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Abstract

In this paper, we study the limit as p goes to infinity of a minimizer
of a variational problem that is a two-phase free boundary problem of
phase transition for the p-Laplacian. Under a geometric compatibility
condition, we prove that this limit is a solution of a free boundary
problem for the ∞-Laplacian. When the compatibility condition does
not hold, we prove that there still exists a uniform limit that is a solu-
tion of a minimization problem for the Lipschitz constant. Moreover,
we provide, in the latter case, an example that shows that the free
boundary condition can be lost in the limit.

AMS Classifications: 35J92, 35R35, 35J60, 35J62
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tional principle, p-Laplacian, infinity Laplacian.

1 Introduction.

Given a bounded Lipschitz domain Ω in Rn, we consider a two-phase free
boundary problem of phase transition for the p-Laplacian. More precisely,
we minimize the functional

Jp(u) =

∫
Ω

1

p
|∇u(x)|p +Qp(x)λ(u(x)) dx, (1.1)

subject to the boundary condition u − σ ∈ W 1,p
0 (Ω), where an indicator

function

λ(s) =

{
λp1 if s > 0,

λp2 if s ≤ 0,
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with λ1 > λ2 > 0, a continuous weight function Q(x) > 0, and boundary
data σ ∈ W 1,∞(Ω) are given. We denote by Lip(σ) the Lipschitz constant
of σ and we assume without the loss of generality that Lip(σ) = Lip(σ |∂Ω),
as we can just take σ as the absolute minimizing Lipschitz extension of
its boundary data (see [1] for the existence of such an absolute minimizing
Lipchitz extension).

There is a minimizer of (1.1), which is proved in Lemma 2.1 in the next
section. A minimizer is a weak solution to the p-Laplace equation in the
positive and negative domains, namely

−∆pup = −div(|∇up|p−2∇up) = 0, in {up > 0} ∪ {up < 0},

satisfying the Dirichlet boundary condition u |∂Ω= σ, and, under the as-
sumption that the “flat region” where up = 0 is of measure zero, the mini-
mizer satisfies the free boundary condition

(u+
p,ν)p − (u−p,ν)p =

p

p− 1
(λp1 − λ

p
2)

at every regular point in a weak sense, as stated in Lemma 2.4. For study
on free boundary problems involving quasilinear equations like the one con-
sidered here, there is a long list of references, among which we would like to
refer the reader to [2], [4], [5], [6], [7], [9], [10], [11], [12], and [13].

Our main concern in this paper is to study the limit as p → ∞ of the
minimizers.

First, to clarify the statements and the discussion, we assume that
Q(x) = 1. Let us consider the three terms that appear in (1.1),

1

p

∫
Ω
|∇u|p, λp1|{u > 0}| and λp2|{u < 0}|. (1.2)

As λ1 > λ2, the third term is not the leading one as p → ∞. Between the
first two, the one that dominates as p→∞ depends on the relation between
Lip(σ) and λ1. When λ1 ≥ Lip(σ), it is the second term that dominates,
and this implies that when we take p → ∞ we get a limit function whose
gradient, or equivalently its Lipschitz constant, is not greater than λ1, and
that minimizes the measure of its positive set. Therefore, we are led to
consider the following two-phase minimization problem:

Minimize |{u(x) > 0}| subject to Lip(u) ≤ λ1, u = σ on ∂Ω, with

4∞u = 0 in {u > 0} ∪ {u < 0},

u = 0, u+
ν = λ1 on ∂{u > 0} ∩ Ω,

(1.3)
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where ν is the normal to the free boundary ∂{u > 0} ∩ Ω pointing inward
of the positive set {u > 0}.

That the ruling equation for the limit configuration is the infinity Laplace
equation −∆∞u = −〈D2uDu,Du〉 = 0 is due to the fact that infinity har-
monic functions, the viscosity solutions to the equation −∆∞u = 0, appear
naturally as the limit of p-harmonic functions, the viscosity solutions to the
p-Laplace equation ∆pu = div(|∇u|p−2∇u) = 0 (see [3] and the survey [1]).

