :

∫
Ω

u(x) dx = 0

}
.

For the positivity of λε1 we refer to [1].

Note that here we are using the identity∫
Ω

ϕ(x)

∫
Ω

Jε(x− y)(φ(y)− φ(x)) dydx = −1

2

∫
Ω

∫
Ω

Jε(x− y)(ϕ(y)− ϕ(x))(φ(y)− φ(x)) dydx

that holds since Jε(−x) = Jε(x).

Hence, we can integrate (2.8) obtaining

H(t) ≤ e2(δ2−λε1)t

[
H(0) + δ−2

∫ t

0

‖f(s, ·)‖2L2(Ω)ds

]
.

Also, we know from [21, Lemma 2.1] that the family of eigenvalues λε1 satisfies λε1 → λ1 as ε→ 0
with λ1 the first non trial eigenvalue of the Neumann Laplacian that is strictly positive. Thus, we
conclude the proof of (2.5) taking some ε0 > 0, and δ small enough, in order to guarantee that
δ2 − λε1 < 0 for all ε ∈ (0, ε0].

Now, let us show (2.7). If we let

wε(t, x) = uε(t, x)− 1

|Ω|

∫
Ω

u0(x) dx,

it is not difficult to see that wε satisfies (1.1) with initial datum w0(x) = u0(x)− 1
|Ω|
∫

Ω
u0(x) dx,

and then, it is given by (2.4)

wε(t, x) = e−Aε(x)tw0(x) +

∫ t

0

e−Aε(x)(t−s) f(s, x) ds

+

∫ t

0

e−Aε(x)(t−s)
∫

Ω

Jε(x− y)w(s, x) dyds.

Next, since J is continuous with J(0) > 0, and Ω is a bounded domain, there exists a positive
constant m such that

0 < m ≤ Aε(x) =

∫
Ω

Jε(x− y) dy ≤ ‖J‖L∞ |Ω| = γ,
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whenever ε ∈ (0, ε1] for any fixed ε1 > 0. Hence, we obtain

‖eAε(·)twε(t, ·)‖L∞(Ω) ≤ ‖w0‖L∞(Ω) +

∫ ∞
0

‖eγsf(s, ·)‖L∞(Ω) ds

+γ

∫ t

0

‖eAε(·)sw(s, ·)‖L∞(Ω) ds.

Therefore, from [11, Gronwall’s inequality] and (2.6), there exists a positive constant C, inde-
pendent of ε and t, such that

‖eAε(·)twε(t, ·)‖L∞(Ω) ≤ C, ∀t > 0 and ε ∈ (0, ε1].

From this, we conclude the result. �

3. Proof of Theorem 1.1

In this section we prove our main result, Theorem 1.1.

Proof of Theorem 1.1. First we note that the existence of the family of solutions uε of (1.1) is
guaranteed by Proposition 2.1. Also, for any bounded interval [a, b] ⊂ R, we get that there exists
a positive constant K, independent of ε, such that

(3.9) sup
t∈[a,b]

‖uε(t, ·)‖L2(Ω) ≤ K.

That is, the family uε is uniformly bounded in L∞
(
[a, b];L2(Ω)

)
. Thus, since L1

(
[a, b];L2(Ω)

)
is

a separable Banach space, we can extract a subsequence, still denoted by uε, such that

(3.10) uε ⇀ u∗ weakly∗ in L∞([a, b];L2(Ω)),

for some u∗ ∈ L∞
(
[a, b];L2(Ω)

)
. In order to simplify the notation, we assume, from now on that

[a, b] = [0, T ] with T > 0. Now we pass to the limit in the variational formulation of the expression
(2.4). For any ϕ ∈ L2(Ω), we have to pass to the limit in

(3.11)

∫
Ω

ϕ(x)uε(t, x) dx =

∫
Ω

ϕ(x) e−Aε(x)t u0(x) dx

+

∫
Ω

ϕ(x)

∫ t

0

e−Aε(x)(t−s) f(s, x) dsdx

+

∫
Ω

ϕ(x)

∫ t

0

e−Aε(x)(t−s)
∫

Ω

Jε(x− y)uε(s, y) dydsdx

= Iε1 + Iε2 + Iε3.

First, let us see that for any compact set K ⊂ RN , we have

(3.12) Jε(x1, x2) = J(x1, εx2)→ J(x1, 0) uniformly in K

as ε → 0. In fact, since J is a continuous function in RN , given any δ > 0, we have that there
exists ε0 > 0 such that

|J(x1, εx2)− J(x1, 0)| dz ≤ δ
whenever ε|x2| ≤ ε0 and (x1, x2) ∈ K.

Let

Aε(x) =

∫
Ω

Jε(x− y) dy, x ∈ Ω.

It follows from (3.12) that

(3.13) Aε → A0 strongly in L∞(Ω)
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with A0 strictly positive in Ω. Indeed, since we assume J(0) > 0, there exit ε1 > 0 and m > 0
such that

(3.14) |Ω|‖J‖∞ ≥
∫

Ω

Jε(x− y) dy ≥ m > 0, whenever ε ∈ [0, ε1].

