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Abstract. In this paper we study the fractional p−Laplacian evolution equation given by

ut(t, x) =

∫
A

1

|x− y|N+sp
|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dy for x ∈ Ω, t > 0,

0 < s < 1, p ≥ 1. In a bounded domain Ω we deal with the Dirichlet problem by taking A = RN and u = 0 in
RN \ Ω, and the Neumann problem by taking A = Ω . We include here the limit case p = 1 that has the extra

difficulty of giving a meaning to
u(y)−u(x)
|u(y)−u(x)| when u(y) = u(x). We also consider the Cauchy problem in the

whole RN by taking A = Ω = RN . We find existence and uniqueness of strong solutions for each of the above

mentioned problems. We also study the asymptotic behaviour of these solutions as t→∞. Finally, we recover
the local p−Laplacian evolution equation with Dirichlet or Neumann boundary conditions, and for the Cauchy

problem, by taking the limit as s→ 1 in the nonlocal problems multiplied by a suitable scaling constant.

1. Introduction

The interest on the fractional Laplacian operators and nonlocal operators has constantly increased over
the last few years. These operators arise in a number of applications such as: continuum mechanics, phase
transition phenomena, population dynamics, image process, game theory and Lévy processes, see [8], [15], [20],
[21], [25] and the references therein. Recently, motivated by some situations arising in game theory, nonlinear
generalizations of the fractional Laplacian have been introduced, see [9], [15]. Our aim here is to study some
evolution equations associated to a nonlinear version of the fractional Laplacian, the fractional p–Laplacian, for
1 ≤ p < +∞.

Let Ω be an open set in RN . For any p ∈ [1,∞) and any 0 < s < 1, let us denote by

[u]W s,p(Ω) =

(∫
Ω

∫
Ω

|u(y)− u(x)|p

|x− y|N+sp
dxdy

) 1
p

,

the (s, p)–Gagliardo seminorm of a measurable function u in Ω. We consider the fractional Sobolev space

W s,p(Ω) = {u ∈ Lp(Ω) : [u]W s,p(Ω) <∞},

which is a Banach space respect to the norm

‖u‖W s,p(Ω) := [u]W s,p(Ω) + ‖u‖Lp(Ω).

We denote by W s,p
0 (Ω) the closure of C∞0 (Ω) in the norm ‖ · ‖W s,p(Ω). Functions in the space W s,p

0 (Ω) can be

defined in the whole space W s,p
0 (RN ) by extending then by zero outside Ω, we will consider such extensions. We

refer to [19] where one can find a description of most of the useful properties of the fractional Sobolev spaces
(see also [12]).

We will write, as usual, p?s = Np
N−sp , to denote the fractional critical exponent for 1 ≤ p < N

s . For Ω

bounded and smooth and 1 ≤ r ≤ p?s we have the continuous immersion W s,p(Ω) ↪→ Lr(Ω), that is compact for
1 ≤ r < p?s.

Recall that a function u ∈ L1(Ω) whose gradient Du in the sense of distributions is a vector valued Radon
measure with finite total variation in Ω is called a function of bounded variation. The class of such functions will
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be denoted by BV (Ω). For a function u ∈ BV (Ω), we will denote by |Du|, the total variation of the measure
Du. If Ω ⊂ RN is an open set with Lipchitz bounday and

u(x) :=

{
u(x) if x ∈ Ω

0 if x ∈ RN \ Ω,

by [1, Corollary 3.89], we have u ∈ BV (RN ) and

|Du|(RN ) = |Du|(Ω) +

∫
∂Ω

|u|dHN−1. (1.1)

In [12] it is proved that for every u ∈ BV (RN ),

[u]W s,1(RN ) ≤
2NωN

(1− s)s
[
|Du|(RN )

]s ‖u‖1−s
L1(RN )

, (1.2)

where ωN is the volume of the unit ball of RN . Consequently, BV (RN ) is contained in W s,1(RN ). For further
information concerning functions of bounded variation we refer to [1].

Through Calculus of Variations one arrives to the local p–Laplacian operator, div(|∇u|p−2∇u), for 1 < p <∞,
as the Euler-Lagrange equation associated with the Lp–norm of the gradient of a function. Using an equivalent
framework one may define the fractional p–Laplacian (or p–s–Laplacian), ∆s

pu, by means of the Euler-Lagrange
equation of the Lp–norm of the s–derivative of a function, concretely of the energy functional

1

2p

∫
RN

∫
RN

|u(y)− u(x)|p

|x− y|N+sp
dxdy,

that is well defined for u ∈W s,p(RN ). In this way, ∆s
pu is given by

∆s
pu(x) := P.V.

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x)) dy

= lim
ε↓0

∫
RN\Bε(x)

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x)) dy, x ∈ RN .

(1.3)

This fractional version of the p–Laplacian is studied through energy and test function methods by A. Cham-
bolle, E. Lindgren and R. Monneau in [16]. The viscosity version of this non local operator was given by H. Ishii
and G. Nakamura in [23] and C. Bjorland, L. Caffarelli and A. Figalli in [9]. In [28] on can find results for the
evolution problem with Neumann conditions for the case p ≥ 2 using Galerkin’s method. Here we deal with the
Dirichlet, Neumann and Cauchy problems associated with the fractional p-Laplacian using semigroup theory.
Note that this theory is well suited for the problem under consideration since it gives existence and uniqueness
of strong solutions under very weak conditions.

If we assume that the integral in the definition of ∆s
pu exists, then for ϕ ∈ W s,p(RN ), due to the symmetry

of the kernel, we have the following integration by parts formula∫
RN

∆s
pu(x)ϕ(x) dx =

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x)) dy ϕ(x) dx

= −1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx,

which leads to the following definition: Let f ∈ L1(RN ), we say that u ∈ W s,p(RN ) is a weak solution to the
problem

−∆s
pu = f,

if
1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx =

∫
RN

f(x)ϕ(x)dx, (1.4)

for all ϕ ∈W s,p(RN ) ∩ L∞(RN ).
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Now let us turn our attention to the case p = 1. Formally, the fractional 1–Laplacian operator of order s of
a function u ∈W s,1(RN ) is defined as

∆s
1u(x) := P.V.

∫
RN

1

|x− y|N+s

u(y)− u(x)

|u(y)− u(x)|
dy, x ∈ RN .

Note that in this formula one has to give a meaning to u(y)−u(x)
|u(y)−u(x)| when u(y) = u(x). Here, to overcome this

difficulty, we follow the same idea that we used in [3] and [4] (see also [5]) to study a similar problem but

with a non-singular kernel, that is, we replace u(y)−u(x)
|u(y)−u(x)| by an antisymmetric L∞–function η(x, y) such that

‖η(·, ·)‖L∞(RN×RN ) ≤ 1 and

η(x, y) ∈ sign(u(y)− u(x)) a.e. (x, y) ∈ RN × RN ,

where sign(r) is the multivalued sign of r. We give the following definition of a weak solution: we say that
u ∈W s,1(RN ) is a weak solution to the problem

−∆s
1u = f,

if there exists η as above such that

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
RN

f(x)ϕ(x)dx for all ϕ ∈W s,1(RN ) ∩ L2(RN ).

In this paper, we focus our attention on the evolution problems associated with these fractional operators. We
will consider Dirichlet or Neumann boundary conditions for problems posed in Ω, being Ω a bounded Lipschitz
domain in RN , and we will also consider the Cauchy problem in the whole space RN . Among other results we
prove:

Theorem 1.1. Assume that 1 ≤ p < ∞. For every u0 ∈ L2(Ω) there exists a unique strong solution of the
Dirichlet problem 

ut(t, x) = ∆s
pu(t, x) in (0, T )× Ω,

u(t, x) = 0 in (0, T )× (RN \ Ω),

u(0, x) = u0(x) in Ω,

(1.5)

for any T > 0. Moreover, a contraction principle holds: if ui,0 ∈ L2(Ω) and ui are solutions of the Dirichlet
problem (1.5) in (0, T ) with initial data ui,0, i = 1, 2, respectively, then∫

Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u1,0 − u2,0)+ for every t ∈ (0, T ).

In addition, for q ≥ p ≥ 1 and for u0 ∈ L∞(Ω) if q > p and u0 ∈ L2(Ω) if q = p, we have the decay bound

‖u(t)‖qLq(Ω) ≤ C
‖u0‖q−pL∞(Ω)‖u0‖2L2(Ω)

t
∀ t > 0,

where C = C(Ω, N, s, p).

Similar existence and uniqueness results (we refer to Section 5 for the precise statements) are also obtained
for Neumann boundary conditions, that is, when we consider{

ut(t, x) = ∆s
Ω,pu(t, x) in (0, T )× Ω,

u(0, x) = u0(x) in Ω,

where ∆s
Ω,pu stands for the fractional p−Laplacian in Ω (this operator is defined as in (1.3) but integrating in

Ω). In this case the asymptotic behaviour is given by the convergence to the mean value of the initial condition,
(u0)Ω. For instance, we show that for u0 ∈ L2(Ω) and p = 1 it holds that

‖u(t)− (u0)Ω‖L1(Ω) ≤ C
‖u0‖L2(Ω)

t
∀ t > 0.