This discussion leads us to believe that when Lip(σ) ≤ λ1 the limit as
p → ∞ of the minimizers of (1.1) is a solution to (1.3), which constitutes
the first part of the next theorem.

The case Lip(σ) > λ1 is different, since in this case the leading term
of the three in (1.2) is the first one. Here we can also prove that there
is a uniform limit, but it could happen that this limit is just the absolute
minimizing Lipschitz extension of σ to the inside of Ω and hence there is no
free boundary that survives in the limit. This is exactly what happens in a
one-dimensional example, Example 2.14.

We summarize the results mentioned above in the following theorem.

Theorem 1.1 Assume that Q = 1. Let up be a minimizer of (1.1), then
there exists a continuous function u∞ such that, for a subsequence denoted
still by {up},

lim
p→∞

up = u∞,

uniformly in Ω. In addition,

(i) if Lip(σ) ≤ λ1, let

P =
⋃

z∈∂Ω,σ(z)>0

Bσ(z)/λ1
(z),

then the limit u∞ is a solution to (1.3) and its positive set verifies

P ⊂ {u∞ > 0}, |P | = |{u∞ > 0}|, and ∂{u∞ > 0} ∩ Ω ⊂ ∂P ∩ Ω. (1.4)

Moreover, in this case, the limit u∞ satisfies the free boundary condition
u+
ν = λ1 along the free boundary ∂{u∞ > 0} ∩ Ω in the sense that, if
x0 ∈ ∂{u∞ > 0} ∩ Ω is a regular free boundary point, then

lim
ε↓0

u∞(x0 − εν)− u∞(x0)

ε
= λ1.

where ν is a external normal vector to the set {u∞ > 0} at x0.
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(ii) if Lip(σ) > λ1, then u∞ is a minimal Lipschitz extension of σ. That
is, it minimizes the Lipschitz constant in Ω subject to the boundary data σ,
or equivalently,

Lip(u∞) = min
v=σ on ∂Ω

Lip(v).

Moreover, in this case, it can happen that the free boundary condition is lost
in the limit, that is, the limit u∞ may be independent of λ1 and λ2 as shown
by the one-dimensional example (2.14).

In both cases, the limit u∞ is also a viscosity solution to the infinity
Laplace equation 4∞u = 0 in {u > 0} ∪ {u < 0}.

Remark 1.2 The properties of the positive set for the limit given in (1.4)
are given in terms of the set P that is exactly the positive set of the function

v∞(x) = max
z∈∂Ω,σ(z)>0

(σ(z)− λ1|x− z|)+. (1.5)

Also note that we have that {u∞ > 0} = {v∞ > 0} ∪ Z for a set Z of
measure zero, and the free boundary of u∞ is included in the boundary of
the positive set of v∞.

Remark 1.3 If we consider the same problem with λ1, λ2 instead of λp1, λp2
in the definition of λ(u), our arguments show that up converges uniformly
to a limit, u∞, that is a solution of

min
Lip(u)≤1,u=σ on ∂Ω

λ1|{u > 0}|+ λ2|{u < 0}|, if Lip(σ) ≤ 1,

min
u=σ on ∂Ω

Lip(u), if Lip(σ) > 1.

The case Q 6= 1 is different since we have again three terms that in this
case are the following

1

p

∫
Ω
|∇u|p, λp1

∫
{u>0}

Qp(x) dx and λp2

∫
{u≤0}

Qp(x) dx.

Note that now the third term can be dominant depending on the size of Q
even if λ1 > λ2.

In this case we can also show uniform convergence and that the limit is
a solution to a minimization problem as stated below.

Theorem 1.4 Let up be a minimizer of (1.1), then, for a subsequence {upk}
of {up}, it holds that

lim
k→∞

upk = u∞
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uniformly in Ω. In addition, the limit u∞ is a solution to the minimization
problem

min
u∈A, u|∂Ω=σ

max
{
Lip(u), λ1‖Q‖L∞(u>0), λ2‖Q‖L∞(u≤0)

}
,

where A =
{
u : Lip(u) ≤ max{Lip(σ), λ1‖Q‖L∞(σ>0), λ2‖Q‖L∞(σ≤0)}

}
.