Hence, we can argue as in (3.12) to obtain

|Aε(x)−A0(x)| ≤
∫

Ω

|J(x1 − y1, ε(x2 − y2))− J(x1 − y1, 0)| dz ≤ δ |Ω|

whenever ε|x2 − y2| ≤ ε0 and (x − y) ∈ K where K is any comapact in RN fixed. Thus, we get
(3.13) with

|Ω|‖J‖∞ ≥ A0(x) ≥ m > 0 ∀x ∈ Ω.

Now, since the exponential function is uniformly continuous in any bounded closed interval in
R, it follows from (3.13) that

(3.15) e−Aε(x)t → e−A0(x)t uniformly in (t, x) ∈ [0, T ]× Ω

as ε→ 0.

Thus, for all t ∈ [0, T ], we obtain from (3.15) that

Iε1 =

∫
Ω

ϕ(x) e−Aε(x)t u0(x) dx and Iε2 =

∫
Ω

ϕ(x)

∫ t

0

e−Aε(x)(t−s) f(s, x) dsdx

verify

(3.16) Iε1 →
∫

Ω

ϕ(x) e−A0(x)t u0(x) dx and Iε2 →
∫

Ω

ϕ(x)

∫ t

0

e−A0(x)(t−s) f(s, x) dsdx

for any test function ϕ ∈ L2(Ω).

Next, let us consider the following sequence

Uε(t, x) =

∫ t

0

e−Aε(x)(t−s)
∫

Ω

Jε(x− y)uε(s, y)dyds

defined for any (t, x) ∈ R × Ω. Thus, since the sequences uε and Jε satisfy (3.10) and (3.12)
respectively, we obtain from (3.15)

Uε(t, x)→ U0(t, x) =

∫ t

0

e−A0(x)(t−s)
∫

Ω

J(x1 − y1, 0)u∗(s, y)dyds

for any (t, x) ∈ R× Ω. Furthermore, for all t ∈ [0, T ], we have from (3.9) and (3.14) that

|Uε(t, x)| ≤
∫ t

0

‖Jε‖L2(Ω)‖uε(s, ·)‖L2(Ω) ds ≤ T K |Ω|1/2.

Therefore, due to Convergence Dominated Theorem, it follows from (3.9) and (3.12) that

(3.17) Uε(t, ·) ⇀ U0(t, ·) weakly in L2(Ω)

for each t ∈ [0, T ]. Indeed, we have

(3.18) Uε(t, ·)→ U0(t, ·) strongly in L2(Ω)

since

|Uε(t, x)|2 ≤ T 2K2|Ω|,
and hence, we can take limit again, due to Dominated Convergence Theorem, to obtain

(3.19) ‖Uε(t, ·)‖L2(Ω) → ‖U0(t, ·)‖L2(Ω)

for all t ∈ [0, T ]. Therefore, the strong convergence (3.18) follows from (3.17) and (3.19) since we
are working here in a Hilbert space.
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Now, we are ready to analyze the term

Iε3 =

∫
Ω

ϕ(x)

∫ t

0

e−Aε(x)(t−s)
∫

Ω

Jε(x− y)uε(s, y) dydsdx.

From (3.18) we have

Iε3 =

∫
Ω

ϕ(x)Uε(t, x) dx

→
∫

Ω

ϕ(x)U0(t, x) dx

=

∫
Ω

ϕ(x)

∫ t

0

e−A0(x)(t−s)
∫

Ω

J(x1 − y1, 0)u∗(s, y) dydxds

for any ϕ ∈ L2(Ω). Thus, we can pass to the limit in (3.11). Using (3.16) and (3.20), we obtain∫
Ω

ϕ(x)u∗(t, x) dx =

∫
Ω

ϕ(x)

[
e−A0(x)t u0(x) +

∫ t

0

e−A0(x)(t−s) f(s, x) ds

]
dx

+

∫
Ω

ϕ(x)

∫ t

0

e−A0(x)(t−s)
∫

Ω

J(x1 − y1, 0)u∗(s, y) dydsdx,

which implies

(3.21)

u∗(t, x) = e−A0(x)t u0(x) +

∫ t

0

e−A0(x)(t−s) f(s, x) ds

+

∫ t

0

e−A0(x)(t−s)
∫

Ω

J(x1 − y1, 0)u∗(s, y) dyds

for all t ∈ [0, T ] and a.e. x in Ω.

Hence, it follows from Theorem 2.1 that u∗ ∈ C1([0, T ];L2(Ω)) is unique and satisfies

(3.22)
u∗t (t, x) =

∫
Ω

J(x1 − y1, 0)(u∗(t, y)− u∗(t, x))dy + f(t, x)

u∗(0, x) = u0(x).

That is, the sequence uε is weak convergent, and converges to a function u∗ solution of the nonlocal
equation (3.22). Notice that, in despite of J(·, 0) does not satisfy the condition

∫
Ω
J(x1, 0) dx = 1,

we have that Theorem 2.1 can still be applied here.

