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Abstract. We study the Steklov eigenvalue problem for the ∞-
laplacian. To this end we consider the limit as p →∞ of solutions
of −∆pup = 0 in a domain Ω with |∇up|p−2∂up/∂ν = λ|u|p−2u
on ∂Ω. We obtain a limit problem that is satisfied in the viscosity
sense and a geometric characterization of the second eigenvalue.

1. Introduction.

Let ∆pu = div (|∇u|p−2∇u) be the p−laplacian. The limit operator
limp→∞ ∆p = ∆∞ is the ∞-Laplacian given by

∆∞u =
N∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi

in the viscosity sense. This operator appears naturally when one con-
siders absolutely minimizing Lipschitz extensions of a boundary func-
tion f , see [A], [ACJ], and [J].

Our concern in this paper is the study of the Steklov eigenvalue prob-
lem for the ∞−Laplacian. To this end we consider the ∞−Laplacian
in a bounded smooth domain as limit of the p−laplacian as p → ∞.
Therefore our aim is to analyze the limit as p → ∞ for the Steklov
eigenvalue problem

(1.1)

{ −∆pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω, .

Here Ω is a bounded domain in RN with smooth boundary and ∂
∂ν

is the
outer normal derivative. Steklov eigenvalues have been introduced in
[S] for p = 2. For the existence of a sequence of variational eigenvalues
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see [S] for p = 2 and [FBR1] for general p. As happens for the eigenval-
ues for the Dirichlet problem for the p−Laplacian it is not known, in
general, if this sequence constitutes the whole spectrum. Note that the
first eigenvalue of (1.1) is λ1,p = 0 with eigenfunction u1,p ≡ 1. Hence
we can trivially pass to the limit and obtain λ1,∞ = 0 with eigenfunc-
tion u1,∞ ≡ 1. Our main result in this paper shows that we can pass
to the limit in the variational eigenvalues defined in [FBR1]. Since the
first eigenvalue is isolated, [MR], there exists a second eigenvalue that
has a variational characterization, [FBR2]. We can pass to the limit in
this second eigenvalue and obtain a geometric characterization of the
second Steklov eigenvalue for the ∞−Laplacian. Moreover we obtain
a uniform limit of the sequence of eigenfunctions (along subsequences)
and we find a limit eigenvalue problem that is satisfied in a viscos-
ity sense which involves the ∞−Laplacian together with a boundary
condition with the normal derivative ∂u

∂ν
.

Theorem 1.1. For the first eigenvalue of (1.1) we have,

lim
p→∞

λ
1/p
1,p = λ1,∞ = 0,

with eigenfunction given by u1,∞ = 1.
For the second eigenvalue, it holds

lim
p→∞

λ
1/p
2,p = λ2,∞ =

2

diam(Ω)
.

Moreover, given u2,p eigenfunctions of (1.1) of eigenvalues λ2,p nor-
malized by ‖u2,p‖L∞(∂Ω) = 1, there exits a sequence pi → ∞ such that

u2,pi
→ u2,∞, in Cα(Ω). The limit u2,∞ is a solution of

(1.2)

{
∆∞u = 0 in Ω,
Λ(x, u,∇u) = 0, on ∂Ω,

in the viscosity sense, where

Λ(x, u,∇u) ≡




min
{|∇u| − λ2,∞|u| , ∂u

∂ν

}
if u > 0,

max{λ2,∞|u| − |∇u| , ∂u
∂ν
} if u < 0,

∂u
∂ν

if u = 0.

For the k-th eigenvalue we have that if λk,p is the k-th variational eigen-
value of (1.1) with eigenfunction uk,p normalized by ‖uk,p‖L∞(∂Ω) = 1,
then for every sequence pi →∞ there exists a subsequence such that

lim
pi→∞

λ
1/p
k,p = λ∗,∞

and uk,pi
→ u∗,∞ in Cα(Ω), where u∗,∞ and λ∗,∞ is a solution of (1.2).
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We have a simple geometrical characterization of λ2,∞ as 2/diam(Ω).
From this characterization and the convergence of the eigenfunctions
we conclude that the second Steklov eigenfunction in an annulus or a
ball is not radial. Also we have that the domain that maximizes λ2,∞
among domains with fixed volume is a ball.