As in Theorem 1.1, the free boundary may be lost in the limit.

2 Proof of the main theorems.

2.1 The two-phase problem for the p-Laplacian for finite p.

First we prove the existence of a minimizer of (1.1) for a fixed p in [1,∞).

Lemma 2.1 There exists a minimizer of the variational problem (1.1).

Proof. Without the loss of generality, one may assume the domain Ω is
bounded. Take a minimizing sequence {uk} of Jp. Then

lim
k→∞

Jp(u
k) ≤ Jp(σ).

So {uk} is a bounded sequence in W 1,p(Ω), since
∫

Ω |∇u
k|p ≤ pJp(uk). As a

result, one may conclude that, for a subsequence denoted still by {uk},

uk → v weakly in W 1,p(Ω)

uk → v a. e. in Ω and

Qp(x)λp(uk)→ q(x) weakly star in L∞loc(Ω),

where

q(x)

{
= Qp(x)λp(v) if v 6= 0
≥ Qp(x)λp(v) if v = 0.

Then Fatou’s Lemma implies that

Jp(v) =
1

p

∫
Ω
|∇v|p +Qp(x)λp(v)

≤ lim inf
k→∞

1

p

∫
Ω
|∇uk|p +Qp(x)λp(uk)

= lim inf
k→∞

Jp(u
k).

So v is a minimizer of Jp, since clearly v − σ ∈W 1,p
0 (Ω).
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Remark 2.2 The previous proof also works if Ω is unbounded, one may
simply replace Ω by Ω ∩ BR for all large balls BR in the above argument
and send R to ∞.

Remark 2.3 The uniqueness of a minimizer of the variational problem does
not hold. In fact, one may take Ω = B, the unit ball of Rn, and take the
simplest boundary data σ = 1 on ∂Ω.

Next, we take u0 ≡ 1 on Ω. Then Jp(u0) = 1
pλ

p
2ωn, where ωn is the

volume of the unit ball.
Suppose there is a unique minimizer u1 of the functional Jp. Then u1 is

radially symmetric. So there is an s ∈ (0, 1) such that u1 ≡ 0 on Bs, and
4pu1 ≡ 0 in B\Bs. A simple computation gives that

u(x) =

{
a|x|

p−n
p−1 + b, if s ≤ |x| ≤ 1

0, if |x| < s,

where a and b satisfy a+ b = 1 and as
p−n
p−1 + b = 0. Then

Jp(u0)− Jp(u1) =
1

p
(λp2 − λ

p
1)ωns

n − 1

p
|a|p

∣∣∣∣p− np− 1

∣∣∣∣p p− 1

p− n
(1− s

p−n
p−1 )nωn.

If one carefully chooses the values of λ1 and λ2, one can make this difference
equal to 0. The details are very similar to those in the computation contained
in [8] and hence we omit the details. So one ends up with two distinct
minimizers u0 and u1.

Lemma 2.4 Let Q = 1. Suppose that up is a minimizer of Jp, and that

|{x : up(x) = 0}| = 0.

Then up satisfies the free boundary condition

(u+
p,ν)p − (u−p,ν)p =

p

p− 1
(λp1 − λ

p
2)

in the weak sense, that is,

lim
ε↓0

∫
∂{up>ε}

(
p− 1

p
|∇up|p − λp1)η · ν

+ lim
δ↓0

∫
∂{up<−δ}

(
p− 1

p
|∇up|p − λp2)η · ν = 0

for any smooth function η ∈ C2
0 (Ω;Rn). Here ν always denotes the external

normal to a given domain.
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Proof. Take xε = τε(x) = x+ εη for x ∈ Ω, and define uε(xε) = up(x). So

uε(x) = up(τ
−1
ε x),

∇uε(x) = (Dτ−1
ε (x))∇up(τ−1

ε x),

and

(Dτ−1
ε )(x) = (Dτε)

−1(τ−1
ε x) = (I+ε∇η)−1(τ−1

ε x) = I−εDη(τ−1
ε x)+O(ε2).