With respect to the Cauchy problem for the fractional 1–Laplacian we prove:
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Theorem 1.2. For every u0 ∈ L2(RN ) there exists a unique strong solution of the Cauchy problem{
ut(t, x) = ∆s

1u(t, x) in (0, T )× RN ,

u(0, x) = u0(x) in RN ,
(1.6)

for any T > 0. Moreover, if ui,0 ∈ L2(RN ) ∩ L1(RN ) and ui are solutions of Cauchy problem (1.6) in (0, T )
with initial data ui,0, i = 1, 2, respectively, then∫

RN
(u1(t)− u2(t))+ ≤

∫
RN

(u1,0 − u2,0)+ for every t ∈ (0, T ).

Here we also consider the limit as s → 1 in these nonlocal fractional p−Laplacian evolution problems. We
show that, after multiplying by an adequate scale factor Lp,s ∼ (1−s), the solutions to our fractional p-Laplacian
evolution problem (for the Cauchy problem and for Dirichlet or Neumann conditions) converge as s↗ 1 to the
solutions of the corresponding evolution problems for the classical p-Laplacian, ut = ∆pu = div(|∇u|p−2∇u)
(for the Cauchy problem and for classical Dirichlet boundary conditions, u|∂Ω = 0, or Neumann boundary
conditions, |∇u|p−2∇u · ν|∂Ω = 0). First results in this direction are obtained in [23] for a similar problem for
p > 1 in the stationary case (see also [9] and [12]) and [3], [4] and [5] for nonlocal evolution problems with non
degenerate kernels.

Let us finish this introduction with some notations and results from the theory of completely accretive
operators (see [7]) that will be used in what follows. We denote by J0 and P0 the following sets of functions:

J0 := {j : R→ [0,+∞], convex and lower semi-continuos with j(0) = 0},

P0 := {q ∈ C∞(R) : 0 ≤ q′ ≤ 1, supp(q′) is compact, and 0 /∈ supp(q)} .
In [7] the following relation for u, v ∈ L1(Ω) is defined,

u� v if and only if

∫
Ω

j(u) dx ≤
∫

Ω

j(v) dx for all j ∈ J0,

and the following facts are proved.

Proposition 1.3. Let Ω be a bounded domain in RN .
(i) For any u, v ∈ L1(Ω), if

∫
Ω
uq(u) ≤

∫
Ω
vq(u) for all q ∈ P0, then u� v.

(ii) If u, v ∈ L1(Ω) and u� v, then ‖u‖Lr(Ω) ≤ ‖v‖Lr(Ω) for any r ∈ [1,+∞].

(iii) If v ∈ L1(Ω), then {u ∈ L1(Ω) : u� v} is a weakly compact subset of L1(Ω).

An operator A ⊂ L1(Ω)× L1(Ω) is completely accretive if given (ui, vi) ∈ A, i = 1, 2, then∫
Ω

(v1 − v2)q(u1 − u2) ≥ 0,

for every q ∈ P0.

The paper is organized as follows: in Section 2 we consider the Dirichlet problem for the fractional p−Laplacian
for p > 1; in Section 3 we deal with the fractional 1−Laplacian with Dirichlet boundary conditions; in Section 4
we consider the Cauchy problem for the fractional 1–Laplacian; while in Section 5 and Section 6 we deal with the
Neumann problems for the fractional p−Laplacian for p > 1 and for p = 1, respectively. Finally, in Section 7,
we study the convergence of these nonlocal evolution problems, with a rescaling factor of order 1− s in front of
the fractional p–s–Laplacian, to classical local evolution problems for the p–Laplacian, as the parameter s goes
to 1.

2. The Dirichlet problem for the fractional p–Laplacian

As mentioned in the Introduction, Ω will be a bounded Lipschitz domain in RN . We will study in this section
the Dirichlet problem 

ut(t, x) = ∆s
pu(t, x) in (0, T )× Ω,

u(t, x) = 0 in (0, T )× (RN \ Ω),

u(0, x) = u0(x) in Ω,

(2.1)
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in the case 1 < p < ∞. Since our approach to this problem is the Nonlinear Semigroup Theory (see [17]) we
will first deal with the study of the following Dirichlet problem:{

u(x)−∆s
pu(x) = f(x) in Ω,

u(x) = 0 in RN \ Ω.
(2.2)

Therefore, we start our analysis introducing which is the concept of weak solution to{
−∆s

pu(x) = f(x) in Ω,

u(x) = 0 in RN \ Ω,
(2.3)

for a given datum f . Notice that the Dirichlet condition u = 0 is posed in the whole complement of Ω, as usual
when dealing with nonlocal operators. The integration by part formula (1.4) leads to the following definition:

Definition 2.1. Let f ∈ L2(Ω). We say that u ∈W s,p
0 (Ω) is a weak solution of the Dirichlet problem (2.3) for

the datum f if

1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx =

∫
Ω

f(x)ϕ(x) dx, (2.4)

for all ϕ ∈W s,p
0 (Ω) ∩ L2(Ω).

To study the Dirichlet problem (2.2) (and hence problem (2.1)) we consider the energy functional Dsp :

L2(Ω)→ [0,∞[ given by

Dsp(u) :=


1

2p

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p dxdy if u ∈W s,p

0 (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \W s,p
0 (Ω).

By Fatou’s Lemma we have that Dsp is lower semicontinuous in L2(Ω). Then, since Dsp is convex, we have that

the subdifferential ∂Dsp is a maximal monotone operator in L2(Ω). To characterize the subdifferential ∂Dsp we
introduce the following operator:

Definition 2.2. We define in L2(Ω)× L2(Ω) the operator Dp,s as:

(u, v) ∈ Dp,s ⇐⇒ u, v ∈ L2(Ω) and u is a weak solution of the Dirichlet problem (2.3) for the datum v.

In the following result we prove that operator Dp,s satisfies adequate conditions to apply the Nonlinear
Semigroup Theory to solve problem (2.1), briefly this theory says that problem (2.2) has an unique solution for
any f ∈ L2(Ω) and that there is an Lq–contraction principle for any q ≥ 1. See [17] and [7] for definitions and
results from such theory (or the Appendix in [5] for a detailed overview).

Theorem 2.3. The operator Dp,s is m–completely accretive in L2(Ω) with dense domain. Moreover,

Dp,s = ∂Dsp. (2.5)

Proof. Given (ui, vi) ∈ Dom(Dp,s), i = 1, 2, and q ∈ P0, since q ∈ P0 and u1, u2 ∈W s,p
0 (Ω), we have q(u1−u2) ∈

W s,p
0 (Ω) ∩ L∞(Ω). Then we can take q(u1 − u2) as test function in (2.4) and we get∫
Ω

(v1(x)− v2(x))q(u1(x)− u2(x))dx

=
1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u1(y)− u1(x)|p−2(u1(y)− u1(x))(q(u1(y)− u2(y))− q(u1(x)− u2(x))) dydx

−1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u2(y)− u2(x)|p−2(u2(y)− u2(x))(q(u1(y)− u2(y))− q(u1(x)− u2(x))) dydx

=
1

2

∫
RN

∫
RN

1

|x− y|N+sp
[q(u1(y)− u2(y))− q(u1(x)− u2(x))]×[

|u1(y)− u1(x)|p−2(u1(y)− u1(x))− |u2(y)− u2(x)|p−2(u2(y)− u2(x))
]
dxdy ≥ 0.

Therefore, the operator Dp,s is completely accretive.
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To see that Dp,s is m–completely accretive in L2(Ω), we need to show that it satisfies the range condition

L2(Ω) ⊂ R(I +Dp,s). (2.6)

Given f ∈ L2(Ω), we consider the variational problem

min
u∈L2(Ω)

Dsp(u) +
1

2

∫
Ω

u2 −
∫

Ω

fu (2.7)

The existence of a unique minimizer u of the variational problem (2.7) is proved via a standard application of
the direct method in the Calculus of Variations. Indeed, take a miminizing sequence un ∈ W s,p

0 (Ω) ∩ L2(Ω).
We can assume that

Dsp(un) +
1

2

∫
Ω

u2
n −

∫
Ω

fun ≤M, ∀n ∈ N.

Then, by Young’s inequality, we have

Dsp(un) +
1

4

∫
Ω

u2
n ≤M + 4

∫
Ω

f2, ∀n ∈ N. (2.8)

Therefore,

‖un‖W s,p
0 (Ω) ≤ C, ∀n ∈ N.

Hence, by the compact embedding theorem [19, Theorem 7.1], we can assume, taking a subsequence if necessary,
that un → u in Lp(Ω), and by the reflexivity of W s,p

0 (Ω), we get that u ∈ W s,p
0 (Ω). Moreover, by (2.8), we

have {un} is bounded in L2(Ω), and consequently u ∈ L2(Ω). By Fatou’s lemma we deduce that u is actually a
minimizer of the variational problem (2.7). The uniqueness follows by the strictly convexity of the functional.
Now, to derive the Euler-Lagrange equation satisfied by u. Fix a function v ∈ W s,p

0 (Ω) ∩ L2(Ω), then the
function

ϕ(t) := Dsp(u+ tv) +
1

2

∫
Ω

(u+ tv)2 −
∫

Ω

f(u+ tv)

has a minimum at t = 0, and consequently

0 = ϕ′(0) =
1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x))(v(y)− v(x)) dydx−

∫
Ω

(u(x)− f(x))v(x)dx.

Then, we have (u, f − u) ∈ Dp,s and the range condition (2.6) is satisfied.
Let us now see that Dom(Dp,s) is dense in L2(Ω). To this end, is enough to show that

W s,1
0 (Ω) ∩ L2(Ω) ⊂ Dom(Dp,s)

L2(Ω)
.