We end the introduction with a brief comment on the Dirichlet
case. Eigenvalues of the p−Laplacian, −∆pu = λ|u|p−2u, with Dirich-
let boundary conditions, u = 0 on ∂Ω, have been extensively studied
since [GAP]. The limit as p →∞ was studied in [JL], [JLM]. In these
papers the authors prove results similar to ours. however our proofs
are necessarily different due to the presence of the Neumann boundary
condition. An anisotropic version of the Dirichlet problem was studied
in [BK].

2. The Steklov eigenvalue problem

First, let us recall some well known results concerning the Steklov
eigenvalue problem for the p−laplacian. To this end, we introduce a
topological tool, the genus, see [K].

Definition 2.1. Given a Banach Space X, we consider the class Σ =
{A ⊂ X : A is closed, A = −A}. Over this class we define the genus,
γ : Σ → N ∪ {∞}, as

γ(A) = min{k ∈ N : there exists ϕ ∈ C(A,Rk−{0}), ϕ(x) = −ϕ(−x)}.
We have the following result whose proof can be obtained following

[FBR1], we do not provide the details.

Theorem 2.1. There exists a sequence of eigenvalues λn of (1.1) such
that λn → +∞ as n → +∞. The so-called variational eigenvalues λk

can be characterized by

(2.1)
1

λk

= sup
C∈Ck

min
u∈C

‖u‖p
Lp(∂Ω)

‖u‖p
W 1,p(Ω)

,

where Ck = {C ⊂ W 1,p(Ω); C is compact, symmetric and γ(C) ≥ k}
and γ is the genus.

There exists a second eigenvalue for (1.1) and it coincides with the
second variational eigenvalue λ2,p, see [FBR2]. Moreover, the following
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characterization of the second eigenvalue λ2,p holds

λ2,p = inf
u∈A





∫

Ω

|∇u|p dx
∫

Ω

|u|p dσ





,

where A = {C ⊂ W 1,p(Ω); C is compact, symmetric and γ(C) ≥ 2}.
Observe that every eigenfunction associated with λ2 changes sign on
∂Ω, see [MR].

Following [B] let us recall the definition of viscosity solution taking
into account general boundary conditions.

Definition 2.2. Consider the boundary value problem

(2.2)

{
F (x,∇u,D2u) = 0 in Ω,
B(x, u,∇u) = 0 on ∂Ω.

(1) A lower semi-continuous function u is a viscosity supersolution
if for every φ ∈ C2(Ω) such that u−φ has a strict minimum at
the point x0 ∈ Ω with u(x0) = φ(x0) we have: If x0 ∈ ∂Ω the
inequality

max{B(x0, φ(x0),∇φ(x0)), F (x0,∇φ(x0), D
2φ(x0))} ≥ 0

holds, and if x0 ∈ Ω then we require

F (x0,∇φ(x0), D
2φ(x0)) ≥ 0.

(2) An upper semi-continuous function u is a subsolution if for
every φ ∈ C2(Ω) such that u − φ has a strict maximum at
the point x0 ∈ Ω with u(x0) = φ(x0) we have: If x0 ∈ ∂Ω the
inequality

min{B(x0, φ(x0),∇φ(x0)), F (x0,∇φ(x0), D
2φ(x0))} ≤ 0

holds, and if x0 ∈ Ω then we require

F (x0,∇φ(x0), D
2φ(x0)) ≤ 0.

(3) Finally, u is a viscosity solution if it is a super and a subsolu-
tion.

In our case for the Steklov problem for the p−Laplacian we have

Fp(η,X) ≡ −Trace(Ap(η)X),

where

Ap(η) = Id + (p− 2)
η ⊗ η

|η|2 , if η 6= 0, Ap(0) = IN ,
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and

(2.3) Bp(x, u, η) ≡ |η|p−2 < η, ν(x) > −λ|u|p−2u.

With this notation we have,

∆pu = Fp(∇u,D2u) ≡ −
{ |∇φ(x0)|2∆φ(x0)

p− 2
+ ∆∞φ(x0)

}
.