We will also use the following identities

|(I − εDη +O(ε2))∇up|p = |∇up|p − εp|∇up|p−2 < Dη∇up,∇up > +O(ε2)

and
det(I + εDη) = 1 + ε tr(Dη) +O(ε2),

where tr(Dη) = ∇ · η.
The minimality of Jp(up) then implies

0 ≤ Jp(uε)− Jp(up)

=

∫
Ω

1

p
|Dτ−1

ε (x)∇up(τ−1
ε x)|p + λ(up(τ

−1
ε ))dx−

∫
Ω

1

p
|∇u|p + λ(u)

=

∫
Ω

1

p
|(Dτε)−1(τ−1

ε x)∇up(τ−1
ε x)|p + λ(up(τ

−1
ε x))dx−

∫
Ω

1

p
|∇u|p + λ(u)

=

∫
Ω
{1

p
|(Dτε)−1(x)∇up(x)|p + λ(up(x))} det(Dτε)dx−

∫
Ω

1

p
|∇u|p + λ(u)

=

∫
Ω

1

p
|(I − εDη +O(ε2))∇up|p det(I + ε∇η) + λ(up(x)) det(I + εDη)dx

−
∫

Ω

1

p
|∇u|p + λ(u)

=

∫
Ω

1

p
{|∇up|p − εp|∇up|p−2 < Dη∇up,∇up > +O(ε2)}

{1 + ε tr(Dη) +O(ε2)}dx+

∫
Ω
λ(up)(1 + ε tr(Dη) +O(ε2))dx

−
∫

Ω

1

p
|∇up|p + λ(up)dx.
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Hence, we get

0 ≤ Jp(uε)− Jp(up)

= ε

∫
Ω

1

p
|∇up|p tr(Dη)− |∇up|p−2〈Dη∇up,∇up〉

+λ(up) tr(Dη)dx+O(ε2)

= ε

∫
Ω
{1

p
|∇up|p + λ(up)} tr(Dη)− |∇up|p−2〈Dη∇up,∇up〉dx+O(ε2).

As ε could be any small number, positive as well as negative, the linear term
in ε must be zero in the preceding inequality. Hence∫

Ω

{1

p
|∇up|p + λ(up)

}
∇ · η − |∇up|p−2〈Dη∇up,∇up〉 = 0.

The left-hand-side of the preceding equation is given by, on account of the
assumption that |{up = 0}| = 0,

lim
ε↓0,δ↓0

∫
Ω\{−δ<up<ε}

{1

p
|∇up|p + λ(up)

}
∇ · η − |∇up|p−2〈Dη∇up,∇up〉.

If up is of class C2, then the preceding left-hand-side is equal to

lim
ε↓0,δ↓0

∫
Ω\{−δ<up<ε}

∇ · {(1

p
|∇up|p + λ(up))η − η · ∇up|∇up|p−2∇up}

= lim
ε↓0

∫
∂{up>ε}

(
1

p
|∇up|p + λp1)η · ν − η · ∇up|∇up|p−2∇up · νdHn−1

+ lim
δ↓0

∫
∂{up<−δ}

(
1

p
|∇up|p + λp2)η · ν − η · ∇up|∇up|p−2∇up · νdHn−1

= − lim
ε↓0

∫
∂{up>ε}

(
p− 1

p
|∇up|p − λp1)η · νdHn−1

− lim
δ↓0

∫
∂{up<−δ}

(
p− 1

p
|∇up|p − λp2)η · νdHn−1,

the second equation being the application of the divergence theorem.
If up is not of class C2, one may replace up by any mollified approximation

up∗ξn for a sequence of compactly supported C∞ functions ξn approximating
the identity in the above computation, and then take limit as ξn approaches
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the Dirac measure. Therefore, one obtains∫
Ω
{1

p
|∇up|p + λ(up)}∇ · η − |∇up|p−2 < Dη∇up,∇up >

= − lim
ε↓0

∫
∂{up>ε}

(
p− 1

p
|∇up|p − λp1)η · νdHn−1

− lim
δ↓0

∫
∂{up<−δ}

(
p− 1

p
|∇up|p − λp2)η · νdHn−1.