So, let us take v ∈ W s,1
0 (Ω) ∩ L2(Ω). By (2.6) and having in mind that Dp,s is accretive, there exists un ∈

Dom(Dp,s) such that (un, n(v − un) ∈ Dp,s. Hence

1

2

∫
RN

∫
RN

1

|x− y|N+sp
|un(y)− un(x)|p−2(un(y)− un(x))(ϕ(y)− ϕ(x)) dydx = n

∫
Ω

(v(x)− un(x))ϕ(x) dx,

for all ϕ ∈W s,p
0 (Ω) ∩ L2(Ω). Then, taking ϕ = v − un, and applying Young’s inequality, we obtain that∫

Ω

(v(x)− un(x))2dx

=
1

2n

∫
RN

∫
RN

1

|x− y|N+sp
|un(y)− un(x)|p−2(un(y)− un(x))(v(y)− v(x)) dydx

− 1

2n

∫
RN

∫
RN

1

|x− y|N+sp
|un(y)− un(x)|p dydx

≤ 1

2n

1

p′

∫
RN

∫
RN

1

|x− y|N+sp
|un(y)− un(x)|p dydx+

1

2n

1

p

∫
RN

∫
RN

1

|x− y|N+ps
|v(y)− v(x)|pdydx

− 1

2n

∫
RN

∫
RN

1

|x− y|N+sp
|un(y)− un(x)|p dydx

≤ 1

2n

∫
RN

∫
RN

1

|x− y|N+ps
|v(y)− v(x)|pdydx =

1

n
[v]p

W s,p(RN )
,
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from where it follows that un → v in L2(Ω).
Finally, let us see that (2.5) holds. Given (u, v) ∈ Dp,s, we have

1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx =

∫
Ω

v(x)ϕ(x) dx (2.9)

for all ϕ ∈W s,p
0 (Ω) ∩ L2(Ω). Then, given w ∈W s,p

0 (Ω) ∩ L2(Ω), taking ϕ = w − u in (2.9) and having in mind
the numerical inequality

p|r|p−2r(s− r) ≤ |s|p − |r|p ∀ s, r ∈ R,
we obtain∫

Ω

v(x)(w(x)− u(x)) dx

=
1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x)) ((w(y)− w(x))− (u(y)− u(x)) dydx

≤ Dsp(w)−Dsp(u).

Therefore, (u, v) ∈ ∂Dsp, and consequently Dp,s ⊂ ∂Dsp. Then, since Dp,s is m–completely accretive in L2(Ω),
we get (2.5). 2

Now, let us introduce our definition of solution to the evolution problem (2.1).

Definition 2.4. Given u0 ∈ L2(Ω), we say that u is a solution of the Dirichlet problem (2.1) in [0, T ], if
u ∈W 1,1(0, T ;L2(Ω)), u(0, ·) = u0(·), and for almost all t ∈ (0, T ){

ut(t, ·) = ∆s
pu(t, ·) in Ω,

u(t, ·) = 0 in RN \ Ω,

in the sense of Definition 2.1. In other words, u(t, ·) ∈W s.p
0 (Ω) and

1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))(ϕ(y)− ϕ(x)) dydx = −

∫
Ω

ut(t, x)ϕ(x)dx, (2.10)

for all ϕ ∈W s,p
0 (Ω) ∩ L2(Ω).

We have the following result about existence and uniqueness of solution of the Dirichlet problem (2.1).

Theorem 2.5. For every u0 ∈ L2(Ω) there exists a unique solution of the Dirichlet problem (2.1) in (0, T ) for
any T > 0. Moreover, if ui,0 ∈ L2(Ω) and ui are solutions of the Dirichlet problem (2.1) in (0, T ) with initial
data ui,0, i = 1, 2, respectively, then∫

Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u1,0 − u2,0)+ for every t ∈ (0, T ). (2.11)

Proof. By the theory of maximal monotone operators (see [13]), and having in mind the characterization of the
subdifferential of Dsp obtained in Theorem 2.3, for every u0 ∈ L2(Ω) there exists a unique strong solution of the
abstract Cauchy problem {

u′(t) +Dp,s(u(t)) 3 0, t ∈ (0, T ),

u(0) = u0.
(2.12)

Now, the concept of solution of the Dirichlet problem (2.1) coincides with the concept of strong solution of
(2.12), and the proof of the existence and uniqueness concludes. The contraction principle (2.11) holds since
the operator D1,s is completely accretive. 2

With respect to the asymptotic behaviour of the solutions of the Dirichlet problem (2.1) we have the following
result.

Theorem 2.6. Let q ≥ p. Let u(t) be the solution of the Dirichlet problem (2.1) for the initial datum u0 ∈
L∞(Ω), if q > p and u0 ∈ L2(Ω) if q = p. Then the Lq-norm of the solution goes to zero as t → ∞ since we
have the following estimate:

‖u(t)‖qLq(Ω) ≤ C
‖u0‖q−pL∞(Ω)‖u0‖2L2(Ω)

t
∀ t > 0,
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where C = C(Ω, N, s, p).

Proof. By the complete accretiveness of the operator Dp,s, and since 0 ∈ Dp,sp(0), the Lq(Ω)–norm of u(·, t) is
decreasing with t.

Now, we use the following Sobolev-Poincaré inequality:∫
Ω

|u(t, x)|p dx ≤ C
∫
RN

∫
RN

|u(t, y)− u(t, x)|p

|x− y|N+sp
dy dx,

that holds for any 1 ≤ p <∞, that is valid since the first eigenvalue of this operator is positive, see [24].
Using this Sobolev-Poincaré inequality, we get∫

Ω

|u(t, x)|q dx ≤ C‖u0‖q−pL∞(Ω)

∫
RN

∫
RN

|u(t, y)− u(t, x)|p

|x− y|N+sp
dy dx,

where C = C(Ω, N, s, p). Consequently,

t

∫
Ω

|u(t, x)|q dx ≤
∫ t

0

∫
Ω

|u(s, x)|q dx ds

≤ C‖u0‖q−pL∞(Ω)

∫ t

0

∫
RN

∫
RN

|u(s, y)− u(s, x)|p

|x− y|N+sp
dy dx ds.

(2.13)

On the other hand, taking u(t, x) as test function in (2.10), and integrating in space and time, we get∫ t

0

∫
RN

∫
RN

|u(s, y)− u(s, x)|p

|x− y|N+sp
dy dx ds =

∫
Ω

|u0(x)|2 dx−
∫

Ω

|u(t, x)|2 ≤ ‖u0‖2L2(Ω). (2.14)

Therefore, putting together (2.13) and (2.14), we get∫
Ω

|u(t, x)|q dx ≤ C
‖u0‖q−pL∞(Ω)‖u0‖2L2(Ω)

t
,

as we wanted to prove. 2

3. The Dirichlet problem for the fractional 1–Laplacian

Let Ω be a bounded Lipschitz domain in RN . Formally, as mentioned in the Introduction, the fractional
1–Laplacian operator of order s of a function u ∈W s,1(Ω) is defined as

∆s
1u(x) := P.V.

∫
Ω

1

|x− y|N+s

u(y)− u(x)

|u(y)− u(x)|
dy, x ∈ Ω.

Solutions to the homogeneous Dirichlet problem associated with this operator ∆s
1 will be in a larger space

than W s,1
0 (Ω), they live in the space

Ws,1
0 (Ω) := {u ∈ L1(Ω) : [u]W s,1(RN ) <∞ and u = 0 a.e. in RN \ Ω}.

Definition 3.1. Given v ∈ L2(Ω), we say that u ∈ Ws,1
0 (Ω) is a weak solution to the Dirichlet problem{

−∆s
1u(x) = v(x) in Ω

u(x) = 0 in RN \ Ω.
(3.1)

if there exists η ∈ L∞(RN ×RN ), η(x, y) = −η(y, x) for almost all (x, y) ∈ RN ×RN , ‖η‖L∞(RN×RN ) ≤ 1, such
that

η(x, y) ∈ sign(u(y)− u(x)) a.e. (x, y) ∈ RN × RN ,
and

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
Ω

v(x)ϕ(x) dx for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω),
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Consider now the Dirichlet problem for the fractional 1–Laplacian
ut(t, x) = ∆s

1u(t, x) in (0, T )× Ω,

u(t, x) = 0 in (0, T )× (RN \ Ω),

u(0, x) = u0(x) in Ω.

(3.2)

Our concept of solution for this problem is the following:

Definition 3.2. Given u0 ∈ L2(Ω), we say that u is a solution of problem Dirichlet (3.2) in [0, T ], if u ∈
W 1,1(0, T ;L2(Ω)), u(0, ·) = u0, and for almost all t ∈ (0, T ){

ut(t, ·) = ∆s
1u(t, ·) in Ω,

u(t, ·) = 0 in RN \ Ω,

in the sense of Definition 3.1. In other words, if there exists η(t, ·, ·) ∈ L∞(RN ×RN ), η(t, x, y) = −η(t, y, x) for
almost all (x, y) ∈ RN × RN , ‖η(t, ·, ·)‖L∞(RN×RN ) ≤ 1, such that

η(t, x, y) ∈ sign(u(t, y)− u(t, x)) a.e. (t, x, y) ∈ RN × RN × R+

and

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(t, x, y)(ϕ(y)− ϕ(x)) dydx = −

∫
Ω

ut(t, x)ϕ(x) dx ∀ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω),

To study the Dirichlet problem (3.2) we consider the energy functional Ds1 : L2(Ω)→ [0,∞[ given by

Ds1(u) :=


1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dxdy if u ∈ Ws,1

0 (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \Ws,1
0 (Ω).