Remark 2.1. If Bp is monotone in the variable ∂u
∂ν

Definition 2.2 takes
a simpler form, see [B]. This is indeed the case for (2.3). More con-
cretely, if u is a supersolution of (1.1) and φ ∈ C2(Ω) is such that
u− φ has a strict minimum at x0 with u(x0) = φ(x0), then

(1) if x0 ∈ Ω, then

−
{ |∇φ(x0)|2∆φ(x0)

p− 2
+ ∆∞φ(x0)

}
≥ 0,

and
(2) if x0 ∈ ∂Ω, then

|∇φ(x0)|p−2〈∇φ(x0), ν(x0)〉 ≥ λ|φ(x0)|p−2φ(x0).

Let us state a lemma that says that weak solutions of (1.1) are
viscosity solutions.

Lemma 2.1. A continuous weak solution of (1.1) is a viscosity solu-
tion.

Proof. Let x0 ∈ Ω and a test function φ such that u(x0) = φ(x0) and
u− φ has a strict minimum at x0. We want to show that

−(p− 2)|∇φ|p−4∆∞φ(x0)− |∇φ|p−2∆φ(x0) ≥ 0.

Assume that this is not the case, then there exists a radius r > 0 such
that

−(p− 2)|∇φ|p−4∆∞φ(x)− |∇φ|p−2∆φ(x) < 0,

for every x ∈ B(x0, r). Set m = inf |x−x0|=r(u − φ)(x) and let ψ(x) =
φ(x) + m/2. This function ψ verifies ψ(x0) > u(x0) and

−div(|∇ψ|p−2∇ψ) < 0.

Multiplying by (ψ − u)+ extended by zero outside B(x0, r) we get∫

{ψ>u}
|∇ψ|p−2∇ψ∇(ψ − u) < 0.

Taking (ψ − u)+ as test function in the weak form we get∫

{ψ>u}
|∇u|p−2∇u∇(ψ − u) = 0.
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Hence,

C(N, p)

∫

{ψ>u}
|∇ψ −∇u|p

≤
∫

{ψ>u}
〈|∇ψ|p−2∇ψ − |∇u|p−2∇u,∇(ψ − u)〉 < 0,

a contradiction.
If x0 ∈ ∂Ω we want to prove

max { |∇φ(x0)|p−2 < ∇φ(x0), ν(x0) > −λ|φ(x0)|p−2φ(x0),
−(p− 2)|∇φ|p−4∆∞φ(x0)− |∇φ|p−2∆φ(x0)} ≥ 0.

Assume that this is not the case. We proceed as before and we obtain∫

{ψ>u}
|∇ψ|p−2∇ψ∇(ψ − u) <

∫

∂Ω∩{ψ>u}
λ|u|p−2u(ψ − u),

and ∫

{ψ>u}
|∇u|p−2∇u∇(ψ − u) ≥

∫

∂Ω∩{ψ>u}
λ|u|p−2u(ψ − u).

Therefore,

C(N, p)

∫

{ψ>u}
|∇ψ −∇u|p

≤
∫

{ψ>u}
〈|∇ψ|p−2∇ψ − |∇u|p−2∇u,∇(ψ − u)〉 < 0,

again a contradiction. This proves that u is a viscosity supersolution.
The proof of the fact that u is a viscosity subsolution runs as above,
we omit the details. ¤

With all these preliminaries we are ready to pass to the limit as
p →∞ in the eigenvalue problem.

Since u1,p ≡ 1 is the first eigenfunction of (1.1) associated to λ1,p = 0
we can trivially pass to the limit and obtain

lim
p→∞

λ
1/p
1,p = 0 = λ1,∞

and
lim
p→∞

u1,p = 1 = u1,∞.

Now let us prove a geometrical characterization of the second Steklov
eigenvalue for the ∞−laplacian, defined by,

(2.4) λ2,∞ = inf

{‖∇u‖L∞(Ω)

‖u‖L∞(∂Ω)

: u ∈ C ⊂ W 1,∞(Ω) with γ(C) ≥ 2

}
.

We have
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Lemma 2.2. λ2,∞ has the following geometrical characterization

λ2,∞ =
2

diam(Ω)
.

Proof. Let

R = sup
{
r : ∃x0, x1 ∈ Ω with B(x0, r) ∩B(x1, r) = ∅} =

diam(Ω)

2
.

We can take as a test function in (2.4) the combination of two cones
centered at x0 and x1 with radius R, that is, if

C0(x) =

(
1− |x− x0|

R

)

+

, C1(x) =

(
1− |x− x1|

R

)

+

,

we consider

φ(x) = C0(x)− C1(x).