The proof is finished.

Remark 2.5 The above lemma does not imply that the conditions

u+
p,ν =

(
p

p− 1

) 1
p

λ1 and u−p,ν =

(
p

p− 1

) 1
p

λ2

hold along the free boundary ∂{up > 0} in any sense. In fact, if one defines
a new functional

J̃p(u) =

∫
Ω

1

p
|∇u|p + λ̃(u)dx,

where

λ̃(s) =

{
µp1 if s > 0;

µp2 if s ≤ 0,

and µp1 − µ
p
2 = λp1 − λ

p
2. Then J̃p(u) = Jp(u) + (µp1 − λ

p
1)|Ω|, and hence a

minimizer of Jp is also a minimizer of J̃p. Clearly, u+
p,ν = ( p

p−1)
1
pλ1 and

u+
p,ν = ( p

p−1)
1
pµ1 cannot both hold at the same time unless λ1 = µ1.

Remark 2.6 Note that the assumption

|{up(x) = 0}| = 0

is needed here. As the one-dimensional example, namely Example 2.14,
shows, there are configurations of data, Ω, σ, λ1 and λ2, such that a zero
flat region occurs.

Remark 2.7 In symbol, if one takes limit of the the free boundary con-
dition (u+

p,ν)p − (u−p,ν)p = p
p−1(λp1 − λ

p
2) as p tends to infinity, one gets the

free boundary condition u+
ν = λ1 for a possible limit function u∞. It is sur-

prising that the limiting free boundary condition is essentially a one-phase
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condition, and whether this free boundary condition holds depends on the
Lipschitz constant of the boundary data. On the other hand, the limit
function u∞ verifies more than just the infinity Laplace equation and the
free boundary condition. It is a solution of a minimization problem on the
measure of the positive set, which will be stated in the proof of Theorem 1.1.

Remark 2.8 This problem can be scaled as follows: if u is a minimizer
of Jp with constants λ1, λ2 and boundary data σ, then uk(x) = u(x)/k,
for k > 0, is a minimizer for Jp with constants λ1/k, λ2/k and boundary
data σk(x) = σ(x)/k. Moreover if 0 ∈ Ω and if we let uk(x) = u(x/k) then
we obtain a minimizer for Jp in the domain Ωk = kΩ with constants λ1/k,
λ2/k and boundary data σk(x) = σ(x/k). Note that in the latter case, the
Lipschitz constant of σk is equal to the Lipschitz constant of σ over k.

2.2 The limit as p→∞ for Q = 1.

Our next result shows that there is a precise bound for the Lp-norm of the
gradient of a minimizer.

Lemma 2.9 Assume that Q = 1. Let up be a minimizer of Jp. Then(∫
Ω
|∇up|p

) 1
p

≤ C(p, σ,Ω, λ1),

where

lim
p→∞

C(p, σ,Ω, λ1) =

{
λ1 if Lip(σ) ≤ λ1;
Lip(σ) if Lip(σ) > λ1.

Proof. One easily gets from Jp(up) ≤ Jp(σ) that∫
Ω
|∇up|p ≤

∫
Ω
|∇σ|p + p

∫
Ω
λ(σ) ≤ (Lip(σ))p|Ω|+ pλp1|Ω|.

The result follows from this inequality by taking the constant to be

C(p, σ,Ω, λ1) = [(Lip(σ))p|Ω|+ pλp1|Ω|]
1
p .

Lemma 2.10 Assume that Q = 1. There is a uniform limit u∞ of a sub-
sequence of {up}p, as p→∞. Moreover, the limit u∞ satisfies

u∞ = σ on ∂Ω,
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and u∞ ∈W 1,∞(Ω) with

‖∇u∞‖L∞(Ω) ≤

{
λ1 if Lip(σ) ≤ λ1

Lip(σ) if Lip(σ) > λ1.