By Fatou’s Lemma we have that Ds1 is lower semi-continuous in L2(Ω). Then, since Ds1 is convex, we have
that the subdifferential ∂Ds1 is a maximal monotone operator in L2(Ω). To characterize the subdifferential ∂Ds1
we introduce the following operator.

Definition 3.3. We define in L2(Ω)× L2(Ω) the operator D1,s as:

(u, v) ∈ D1,s ⇐⇒ u, v ∈ L2(Ω) and u is a weak solution to problem (3.1).

Theorem 3.4. The operator D1,s is m–completely accretive in L2(Ω) with dense domain. Moreover,

D1,s = ∂Ds1. (3.3)

Proof. Given (ui, vi) ∈ Dom(D1,s), i = 1, 2, there exists ηi ∈ L∞(RN × RN ), ηi(x, y) = −ηi(y, x) for almost all
(x, y) ∈ RN × RN , ‖ηi‖L∞(Ω×Ω) ≤ 1, such that

ηi(x, y) ∈ sign(ui(y)− ui(x)) for a.e. (x, y) ∈ RN × RN ,

and

1

2

∫
RN

∫
RN

1

|x− y|N+s
ηi(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
Ω

vi(x)ϕ(x) dx for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω).
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Given q ∈ P0, taking ϕ(x) := q(u1(x)− u2(x)) as test function, we have∫
Ω

(v1(x)− v2(x))q(u1(x)− u2(x)) dx

=
1

2

∫
RN

∫
RN

1

|x− y|N+s
(η1(x, y)− η2(x, y)) (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dxdy

=
1

2

∫ ∫
{(x,y):u1(y) 6=u1(x),u2(y)=u2(x)}

1

|x− y|N+s
(η1(x, y)− η2(x, y))

× (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dx dy

=
1

2

∫ ∫
{(x,y):u1(y)=u1(x),u2(y)6=u2(x)}

1

|x− y|N+s
(η1(x, y)− η2(x, y))

× (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dx dy

=
1

2

∫ ∫
{(x,y):u1(y) 6=u1(x),u2(y)6=u2(x)}

1

|x− y|N+s
(η1(x, y)− η2(x, y))

× (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dx dy.

Note that the last three integrals are nonnegative. Hence∫
Ω

(v1(x)− v2(x))q(u1(x)− u2(x)) dx ≥ 0,

from where it follows that D1,s is a completely accretive operator.
Let us see that the operator D1,s satisfies the range condition

L2(Ω) ⊂ R(I +D1,s). (3.4)

From now on C denotes a constant independent of p that may change from one line to another. For 1 < p < N
s ,

take sp := N
(p?s)′ . We have 0 < sp < 1 for all 1 < p < (N?)′ = N

N+s−1 ≤
N
s . Then, given f ∈ L2(Ω), for

1 < p < (N?)′, applying Theorem 2.3, there exists up ∈ W
sp,p
0 (Ω) such that (up, f − up) ∈ Dp,sp . Now, since

N + spp = (N + s)p, we have

1

2

∫
RN

∫
RN

1

|x− y|(N+s)p
|up(y)−up(x)|p−2(up(y)−up(x))(ϕ(y)−ϕ(x)) dydx =

∫
Ω

(f(x)−up(x))ϕ(x)dx, (3.5)

for all ϕ ∈W sp,p
0 (Ω) ∩ L2(Ω). Moreover, since Dp,sp is completely accretive and 0 ∈ Dp,sp(0), up � f and

‖up‖Lq(Ω) ≤ ‖f‖Lq(Ω) ∀1 < p < (N?)′, for any 1 ≤ q ≤ 2. (3.6)

By (3.6), there exists a sequence pn ↓ 1, such that

upn ⇀ u weakly in L2(Ω), and ‖u‖L2(Ω) ≤ ‖f‖L2(Ω).

On the other hand, taking ϕ = up in (3.5) we have

1

2

∫
RN

∫
RN

1

|x− y|(N+s)p
|up(y)− up(x)|p dydx =

∫
Ω

(f(x)− up(x))up(x)dx ≤ C ∀1 < p < (N?)′. (3.7)

Now, since∫
Ω

∫
Ω

1

|x− y|N+s
|up(y)− up(x)| dydx ≤

(∫
Ω

∫
Ω

1

|x− y|(N+s)p
|up(y)− up(x)|p dydx

)1/p

|Ω× Ω|1/p
′
,

from (3.7) we get

‖up‖W s,1(Ω) ≤ C ∀1 < p < (N?)′.
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Hence, by the compact embedding Theorem [19, Theorem 7.1] and [12, Theorem 2.7], we have that for a
subsequence of {pn}, denoted equal,

upn → u strongly in L1(Ω) and u ∈ Ws,1
0 (Ω).

For k > 0 we set

Cp,k :=

{
(x, y) ∈ RN × RN :

∣∣∣∣up(y)− up(x)

|x− y|N+s

∣∣∣∣ > k

}
.

Then, by (3.7),

|Cp,k| ≤
C

kp
. (3.8)

On the other hand,

∣∣∣∣∣
∣∣∣∣up(y)− up(x)

|x− y|N+s

∣∣∣∣p−2
up(y)− up(x)

|x− y|N+s
χRN×RN\Cp,k(x, y)

∣∣∣∣∣ ≤ kp−1 ∀(x, y) ∈ RN × RN .

Therefore, for any k ∈ N there exists a subsequence of {pn}n, denoted by {pnkj }j , such that

∣∣∣∣∣∣
up

nk
j

(y)− up
nk
j

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nk
j
−2

up
nk
j

(y)− up
nk
j

(x)

|x− y|N+s
χRN×RN\Cp

nk
j
,k

(x, y)
j→∞
⇀ ηk(x, y),

weakly∗ in L∞(RN×RN ), with ηk antisymmetric such that ‖ηk‖L∞(RN×RN ) ≤ 1. Now there exist a subsequence
of {ηk}k, {ηkj}j such that,

ηkj
j→∞
⇀ η weakly∗ in L∞(RN × RN ),

with η antisymmetric and

‖η‖L∞(RN×RN ) ≤ 1.

Now let us see how to pass to the limit in (3.5): Let us first take ϕ ∈ D(Ω). Then, for a fixed 1 < q0 <
N

N+s−1 ,

for the extended ϕ as 0 outside Ω, ϕ ∈W r0,q0(RN ) with r0 = (N+s)q0−N
q0

< 1.

Let us fix k ∈ N. From (3.5) we have

∫
RN×RN

∣∣∣∣∣∣
up

nk
j

(y)− up
nk
j

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nk
j
−2

up
nk
j

(y)− up
nk
j

(x)

|x− y|N+s
χRN×RN\Cp

nk
j
,k

(x, y)
ϕ(y)− ϕ(x)

|x− y|N+s
dydx

−
∫

Ω

(f − up
nk
j

)ϕ

= −1

2

∫
RN×RN

∣∣∣∣∣∣
up

nk
j

(y)− up
nk
j

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nk
j
−2

up
nk
j

(y)− up
nk
j

(x)

|x− y|N+s
χ
Cp

nk
j
,k

(x, y)
ϕ(y)− ϕ(x)

|x− y|N+s
dydx,

(3.9)
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Now, for pnkj < q0, using Hölder’s inequality, (3.7) and (3.8),∣∣∣∣∣∣∣
∫
RN×RN

∣∣∣∣∣∣
up

nk
j

(y)− up
nk
j

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nk
j
−2

up
nk
j

(y)− up
nk
j

(x)

|x− y|N+s
χ
Cp

nk
j
,k

(x, y)
ϕ(y)− ϕ(x)

|x− y|N+s
dydx

∣∣∣∣∣∣∣
≤

∫
RN×RN

∣∣∣∣∣∣
up

nk
j

(y)− up
nk
j

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nk
j

dydx

(p
nk
j
−1)/p

nk
j

∫
Cp

nk
j
,k

∣∣∣∣ϕ(y)− ϕ(x)

|x− y|N+s

∣∣∣∣pnkj dydx
1/p

nk
j

≤

∫
RN×RN

∣∣∣∣∣∣
up

nk
j

(y)− up
nk
j

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nk
j

dydx

(p
nk
j
−1)/p

nk
j (∫

RN×RN

∣∣∣∣ϕ(y)− ϕ(x)

|x− y|N+s

∣∣∣∣q0 dydx)1/q0

|Cp
nk
j
,k|

q0−pnk
j

p
nk
j
q0

=

∫
RN×RN

∣∣∣∣∣∣
up

nk
j

(y)− up
nk
j

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nk
j

dydx

(p
nk
j
−1)/p

nk
j (∫

RN×RN

|ϕ(y)− ϕ(x)|q0

|x− y|N+r0q0
dydx

)1/q0

|Cp
nk
j
,k|

q0−pnk
j

p
nk
j
q0

≤ Cϕ

k

q0−pnk
j

q0

.

Therefore, taking limits as j →∞ in (3.9), we get∣∣∣∣12
∫
RN

∫
RN

1

|x− y|N+s
ηk(x, y)(ϕ(y)− ϕ(x)) dydx−

∫
Ω

(f(x)− u(x))ϕ(x)dx

∣∣∣∣ ≤ Cϕ
k
.

In particular,∣∣∣∣12
∫
RN

∫
RN

1

|x− y|N+s
ηkj (x, y)(ϕ(y)− ϕ(x)) dydx−

∫
Ω

(f(x)− u(x))ϕ(x)dx

∣∣∣∣ ≤ Cϕ
kj
.