We obtain

λ2,∞ ≤ 1

R
=

2

diam(Ω)
.

To prove the reverse inequality, let us take a function u in W 1,∞(Ω)
that changes sign and such that

λ2,∞ ≥ ‖∇u‖L∞(Ω)

‖u‖L∞(∂Ω)

− ε.

Now u+ and u− have disjoint supports and we may normalize with
‖u+‖L∞(∂Ω) = ‖u−‖L∞(∂Ω) = 1 then

‖∇u+‖L∞(Ω) ≥ 1/R, or ‖∇u−‖L∞(Ω) ≥ 1/R.

Therefore,

λ2,∞ ≥ 1

R
− ε =

2

diam(Ω)
− ε.

Since this holds for every ε, the proof is complete. ¤

Lemma 2.3.

lim sup
p→∞

λ
1/p
2,p ≤ λ2,∞.

Proof. As above, let C0(x) and C1(x) two cones centered at x0 and x1

of radius R as above, that is

C0(x) =

(
1− |x− x0|

R

)

+

, C1(x) = −
(

1− |x− x1|
R

)

+

.
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Let us normalize a function v = aC0− bC1 (a, b > 0) by ‖v‖L∞(∂Ω) = 1,
then

λ
1/p
2,p ≤

(∫

Ω

|∇v|p
)1/p

(∫

∂Ω

|v|p
)1/p

.

Hence

lim sup λ
1/p
2,p ≤

1

R
= λ2,∞,

as we wanted to prove. ¤
Lemma 2.4. Given u2,p eigenfunctions of (1.1) of eigenvalues λ2,p

normalized by ‖u2,p‖L∞(∂Ω) = 1, there exits a sequence pi → ∞ such
that

u2,pi
→ u2,∞, in Cα(Ω).

The limit u2,∞ verifies ‖u2,∞‖L∞(∂Ω) = 1 and it changes sign in ∂Ω.
Moreover it is a minimizer of (2.4) and

lim
p→∞

λ
1/p
2,p = λ2,∞.

Proof. If q < p,

(2.5)

(∫

Ω

|∇u2,p|q
)1/q

≤ |Ω|(1/q)−(1/p)

(∫

Ω

|∇u2,p|p
)1/p

= λ
1/p
2,p |Ω|(1/q)−(1/p)

(∫

∂Ω

|u2,p|p
)1/p

≤ λ
1/p
2,p |Ω|(1/q)−(1/p)|∂Ω|1/p.

Therefore, by Lemma 2.3, we get that there exists a constant C inde-
pendent of p such that

(2.6)

(∫

Ω

|∇u2,p|q
)1/q

≤ C.

Hence, as u2,p are uniformly bounded in W 1,q(Ω) we can take a subse-
quence such that it converges weakly in W 1,q(Ω) (and hence in Cα(Ω)
if q > N) to a limit u2,∞. Since this can be done for any q we obtain
that u2,∞ ∈ W 1,∞(Ω). Indeed, from (2.5), we get

(2.7)

(∫

Ω

|∇u2,∞|q
)1/q

≤ lim sup
pi→∞

(∫

Ω

|∇u2,pi
|q
)1/q

≤ λ2,∞|Ω|1/q.

Hence, taking limit as q →∞ in (2.7) we get

(2.8) ‖∇u2,∞‖L∞(Ω) ≤ lim inf
p→∞

λ
1/p
2,p ≤ λ2,∞.
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From the convergence in Cα(Ω) of the sequence u2,pi
and the normal-

ization
‖u2,pi

‖L∞(∂Ω) = 1

we obtain that

(2.9) ‖u2,∞‖L∞(∂Ω) = 1.

To end the proof we need to check that u2,∞ changes sign. Assume
that u2,∞ ≥ 0. Hence u−2,pi

converges uniformly to zero in Ω. From
(2.9) there exists a point x0 ∈ ∂Ω such that u2,∞(x0) = 1. At level p
we have, ∫

∂Ω

|u|p−2u = 0,

then ∫

∂Ω

(u+)p−1 =

∫

∂Ω

(u−)p−1.