We can also obtain the limit equation (1.3). Taking test functions ϕ(x1, x2) = ϕ(x1) in (3.22),
(that is, test functions only depending on the first variable x1 ∈ Ω1), we get∫

Ω1

ϕ(x1)

∫
Γ(x1)

u∗t (t, x) dx2dx1 =

∫
Ω1

ϕ(x1)

∫
Γ(x1)

f(t, x) dx2dx1

+

∫
Ω1

ϕ(x1)

∫
Ω1

J(x1 − y1, 0)

[
|Γ(x1)|

∫
Γ(y1)

u∗(t, y) dy2 − |Γ(y1)|
∫

Γ(x1)

u∗(t, x) dx2

]
dy1dx1.

Consequently, we have∫
Γ(x1)

u∗t (t, x) dx2 =

∫
Γ(x1)

f(t, x) dx2

+

∫
Ω1

J(x1 − y1, 0)

[
|Γ(x1)|

∫
Γ(y1)

u∗(t, y) dy2 − |Γ(y1)|
∫

Γ(x1)

u∗(t, x) dx2

]
dy1

for all t ∈ R and a.e. x1 ∈ Ω1. Hence, we obtain the limit problem (1.3) observing that

|Γ(x1)| 6= 0 a.e. x1 ∈ Ω1.
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Next, let us prove that we have strong convergence, that is,

(3.23) sup
t∈[0,T ]

‖uε(t, ·)− u∗(t, ·)‖L2(Ω) → 0, as ε→ 0.

We first observe that, due to (2.4) and (3.21), we have

|uε(t, x)− u∗(t, x)|2 =
∣∣∣(e−Aε(x)t − e−A0(x)t

)
u0(x)

+

∫ t

0

(
e−Aε(x)(t−s) − e−A0(x)(t−s)

)
f(s, x) ds

+

∫ t

0

(
e−Aε(x)(t−s) − e−A0(x)(t−s)

)∫
Ω

Jε(x− y)uε(s, y) dyds

+

∫ t

0

e−A0(x)(t−s)
∫

Ω

(Jε(x− y)− J(x1 − y1, 0))uε(s, y) dyds

+

∫ t

0

e−A0(x)(t−s)
∫

Ω

J(x1 − y1, 0) (uε(s, y)− u∗(s, y)) dyds

∣∣∣∣2 .
Thus,

|uε(t, x)− u∗(t, x)|2 ≤ 16

[
C2
T,Ω(ε)

(
|u0(x)|2 + t2

∫ t

0

(f(s, x))2 ds

)
+C2

T,Ω(ε) ‖Jε(x− ·)‖2L2(Ω)

∫ t

0

∫
Ω

(uε(s, y))2 dyds+M2
B(ε)

∫ t

0

∫
Ω

(uε(s, y))2 dyds

+‖Jε(x− ·)‖2L2(Ω)

∫ t

0

∫
Ω

(uε(s, y)− u∗(s, y))
2
dyds

]
where

CT,Ω(ε) = sup
(t,x)∈[0,T ]×Ω

∣∣∣e−Aε(x)t − e−A0(x)t
∣∣∣

and

MB(ε) = sup
x∈B
|Jε(x)− J(x1, 0)|.

Here, the set B denotes a ball in RN with radius bigger than twice the diameter of the bounded
set Ω. We also have from (3.12) and (3.15) that

(3.27) CT,Ω(ε)→ 0 and MB(ε)→ 0

as ε→ 0.

Hence, we can integrate in Ω the previous inequality obtaining

‖uε(t, ·)− u∗(t, ·)‖2L2(Ω) ≤ 16

[
C2
T,Ω(ε)

(
‖u0(x)‖2L2(Ω) + t2

∫ t

0

‖f(s, ·)‖2L2(Ω) ds

)
+C2

T,Ω(ε)

(∫
Ω

∫
Ω

Jε(x− y)2 dydx

)∫ t

0

∫
Ω

(uε(s, y))2 dyds

+M2
B(ε) |Ω|

∫ t

0

∫
Ω

(uε(s, y))2 dyds

+

(∫
Ω

∫
Ω

J(x1 − y1, 0)2 dydx

)∫ t

0

‖uε(s, ·)− u∗(s, ·)‖2L2(Ω) ds

]
.

Consequently, we get (3.23) from (3.9), (3.27) and [11, Gronwall’s inequality].

Finally, we conclude the proof obtaining

sup
t∈[0,T ]

‖ (U ε(t, ·)− U∗(t, ·)) |Γ(·)|‖L2(Ω) → 0, as ε→ 0.
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In fact, this limit is due to (3.23) and the following estimate∫
Ω1

|Γ(x1)|2 (U ε(t, x1)− U∗(t, x1))
2
dx1 =

∫
Ω1

(∫
Γ(x1)

(uε(t, x1, x2)− u∗(t, x1, x2)) dx2

)2

dx1

≤
∫

Ω1

|Γ(x1)|
∫

Γ(x1)

(uε(t, x1, x2)− u∗(t, x1, x2))
2
dx2dx1

≤ sup
x1∈Ω1

|Γ(x1)|
∫

Ω

(uε(t, x)− u∗(t, x))
2
dx.

The proof is now complete. �
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