Therefore, taking now the limit as j →∞, we obtain that

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx−

∫
Ω

(f(x)− u(x))ϕ(x)dx = 0. (3.10)

Suppose now that ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω). As in [12, Lemma 2.3], there exists ϕn ∈ D(RN ) such that

ϕn → ϕ in L2(Ω) as n→ +∞,

and

[ϕn]W s,1(RN ) → [ϕ]W s,1(RN ) as n→ +∞.

By Fatou’s Lemma and (3.10), we have

1

2

∫
RN

∫
RN

(
1

|x− y|N+s
|ϕ(y)− ϕ(x)| − 1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x))

)
dydx

≤ lim inf
n→∞

1

2

∫
RN

∫
RN

(
1

|x− y|N+s
|ϕn(y)− ϕn(x)| − 1

|x− y|N+s
η(x, y)(ϕn(y)− ϕn(x))

)
dydx

=
1

2

∫
RN

∫
RN

1

|x− y|N+s
|ϕ(y)− ϕ(x)|dydx−

∫
Ω

vϕ,

which implies

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx ≥

∫
Ω

v(x)ϕ(x) dx for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω),

and hence we obtain an equality, since the above inequality is also true for −ϕ.
To finish the proof of (3.4), we only need to show that

η(x, y) ∈ sign(u(y)− u(x)) a.e. (x, y) ∈ RN × RN . (3.11)
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By (3.7) for pn, and taking ϕ = u in (3.10), we have

1

2

∫
RN

∫
RN

1

|x− y|(N+s)pn
|upn(y)− upn(x)|pn dydx =

∫
Ω

(f(x)− upn(x))upn(x)dx

=

∫
Ω

(f(x)− u(x))u(x)dx−
∫

Ω

f(x)(u(x)− upn(x))dx

+2

∫
Ω

u(x)((u(x)− upn(x))dx−
∫

Ω

(u(x)− upn(x))2dx

≤ 1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx−

∫
Ω

f(x)(u(x)− upn(x))dx

+2

∫
Ω

u(x)((u(x)− upn(x))dx.

Then, taking limit as n→∞, we get

lim sup
n→∞

1

2

∫
RN

∫
RN

1

|x− y|(N+s)pn
|upn(y)− upn(x)|pn dydx

≤ 1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx.

On the other hand, given ε > 0 we can find A ⊃ Ω with |A| < +∞ such that∫
RN\A

1

|x− y|N+s
dy ≤ ε

‖f‖L1(Ω)
∀x ∈ Ω.

Then,

1

2

∫
RN

∫
RN

1

|x− y|N+s
|upn(y)− upn(x)| dydx

=

∫
Ω

∫
RN\A

1

|x− y|N+s
|upn(y)− upn(x)| dydx+

1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx

=

∫
Ω

|up(x)|

(∫
RN\A

1

|x− y|N+s
dy

)
dx+

1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx

≤ ε+
1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx.

By the lower semi-continuity in L1(RN ) of [ · ]W s,1(Ω), we have

1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dydx ≤ lim inf

n→∞

1

2

∫
RN

∫
RN

1

|x− y|N+s
|upn(y)− upn(x)| dydx

≤ ε+ lim inf
n→∞

1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx

≤ ε+ lim inf
n→∞

1

2

(∫
RN

∫
RN

1

|x− y|(N+s)pn
|upn(y)− upn(x)|pn dydx

)1/pn

|A×A|1/pn
′

≤ ε+
1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx.

Therefore,

1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dydx ≤ ε+

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx,

from where it follows (3.11), since ε is arbitrary.

Let us see that Dom(D1,s) is dense in L2(Ω). To see this fact it is enough to show that

D(Ω) ⊂ Dom(D1,s)
L2(Ω)

.
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In fact, given v ∈ D(Ω)∩L∞(Ω), by (3.4) and having in mind that D1,s is accretive, there exists un ∈ Dom(B1,s)
such that (un, n(v − un) ∈ D1,s. Hence, there exists ηn ∈ L∞(RN × RN ), ηn(x, y) = −ηn(y, x) for almost all
(x, y) ∈ Ω× Ω, ‖ηn‖L∞(RN×RN ) ≤ 1, such that

1

2

∫
RN

∫
RN

1

|x− y|N+s
ηn(x, y)(ϕ(y)− ϕ(x)) dydx = n

∫
Ω

(v(x)− un(x))ϕ(x) dx for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω),

and
1

2

∫
RN

∫
RN

1

|x− y|N+s
|un(y)− un(x)| dydx = n

∫
Ω

(v(x)− un(x))un(x) dx.

Then, ∫
Ω

(v(x)− un(x))2dx =
1

2n

∫
RN

∫
RN

1

|x− y|N+s
ηn(x, y)(v(y)− un(y)− (v(x)− un(x)) dydx

≤ 1

2n

∫
RN

∫
RN

1

|x− y|N+s
|v(y)− v(x)|dydx =

1

n
[v]W s,1(Ω),

from where it follows that un → v in L2(Ω).
Finally, let us see that (3.3) holds. Given (u, v) ∈ D1,s, there exists η ∈ L∞(RN × RN ), η(x, y) = −η(y, x)

for almost all (x, y) ∈ RN × RN , ‖η‖L∞(RN×RN ) ≤ 1, such that

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
Ω

v(x)ϕ(x) dx for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω),

and
1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dydx =

∫
Ω

v(x)u(x) dx.

Then, given w ∈ Ws,1
0 (Ω) ∩ L2(Ω), we have∫

Ω

v(x)(w(x)− u(x)) dx =
1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y) (w(y)− w(x)) dydx−Ds1(u) ≤ Ds1(w)−Ds1(u).

Therefore, (u, v) ∈ ∂Ds1, and consequently D1,s ⊂ ∂Ds1. Then, since D1,s is m–accretive in L2(Ω), we have

∂Ds1 = D1,s.

2

Working as in the proof of Theorem 2.5 we get the following result about existence and uniqueness of solutions
to the Dirichlet problem (3.2).

Theorem 3.5. For every u0 ∈ L2(Ω) there exists a unique solution of the Dirichlet problem (3.2) in (0, T ) for
any T > 0. Moreover, if ui,0 ∈ L2(Ω) and ui are solutions of the Dirichlet problem (3.2) in (0, T ) with initial
data ui,0, i = 1, 2, respectively, then∫

Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u1,0 − u2,0)+ for every t ∈ (0, T ).

Respect to the asymptotic behaviour of the solutions of the Dirichlet problem for the fractional 1−Laplacian
(3.2) we have the following result, whose proof is similar to the one that we made for the fractional p−Laplacian.

Theorem 3.6. Let q ≥ 1 and u(t) be the solution of the Dirichlet problem (3.2) for the initial datum u0 ∈ L∞(Ω)
if q > 1, and u0 ∈ L2(Ω) if q = 1. Then the Lq-norm of the solution goes to zero as t → ∞ and the following
estimate holds:

‖u(t)‖qLq(Ω) ≤ C
‖u0‖q−1

L∞(Ω)‖u0‖2L2(Ω)

t
∀ t > 0,

where C = C(Ω, N, s).
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4. The Cauchy problem for the fractional 1–Laplacian

In this section we consider the Cauchy problem for the fractional p–Laplacian{
ut(t, x) = ∆s

pu(t, x) in (0, T )× RN ,

u(0, x) = u0(x) in RN .
(4.1)

We will write down the proofs for the more singular case p = 1. The case p > 1 can be studied in a similar
way, we leave to the reader the details of the definition of solutions and the proof of the existence and uniqueness
result for this simpler case.

Definition 4.1. Given v ∈ L2(RN ), we say that u ∈W s,1(RN ) is a weak solution to the problem

−∆s
1u(x) = v(x) in RN

if there exists η ∈ L∞(RN × RN ), η(x, y) = −η(y, x) for almost all (x, y) ∈ RN × RN , ‖η‖L∞(RN×RN ) ≤ 1,
satisfying

η(x, y) ∈ sign(u(y)− u(x)) a.e. (x, y) ∈ RN × RN ,

and

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
RN

v(x)ϕ(x) dx for all ϕ ∈W s,1(RN ) ∩ L2(RN ).

Our concept of solution for the Cauchy problem (4.1) is the following.

Definition 4.2. Given u0 ∈ L2(RN ), we say that u is a solution of problem (4.1) in the interval [0, T ], if
u ∈W 1,1(0, T ;L2(RN )), u(0, ·) = u0 and satisfies

ut(t, ·) = ∆s
1u(t, ·) in RN , for almost all t ∈ (0, T ),

in the sense of Definition 4.1. In other words, if there exists η(t, ·, ·) ∈ L∞(RN ×RN ), η(t, x, y) = −η(t, y, x) for
almost all (x, y) ∈ RN × RN , ‖η(t, ·, ·)‖L∞(RN×RN ) ≤ 1, satisfying

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(t, x, y)(ϕ(y)− ϕ(x)) dy = −

∫
RN

ut(t, x)ϕ(x) dx for all ϕ ∈W s,1(RN ) ∩ L2(RN ),

and

η(t, x, y) ∈ sign(u(t, y)− u(t, x)) a.e. (x, y) ∈ RN × RN × R+.

To study the Cauchy problem (4.1) we consider the energy functional Cs1 : L2(RN )→ [0,∞] given by

Cs1(u) :=


1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dxdy if u ∈W s,1(RN ) ∩ L2(RN ),

+∞ if u ∈ L2(RN ) \W s,1(RN ).