Therefore,
(2.10)

|∂Ω|(1/r)−(1/(pi−1))

(∫

∂Ω

|u+
2,pi
|r
)1/r

≤
(∫

∂Ω

|u+
2,pi
|pi−1

)1/(pi−1)

=

(∫

∂Ω

|u−2,pi
|pi−1

)1/(pi−1)

≤ |∂Ω|1/(pi−1)‖u−2,pi
‖L∞(∂Ω).

From the uniform convergence of u2,pi
and (2.8) taking limit as pi →∞

we get that

(2.11) |∂Ω|1/r

(∫

∂Ω

|u+
2,∞|r

)1/r

≤ 0.

A contradiction. This proves that u2,∞ changes sign and verifies (2.8)
and (2.9), hence, from the definition of λ2,∞ we obtain

λ2,∞ ≤ lim inf
p→∞

λ
1/p
2,p .

This fact and Lemma 2.3 end the proof. ¤
Now let us analyze the equation satisfied by u2,∞. Let

Λ(x, u, η) ≡




min {|η| − λ2,∞|u| , < η, ν(x) >} if u > 0,
max{λ2,∞|u| − |η| , < η, ν(x) >} if u > 0,
< η, ν(x) > if u = 0,

Lemma 2.5. The limit u2,∞ is a viscosity solution of

(2.12)

{
∆∞u2,∞ = 0 in Ω,
Λ(x, u,∇u) = 0 on ∂Ω.
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Proof. First, let us check that −∆∞u2,∞ = 0 in the viscosity sense in
Ω. Let us recall the standard proof. Let φ be a smooth test function
such that v∞− φ has a strict maximum at x0 ∈ Ω. Since upi

converges
uniformly to v∞ we get that upi

− φ has a maximum at some point
xi ∈ Ω with xi → x0. Now we use the fact that upi

is a viscosity
solution of

−∆pup = 0

and we obtain

(2.13) −(pi − 2)|∇φ|pi−4∆∞φ(xi)− |∇φ|pi−2∆φ(xi) ≤ 0.

If ∇φ(x0) = 0 we get −∆∞φ(x0) ≤ 0. If this is not the case, we have
that ∇φ(xi) 6= 0 for large i and then

−∆∞φ(xi) ≤ 1

pi − 2
|∇φ|2∆φ(xi) → 0, as i →∞.

We conclude that

−∆∞φ(x0) ≤ 0.

That is v∞ is a viscosity subsolution of −∆∞u∞ = 0.

Now we check the boundary condition.

Assume that u2,∞ − φ has a strict minimum at x0 ∈ ∂Ω such that
u2,∞(x0) = φ(x0) > 0. Using the uniform convergence of u2,pi

to u2,∞
we obtain that u2,pi

− φ has a minimum at some point xi ∈ Ω with
xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before and
obtain

−∆∞φ(x0) ≥ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|pi−2(xi)
∂φ

∂ν
(xi) ≥ λ2,pi

|φ|pi−2(xi)φ(xi).

If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≥ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|
|∇φ| (xi)

)pi−2

φ(xi).

Using that λ
1/(p−1)
2,p → λ2,∞ as p →∞ we conclude that

λ2,∞|φ|
|∇φ| (x0) ≤ 1.
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Moreover,
∂φ

∂ν
(x0) ≥ 0.

Hence, if u2,∞ − φ has a strict minimum at x0 ∈ ∂Ω with φ(x0) =
u2,∞(x0) > 0, we have

(2.14) max

{
min{−λ2,∞|φ|+ |∇φ|(x0),

∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}
≥ 0.

Now assume that u2,∞ − φ has a strict maximum at x0 ∈ ∂Ω with
u2,∞(x0) = φ(x0) > 0. Using the uniform convergence of u2,pi

to u2,∞
we obtain that u2,pi

− φ has a maximum at some point xi ∈ Ω with
xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before and
obtain

−∆∞u2,∞(x0) ≤ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|pi−2(xi)
∂φ

∂ν
(xi) ≤ λ2,pi

|φ|pi−2(xi)φ(xi).

If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≤ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|
|∇φ| (xi)

)pi−2

φ(xi).

If λ2,∞|φ|(x0) < |∇φ|(x0), then

∂φ

∂ν
(x0) ≤ 0.

Hence,

(2.15) min

{
min{−λ2,∞|φ|+ |∇φ|(x0),

∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}
≤ 0.

Now assume that u2,∞ − φ has a strict maximum at x0 such that
u2,∞(x0) = φ(x0) < 0 Using the uniform convergence of u2,pi

to u2,∞
we obtain that u2,pi

− φ has a maximum at some point xi ∈ Ω with
xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before and
obtain

−∆∞u2,∞(x0) ≤ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|pi−2(xi)
∂φ

∂ν
(xi) ≤ λ2,pi

|φ|pi−2(xi)φ(xi).
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If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≤ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|
|∇φ| (xi)

)pi−2

φ(xi).

Using that λ
1/(p−1)
2,p → λ2,∞ as p →∞ we conclude that

λ2,∞|φ|
|∇φ| (x0) ≤ 1.

Moreover,
∂φ

∂ν
(x0) ≤ 0.

Hence,

(2.16) min

{
max{λ2,∞|φ| − |∇φ|(x0),

∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}
≤ 0.

Now assume that u2,∞ − φ has a strict minimum at x0 ∈ ∂Ω with
u2,∞(x0) = φ(x0) < 0. Using the uniform convergence of u2,pi

to u2,∞
we obtain that u2,pi

− φ has a minimum at some point xi ∈ Ω with
xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before and
obtain

−∆∞φ(x0) ≥ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|pi−2(xi)
∂φ

∂ν
(xi) ≥ λ2,pi

|φ|pi−2(xi)φ(xi).

If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≥ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|
|∇φ| (xi)

)pi−2

φ(xi).

If λ2,∞|φ|(x0) < |∇φ|(x0), then

∂φ

∂ν
(x0) ≥ 0.

Hence,

(2.17) max

{
max{λ2,∞|φ| − |∇φ|(x0),

∂φ

∂ν
(x0)} ,−∆∞φ(x0)

}
≥ 0.
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Assume that u2,∞ − φ has a strict minimum at x0 ∈ ∂Ω such that
u2,∞(x0) = φ(x0) = 0. Using the uniform convergence of u2,pi

to u2,∞
we obtain that u2,pi

− φ has a minimum at some point xi ∈ Ω with
xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before and
obtain

−∆∞φ(x0) ≥ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|pi−2(xi)
∂φ

∂ν
(xi) ≥ λ2,pi

|φ|pi−2(xi)φ(xi).

If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≥ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|
|∇φ| (xi)

)pi−2

φ(xi).

As 0 = λ2,∞|φ|(x0) < |∇φ|(x0), then

∂φ

∂ν
(x0) ≥ 0.

Hence,

(2.18) max

{
∂φ

∂ν
(x0) ,−∆∞φ(x0)

}
≥ 0.

Finally, assume that u2,∞ − φ has a strict maximum at x0 with
u2,∞(x0) = φ(x0) = 0 Using the uniform convergence of u2,pi

to u2,∞
we obtain that u2,pi

− φ has a maximum at some point xi ∈ Ω with
xi → x0. If xi ∈ Ω for infinitely many i, we can argue as before and
obtain

−∆∞u2,∞(x0) ≤ 0.

On the other hand if xi ∈ ∂Ω we have

|∇φ|pi−2(xi)
∂φ

∂ν
(xi) ≤ λ2,pi

|φ|pi−2(xi)φ(xi).

If ∇φ(x0) = 0, then
∂φ

∂ν
(x0) = 0.

If ∇φ(x0) 6= 0 we obtain

∂φ

∂ν
(xi) ≤ λ

1/(pi−1)
2,pi

(
λ

1/(pi−1)
2,pi

|φ|
|∇φ| (xi)

)pi−2

φ(xi).
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As 0 = λ2,∞|φ|(x0) < |∇φ|(x0), then

∂φ

∂ν
(x0) ≤ 0.

Hence,

(2.19) min

{
∂φ

∂ν
(x0) ,−∆∞φ(x0)

}
≤ 0.

Inequalities (2.14)-(2.19) prove the result. ¤
With the same ideas used to deal with the second eigenvalue we can

prove the following lema.

Lemma 2.6. Let λk,p be the k-th variational eigenvalue of (1.1) with
eigenfunction uk,p normalized by ‖uk,p‖L∞(∂Ω) = 1. Then for every
sequence pi →∞ there exists a subsequence such that

lim
pi→∞

λ
1/p
k,p = λ∗,∞,

uk,pi
→ u∗,∞, in Cα(Ω),

where (u∗,∞, λ∗,∞) is a solution of (1.2).
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