By Fatou’s Lemma we have that Cs1 is lower semi-continuous in L2(RN ). Then, since Cs1 is convex, we have
that the subdifferential ∂Cs1 is a maximal monotone operator in L2(RN ). To characterize the subdifferential ∂Cs1
we introduce the following operator in L2(RN ):

Definition 4.3. We define in L2(RN )× L2(RN ) the operator C1,s as:

(u, v) ∈ C1,s ⇐⇒ u, v ∈ L2(RN ) and u ∈W s,1(RN ) is a weak solution of the problem −∆s
1u = v in RN .

Theorem 4.4. The operator C1,s is m-completely accretive in L2(RN ) with dense domain and moreover

∂Cs1 = C1,s .

Proof. The proof of the completely accretivity of the operator C1,s and the density of the domain is the same
than the one given in Theorem 3.4 for the operator D1,s. Also with the same proof of Theorem 3.4, we can
show that C1,s ⊂ ∂Cs1 . Then, to finish the proof we only need to show that C1,s satisfies the range condition

L2(RN ) ⊂ R(I + C1,s). (4.2)
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We take f ∈ L2(RN ), and for every n ∈ N, we set fn := f |Bn(0). Then, as consequence of Theorem 3.4, we have

there exists un ∈ W s,1
0 (Bn(0)) and ηn ∈ L∞(RN × RN ), ηn(x, y) = −ηn(y, x) for almost all (x, y) ∈ RN × RN ,

‖ηn‖L∞(RN×RN ) ≤ 1, satisfying

1

2

∫
RN

∫
RN

1

|x− y|N+s
ηn(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
Bn(0)

(fn(x)− un(x))ϕ(x) dx (4.3)

for all ϕ ∈W s,1
0 (Bn(0)) ∩ L2(Bn(0)), and

ηn(x, y) ∈ sign(un(y)− un(x)) a.e. (x, y) ∈ RN × RN . (4.4)

Taking a subsequence, if necessary, we can assume that

ηn
∗
⇀ η in L∞(RN ), with ‖η‖L∞(RN×RN ) ≤ 1. (4.5)

Moreover, η is antisymmetric.
We also have un � fn, which implies that

‖un‖L2(RN ) ≤ ‖f‖L2(RN ) ∀n ∈ N,

and consequently

un ⇀ u in L2(RN ).

Taking un as test function in (4.3), we obtain that

‖un‖W s,1(RN ) ≤ C ∀n ∈ N. (4.6)

Then, by (4.6) and the compact embedding theorem [19, Theorem 7.1], using a diagonal procedure, we can
assume that

un → u a.e. in RN . (4.7)

By (4.7), (4.6), applying Fatou’s Lemma, we obtain∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dydx ≤ lim inf

n→∞

∫
RN

∫
RN

1

|x− y|N+s
|un(y)− un(x)| dydx ≤ C,

from where it follows that u ∈W s,1(RN ).
Given ϕ ∈ C∞c (RN ), let n0 ∈ N be such that supp(ϕ) ⊂ Bn0

(0). Then, by (4.3), for any n ≥ n0, we have

1

2

∫
RN

∫
RN

1

|x− y|N+s
ηn(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
Bn(0)

(fn(x)− un(x))ϕ(x) dx. (4.8)

Then, taking limit in (4.8) as n→∞, we get

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
RN

(f(x)− u(x))ϕ(x) dx.

Finally, by (4.4), (4.5) and (4.7), we have

η(x, y) ∈ sign (u(y)− u(x)) a.e. (x, y) ∈ RN × RN .

Therefore, (u, f − u) ∈ C1,s, and we have proved the range condition (4.2). 2

Working as in the proof of Theorem 2.5, we get the following result about existence and uniqueness of solution
of the Cauchy problem (4.1).

Theorem 4.5. For every u0 ∈ L2(RN ) there exists a unique solution of the Cauchy problem (4.1) in (0, T ) for
any T > 0. Moreover, if ui,0 ∈ L2(RN ) ∩ L1(RN ) and ui are solutions of Cauchy problem (4.1) in (0, T ) with
initial data ui,0, i = 1, 2, respectively, then∫

RN
(u1(t)− u2(t))+ ≤

∫
RN

(u1,0 − u2,0)+ for every t ∈ (0, T ).
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5. The Neumann problem for the fractional p–Laplacian

Let Ω be a bounded Lipschitz domain in RN . For 1 < p <∞, the fractional p–Laplacian operator of order s
with Neumann boundary condition applied on a function u ∈W s,p(Ω) is given by

∆s
Ω,pu(x) := P.V.

∫
Ω

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x)) dy, x ∈ Ω.

Integrating by parts, as in the previous cases, we arrive to the following definition.

Definition 5.1. Let f ∈ L2(Ω). We say that u ∈W s,p(Ω) is a weak solution of the Neumann problem

−∆s
Ω,pu = f in Ω

if
1

2

∫
Ω

∫
Ω

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx =

∫
Ω

f(x)ϕ(x)dx,

for all ϕ ∈W s,p(Ω) ∩ L2(Ω).

Consider now the Neumann evolution problem for the fractional p–Laplacian{
ut(t, x) = ∆s

Ω,pu(t, x), in (0, T )× Ω

u(0, x) = u0(x), in Ω.
(5.1)

Definition 5.2. Given u0 ∈ L2(Ω), we say that u is a solution of problem (5.1) in [0, T ], if u ∈W 1,1(0, T ;L2(Ω)),
u(0, ·) = u0, and

ut(t, ·) = ∆s
Ω,pu(t, ·) in Ω, for almost all t ∈ (0, T ),

in the sense of Definition 5.1. In other words, u ∈ C([0, T ];L2(Ω)) ∩W 1,1(0, T ;L2(Ω)), u(0, ·) = u0 and

1

2

∫
Ω

∫
Ω

1

|x− y|N+sp
|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))(ϕ(y)− ϕ(x)) dy

= −
∫

Ω

ut(t, x)ϕ(x) dx ∀ϕ ∈W s,p(Ω) ∩ L2(Ω).

(5.2)

To study the Neumann problem (5.1) we consider the energy functional N s
p : L2(Ω)→ [0,∞[ defined as

N s
p (u) :=


1

2p

∫
Ω

∫
Ω

1

|x− y|N+sp
|u(y)− u(x)|p dxdy if u ∈W s,p(Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) \W s,p(Ω).

We also consider the following operator.

Definition 5.3. We define in L2(Ω)× L2(Ω) the operator Np,s as:

(u, v) ∈ Np,s ⇐⇒ u, v ∈ L2(Ω), u ∈W s,p(Ω), and u is a weak solution of the Neumann problem

−∆s
Ω,pu = v in Ω.

Working as in the proof of Theorem 2.3, we can establish the following result.

Theorem 5.4. The operator Np,s is m–completely accretive in L2(Ω) with dense domain. Moreover,

Np,s = ∂N s
p .

Observe that the concept of solution of the Neumann problem (5.1) coincides with the concept of strong
solution of the abstract Cauchy problem associated with the operator Np,s. Then, by Theorem 5.4, working as
in the proof of Theorem 2.5, we can establish the following existence and uniqueness result.

Theorem 5.5. For every u0 ∈ L2(Ω) there exists a unique solution of the Neumann problem (5.1)in (0, T ) for
any T > 0. Moreover, if ui,0 ∈ L2(Ω) and ui are solutions of the Neumann problem (5.1) in (0, T ) with initial
data ui,0, i = 1, 2, respectively, then∫

Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u1,0 − u2,0)+ for every t ∈ (0, T ).
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To study the asymptotic behaviour of the solutions of the Neumann problem (5.1) we use the following
fractional Poincaré inequality (see [11], [22]): given 1 ≤ p <∞, there exists a constant C such that,∫

Ω

|v(x)− vΩ|p ≤ C[v]pW s,p(Ω) ∀ v ∈W s,1(Ω), (5.3)

where vΩ is the mean value of v in Ω, that is,

vΩ =
1

|Ω|

∫
Ω

v(x)dx.

Theorem 5.6. Let u0 ∈ L2(Ω). Let u(t) the solution of the Neumann problem (5.1). Then,

‖u(t)− (u0)Ω‖Lp(Ω) ≤
(

2C
‖u0‖L2(Ω

t

)1/p

∀ t > 0,

where C is the constant in the fractional Poincaré inequality (5.3).

Proof. Taking ϕ = 1 as test function in (5.2), we obtain that∫
Ω

ut(t, x)dx = 0 for evey t ≥ 0,

from where it follows that the function

t 7→
∫

Ω

u(t, x)dx is constant,

and consequently we have conservation of mass, i.e,∫
Ω

u(t) dx =

∫
Ω

u0 dx for evey t ≥ 0.

On the other hand, taking u(t) as test function in (5.2), we get

−1

2

d

dt

∫
Ω

|u(t, x)|2 dx = −
∫

Ω

ut(t, x)u(t, x) dx =
1

2

∫
Ω

∫
Ω

1

|x− y|N+s
|u(t, y)− u(t, x)|p dydx,

which implies ∫ t

0

[u(τ)]pW s,p(Ω)dτ ≤ 2‖u0‖2L2(Ω) for evey t ≥ 0.

We set

w(t, x) := u(t, x)− (u0)Ω.

Then, as the solution preserve the total mass, using the fractional Poincaré inequality (5.3), we have∫
Ω

|w(t, x)|pdx ≤ C[u(t, ·)]W s,p(Ω).

Since Np,s is a completely accretive operator and 0 ∈ Np,s(0), we have∫
Ω

|w(t, x)|pdx ≤
∫

Ω

|w(τ, x)|pdx if t ≥ τ.

Then,

t

∫
Ω

|w(t, x)|pdx ≤
∫ t

0

∫
Ω

|w(τ, x)|pdxdτ ≤ C
∫ t

0

[u(τ)]pW s,1(Ω)dτ ≤ 2C‖u0‖2L2(Ω),

which concludes the proof. 2
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6. The Neumann problem for the fractional 1–Laplacian

Let us now consider the case p = 1. Formally, the fractional 1–Laplacian operator of order s with Neumann
boundary condition applied on a function u ∈W s,1(Ω) is given by

∆s
Ω,1u(x) := P.V.

∫
Ω

1

|x− y|N+s

u(y)− u(x)

|u(y)− u(x)|
dy, x ∈ Ω.

Definition 6.1. Given f ∈ L2(Ω), we say that u ∈W s,1(Ω) is a weak solution of the Neumann problem

−∆s
1u = f in Ω,

if there exists η ∈ L∞(Ω× Ω), η(x, y) = −η(y, x) for almost all (x, y) ∈ Ω× Ω, ‖η‖L∞(Ω×Ω) ≤ 1, satisfying

η(x, y) ∈ sign(u(y)− u(x)) a.e. (x, y) ∈ Ω× Ω,

and
1

2

∫
Ω

∫
Ω

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
Ω

f(x)ϕ(x) dx for all ϕ ∈W s,1(Ω) ∩ L2(Ω).

Consider now the Neumann problem for the fractional 1–Laplacian{
ut(t, x) = ∆s

Ω,1u(t, x), in (0, T )× Ω

u(0, x) = u0(x), in Ω.
(6.1)

Definition 6.2. Given u0 ∈ L2(Ω), we say that u is a solution of problem (6.1) in [0, T ], if u ∈ C([0, T ];L2(Ω))∩
W 1,1(0, T ;L2(Ω)), u(0, ·) = u0, and

ut(t, ·) = ∆s
Ω,1u(t, ·) in Ω, for almost all t ∈ (0, T ),

in the sense of Definition 6.1. In other words, if there exists η(t, ·, ·) ∈ L∞(Ω × Ω), η(t, x, y) = −η(t, y, x) for
almost all (x, y) ∈ Ω× Ω, ‖η(t, ·, ·)‖L∞(Ω×Ω) ≤ 1, satisfying

η(t, x, y) ∈ sign(u(t, y)− u(t, x)) a.e. (x, y) ∈ Ω× Ω,

and
1

2

∫
Ω

∫
Ω

1

|x− y|N+s
η(t, x, y)(ϕ(y)− ϕ(x)) dy = −

∫
Ω

ut(t, x)ϕ(x) dx ∀ϕ ∈W s,1(Ω) ∩ L2(Ω).

To study the Neumann problem (6.1) we consider the energy functional N s
1 : L2(Ω)→ [0,∞[ defined as

N s
1 (u) :=


1

2

∫
Ω

∫
Ω

1

|x− y|N+s
|u(y)− u(x)| dxdy if u ∈W s,1(Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) \W s,1(Ω).

By Fatou’s Lemma we have that N s
1 is lower semi-continuous in L2(Ω). Then, since N s

1 is convex, we have
that the subdifferential ∂N s

1 is a maximal monotone operator in L2(Ω). To characterize the subdifferential of
the operator N s

1 we introduce the following operator.

Definition 6.3. We define in L2(Ω)× L2(Ω) the operator N1,s as:

(u, v) ∈ N1,s ⇐⇒ u, v ∈ L2(Ω), u ∈W s,1(Ω), and u is a weak solution of the Neumann problem

−∆s
Ω,1u = v in Ω.

Working as in the proof of Theorem 3.4, we can establish the following result.

Theorem 6.4. The operator N1,s is m–completely accretive in L2(Ω) with dense domain. Moreover,

N1,s = ∂N s
1 .

Observe that the concept of solution of the Neumann problem (6.1) coincides with the concept of strong
solution of the abstract Cauchy problem associated with the operator N1,s. Then, by Theorem 6.4, working as
in the proof of Theorem 2.5, we can establish the following existence and uniqueness result.
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Theorem 6.5. For every u0 ∈ L2(Ω) there exists a unique solution of the Neumann problem (6.1) in (0, T ) for
any T > 0.

Finally, with a similar proof of the one of Theorem 5.6, we can obtain the following result concerning the
asymptotic behaviour of the solutions of the the Neumann problem (6.1).

Theorem 6.6. Let u0 ∈ L2(Ω) and u(t) the solution of the Neumann problem (6.1). Then,

‖u(t)− (u0)Ω‖L1(Ω) ≤ 2C
‖u0‖2
t

∀ t > 0,

where C is the constant in the fractional Poincaré inequality (5.3).

7. The limit as s→ 1.

In this section we show that, with an adequate rescale factor, Lp,s, the solutions to fractional p-Laplacian
evolution problem converge as s↗ 1 to the solutions of the corresponding evolution problems for the classical
p-Laplacian.

7.1. The Neumann problem. First we consider the Neumann problem,{
ut(t, x) = Lp,s∆

s
Ω,pu(t, x), (t, x) ∈ (0, T )× Ω,

u(0, x) = u0(x), x ∈ Ω,
(7.1)

where the scaling factor is given by:

Lp,s =
2

Kp,N
(1− s), Kp,N =

1

|SN−1|

∫
SN−1

|e1 · σ|pdHN−1(σ). (7.2)

We denote by ν the unitary exterior normal vector to ∂Ω. We have the following result.

Theorem 7.1. For p ≥ 1. Given sn → 1−, let un be the solution of (7.1) for s = sn. Then, if u is the solution
of the Neumann p–Laplacian problem

ut(t, x) = ∆pu(t, x), in (0, T )× Ω,

|∇u(t, x)|p−2∇u(t, x) · ν(x) = 0, on (0, T )× ∂Ω,

u(0, x) = u0(x), in Ω,

we have

lim
n→∞

sup
t∈[0,T ]

‖un(t)− u(t)‖L2(Ω) = 0.

Note that we have full convergence as s→ 1 (without the need of considering subsequences) since the solution
to the limit problem is unique.

Proof. Consider the energy functionals ΨΩ,p
sn ,Ψ

p : L2(Ω)→ [0,∞] defined as

ΨΩ,p
sn (u) := Lp(sn)N sn

p (u) =


1− sn
pKp,N

∫
Ω

∫
Ω

|u(y)− u(x)|p

|x− y|N+snp
dxdy if u ∈W sn,p(Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \W sn,p(Ω),

for p ≥ 1,

ΨΩ,p(u) :=


1

p

∫
Ω

|∇u|p if u ∈W 1,p(Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \W 1,p(Ω),

for p > 1, and

ΨΩ,1(u) :=

{
|Du|(Ω) if u ∈ BV (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \BV (Ω),
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for p = 1, where |Du| is the total variation of the measure Du. Then, for u0 ∈ L2(Ω), by Theorems 5.5 and 6.5,
we have that un is the strong solution of the abstract Cauchy problem{

u′n(t) + ∂ΨΩ,p
sn (un(t)) 3 0, a.e. t ∈ (0, T ),

un(0) = u0,

and also u is the strong solution of the abstract Cauchy problem{
u′(t) + ∂ΨΩ,p(u(t)) 3 0, a.e. t ∈ (0, T ),

u(0) = u0,

(see [2] for p = 1). Consequently, by classical convergence results of the nonlinear semigroup theory due to
Brezis–Pazy ([14]) and Attouch ([6]), to prove the theorem it is enough to show the Mosco convergence (see
[26]) of the functionals ΨΩ,p

sn to ΨΩ,p. That is, we need to check that

∀u ∈ Dom(ΨΩ,p) ∃un ∈ Dom(ΨΩ,p
sn ) : un → u and ΨΩ,p(u) ≥ lim sup

n→∞
ΨΩ,p
sn (un); (7.3)

and

if un ⇀ u then ΨΩ,p(u) ≤ lim inf
n→∞

ΨΩ,p
sn (un). (7.4)

In [10] and [18] it is proved that, for u ∈W 1,p(Ω) if p > 1, and for u ∈ BV (Ω) if p = 1,

lim
n→∞

ΨΩ,p
sn (u) = ΨΩ,p(u), (7.5)

from where (7.3) follows. To prove (7.4) we can suppose that {ΨΩ,p
sn (un) : n ∈ N} is bounded. Then, by [10,

Theorem 4], we may assume that

un converges strongly in Lp to a function u ∈W 1,p(Ω) if p > 1, u ∈ BV (Ω) if p = 1.

Therefore (7.4) follows by the Γ-convergence in L1 of these functionals, that was proved in [27, Theorem 8]. 2

7.2. The Dirichlet problem. Consider now the Diriclet problem,
ut(t, x) = Lp,s∆

s
pu(t, x), in (0, T )× Ω,

u(t, x) = 0, in (0, T )× (RN \ Ω),

u(0, x) = u0(x), in Ω,

(7.6)

with Lp,s as in (7.2). We have the following result.

Theorem 7.2. Let p ≥ 1. Given sn → 1−, let un be the solution of (7.6) for s = sn. Then, if u is the solution
of the Dirichlet p–Laplacian problem

ut(t, x) = ∆pu(t, x), in (0, T )× Ω,

u(t, x) = 0, on (0, T )× ∂Ω,

u(0, x) = u0(x), in Ω,

we have

lim
n→∞

sup
t∈[0,T ]

‖un(t)− u(t)‖L2(Ω) = 0.

Note again that here we have full convergence as s→ 1 (without the need of considering subsequences) since
the solution to the limit problem is unique.

Proof. Following the same idea as above, for p > 1 consider now the energy functionals ΦΩ,p
sn ,Φ

Ω,p : L2(Ω) →
[0,∞[ defined as

ΦΩ,p
sn (u) := Lp,snD

sn
1 (u) =


1− sn
pKp,N

∫
RN

∫
RN

|u(y)− u(x)|p

|x− y|N+snp
dxdy if u ∈W sn,p

0 (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \W sn,p
0 (Ω),
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and

ΦΩ,p(u) :=


1

p

∫
Ω

|∇u|p if u ∈W 1,p
0 (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \W 1,p
0 (Ω),

and for p = 1 consider

ΦΩ,1
sn (u) := L1,snD

sn
1 (u) =


1− sn
K1,N

∫
RN

∫
RN

|u(y)− u(x)|
|x− y|N+sn

dxdy if u ∈ Wsn,1
0 (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \Wsn,1
0 (Ω),

and

ΦΩ,1(u) :=

 |Du|(Ω) +

∫
∂Ω

|u| if u ∈ BV (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \BV (Ω).

Then, for u0 ∈ L2(Ω), by Theorems 2.5 and 3.5, we have that un is the strong solution of the abstract Cauchy
problem {

u′n(t) + ∂ΦΩ,p
sn (un(t)) 3 0, a.e. t ∈ (0, T ),

un(0) = u0,

and also u is the strong solution of the abstract Cauchy problem{
u′(t) + ∂ΦΩ,p(u(t)) 3 0, a.e. t ∈ (0, T ),

u(0) = u0.

Let us check the Mosco convergence of the functionals ΦΩ,p
sn to ΦΩ,p, that is, we have to show that

∀u ∈ Dom(ΦΩ,p) ∃un ∈ Dom(ΦΩ,p
sn ) : un → u and ΦΩ,p(u) ≥ lim sup

n→∞
ΦΩ,p
sn (un); (7.7)

and

if un ⇀ u then ΦΩ,p(u) ≤ lim inf
n→∞

ΦΩ,p
sn (un). (7.8)

Set Ω̃ := Ω +B(0, 1). Observe that, using the notation of the Neumann case,

ΦΩ,p
sn (u) = ΨΩ̃,p

sn (u) +
2(1− sn)

pKp,N

∫
Ω

(∫
RN\Ω̃

1

|x− y|N+snp
dy

)
|u(x)|pdx, (7.9)

and that

lim
n→∞

2(1− sn)

pKp,N

∫
Ω

(∫
RN\Ω̃

1

|x− y|N+snp
dy

)
|u(x)|pdx = 0. (7.10)

Let us first assume that p > 1. Given u ∈ Dom(ΦΩ,p) = W 1,p
0 (Ω) ∩ L2(Ω), we consider un = uχΩ, then

un ∈W 1,p(Ω̃) ∩ L2(Ω̃). Hence, working as in the proof of (7.5), we have

lim
n→∞

ΨΩ̃,p
sn (u) =

1

p

∫
Ω̃

|∇u|p =
1

p

∫
Ω

|∇u|p = ΦΩ,p(u).

Therefore, by (7.9) and (7.10), we get (7.7).

To prove (7.8) we can suppose that {ΦΩ,p
sn (un) : n ∈ N} is bounded. Therefore, {ΨΩ̃,p

sn (un) : n ∈ N} is also
bounded, and consequently, as above,

un → u strongly in Lp(Ω̃).

Hence, by the results of [27] on the Γ–convergence of ΨΩ̃,p
sn , and having in mind (7.10), we get

1

p

∫
Ω

|∇u|p ≤ 1

p

∫
Ω̃

|∇u|p ≤ lim inf
n

ΦΩ,p
sn (un),

as we wanted to show and we concludes the proof for the case p > 1.
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Let us now do the proof for the singular case p = 1 which is a little different from the previous case since
the boundary values are taken now in a weaker sense, see the expression of ΦΩ,1 above (see [2] for more details
on how the Dirichlet boundary conditions must be considered for the Dirichlet problem for the total variational
flow).

Given u ∈ Dom(ΦΩ,1) = BV (Ω) ∩ L2(Ω), we consider un = uχΩ, then by (1.1) and (1.2), un ∈ Wsn,1
0 (Ω) ∩

L2(Ω). Hence, working as in the proof of (7.5), we have

lim
n→∞

ΨΩ̃,1
sn (un) = |Du|(Ω) +

∫
∂Ω

|u|dHN−1 = ΦΩ,1(u).

Therefore, by (7.9) and (7.10), we get (7.7).

To prove (7.8) we can suppose that {ΦΩ,1
sn (un) : n ∈ N} is bounded. Therefore, {ΨΩ̃,1

sn (un) : n ∈ N} is also
bounded and consequently, as above,

un → u strongly in L1(Ω̃).

Hence, by the results of [27] on the Γ–convergence of ΨΩ̃,1
sn , and having in mind (7.10), we get

|Du|(Ω̃) ≤ lim inf
n

ΦΩ,1
sn (un).

Now, by (1.1),

|Du|(Ω̃) = |Du|(Ω) +

∫
∂Ω

|u|.

Then, from (7.9) and (7.10), we get (7.8). 2

7.3. The Cauchy problem. Finally, let us deal with the Cauchy problem,{
ut(t, x) = Lp,s∆

s
pu(t, x), in (0, T )× RN ,

u(0, x) = u0(x), in RN ,
(7.11)

with Lp,s as in (7.2). We have the following result.

Theorem 7.3. Let p ≥ 1. Given sn → 1−, let un be the solution of (7.11) for s = sn. Then, if u is the solution
of the Cauchy p–Laplacian problem{

ut(t, x) = ∆pu(t, x), in (0, T )× RN ,

u(0, x) = u0(x), in RN ,

we have

lim
n→∞

sup
t∈[0,T ]

‖un(t)− u(t)‖L2(RN ) = 0.

Proof. As above, consider the energy functionals Φpsn ,Φ
p : L2(RN )→ [0,∞] defined as

Φpsn(u) :=


1− sn
pKp,N

∫
RN

∫
RN

|u(y)− u(x)|p

|x− y|N+snp
dxdy if u ∈W sn,p(RN ) ∩ L2(RN ),

+∞ if u ∈ L2(RN ) \W sn,p(RN ),

for p ≥ 1, and the usual counterparts associated with the local problems,

Φp(u) :=


1

p

∫
RN
|∇u|p if u ∈W 1,p(RN ) ∩ L2(RN ),

+∞ if u ∈ L2(RN ) \W 1,p(RN ),

for p > 1, and

Φ1(u) :=

{
|Du|(RN ) if u ∈ BV (RN ) ∩ L2(RN ),

+∞ if u ∈ L2(RN ) \BV (RN ),
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for p = 1. By Theorem 4.5, for u0 ∈ L2(RN ), we have that un is the strong solution to the abstract Cauchy
problem {

u′n(t) + ∂Φpsn(un(t)) 3 0, a.e. t ∈ (0, T ),

un(0) = u0,

and also u is the strong solution to the abstract Cauchy problem{
u′(t) + ∂Φp(u(t)) 3 0, a.e. t ∈ (0, T ),

u(0) = u0,

As in the proof of Theorem 7.1, we only need to check the Mosco convergence of the functionals Φpsn to Φp,
that is, we have to show that

∀u ∈ Dom(Φp) ∃un ∈ Dom(Φpsn) : un → u and Φp(u) ≥ lim sup
n→∞

Φpsn(un); (7.12)

and

if un ⇀ u then Φp(u) ≤ lim inf
n→∞

Φpsn(un). (7.13)

Let us begin with the proof of (7.13) for p > 1. Again we can suppose that {Φpsn(un) : n ∈ N} is bounded,

therefore, for a fixed but arbitrary ball B(0, R), it also bounded {ΦB(0,R),p
sn (un) : n ∈ N}, and consequently, as

in the previous case, we get that

1

p

∫
B(0,R)

|∇u|p ≤ lim inf
n→∞

ΦB(0,R),p
sn (un),

which implies
1

p

∫
B(0,R)

|∇u|p ≤ lim inf
n→∞

Φpsn(un)

and we conclude using the monotone convergence Theorem.
Let us now prove (7.12). Take u ∈W 1,p(RN ) ∩ L2(RN ), and consider a sequence vm ∈ C∞c (RN ) such that

vm → v in W 1,p(RN ) ∩ L2(RN ).

In particular, we have
1

p

∫
RN
|∇vm|p →

1

p

∫
RN
|∇u|p.

For each m ∈ N, we have vm ∈ W 1,p
0 (B(0, Rm)), for some ball B(0, Rm), therefore, by the proof of Theo-

rem 7.2, we have

lim
n→∞

ΦB(0,Rm),p
sn (vm) =

1

p

∫
B(0,Rm)

|∇vm|p,

which implies

lim
n→∞

Φpsn(vm) =
1

p

∫
RN
|∇vm|p.

Hence,

lim
m→∞

lim
n→∞

Φpsn(vm) =
1

p

∫
RN
|∇u|p.

Therefore, there exists a subsequence {un} = {vmn} of {vm} such that

lim
n→∞

Φpsn(un) =
1

p

∫
RN
|∇u|p,

and the proof of (7.12) concludes.

The proof for the case p = 1 is similar, therefore we omit the details. 2
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