Proof. Fix q and let p > q. Using Hölder’s inequality and Lemma 2.9, one
gets (∫

Ω
|∇up|q

) 1
q

≤ |Ω|
p−q
qp

(∫
Ω
|∇up|p

) 1
p

≤ |Ω|
p−q
qp C(p, σ,Ω, λ1). (2.1)

Hence {up}p>q is bounded in W 1,q(Ω) and hence there is a weakly convergent
subsequence, still denoted by {up}, such that

up → u∞ weakly in W 1,q(Ω) and uniformly on Ω.

Using a diagonal procedure one can assume that this convergence is verified
for all integer q.

Clearly, u∞ = σ on ∂Ω. In addition, if one sends p to ∞ in the estimate
(2.1), one gets (∫

Ω
|∇up|q

) 1
q

≤ |Ω|
1
q lim
p→∞

C(p, σ,Ω, λ1).

The result follows from here by sending q to ∞.

Lemma 2.11 The limit u∞ is a viscosity solution to −4∞ u∞ = 0 in the
set {u∞ > 0} ∪ {u∞ < 0}.

Proof. In a ball B ⊆ {u∞ > 0}, up > 0 for all sufficiently large p thanks to
the uniform convergence of the subsequence. So − 4p up = 0 in B, which
implies, by passing to limit uniformly, −4∞ u∞ = 0 in the viscosity sense
in B. The case in {u∞ < 0} follows similarly.

Now we are ready to prove our result concerning the limit as p → ∞
when Q ≡ 1.

Proof of Theorem 1.1. First, we assume that Lip(σ) ≤ λ1. Our goal is
to show that u∞ is a solution to (1.3) and that its positive set is given by

{u∞ > 0} =
⋃

z∈∂Ω,σ(z)>0

Bσ(z)/λ1
(z) ∪ Z,
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for a set Z of measure zero.
Let us consider

v∞(x) = max
z∈∂Ω,σ(z)>0

(σ(z)− λ1|x− z|)+.

Note that we have that

‖∇v∞‖L∞(Ω∩{v∞>0}) = λ1.

It follows that u∞ ≥ v∞ in the set {v∞ > 0}, since ‖∇u∞‖L∞(Ω) ≤ λ1

and u∞ = v∞ on ∂Ω. If this is not the case, there is a point x0 ∈ {v∞ > 0}
such that u∞(x0) < v∞(x0). Then, from the definition of v∞, we conclude
the existence of a point z0 ∈ ∂Ω with σ(z0) > 0 such that

v∞(x0) = max
z∈∂Ω,σ(z)>0

(σ(z)− λ1|x0 − z|)+ = (σ(z0)− λ1|x0 − z0|)+.

Without the loss of generality, we may take z0 ∈ ∂Ω to be the closest point to
x0 on the segment [x0, z0]. In fact, suppose there is a point z1 ∈ ∂Ω∩[x0, z0).
Then

σ(z1)− λ1|x0 − z1| ≥ σ(z0)− λ1|x0 − z0| (2.2)

or equivalently
σ(z1)− σ(z0) ≥ −λ1|z1 − z0| (2.3)

as a result of the assumption Lip(σ) ≤ λ1, and hence one can take the closest
point on ∂Ω ∩ [x0, z0] to replace z0.

Note that, as u∞ = v∞ = σ on ∂Ω we get

u∞(z0)− u∞(x0) > v∞(z0)− v∞(x0) = λ1|x0 − z0|,

a contradiction to the fact ‖∇u∞‖L∞(Ω) ≤ λ1. Therefore we conclude that
u∞ ≥ v∞ in the set {v∞ > 0} and hence⋃

z∈∂Ω,σ(z)>0

Bσ(z)/λ1
(z) = {v∞ > 0} ⊆ {u∞ > 0}.

In the following, we characterize the limit function u∞ through a varia-
tional problem.

As before, up is a minimizer of the functional Jp. Take any Lipschitz
continuous function θ∞ with Lipschitz constant less than or equal to λ1,
which verifies θ∞ = σ on ∂Ω. Note that σ is such a function. The function
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θ∞ can be taken as a competitor for up for the functional Jp, and hence we
obtain

1

p

∫
Ω
|∇up|p +

∫
Ω
λ(up) ≤

1

p

∫
Ω
|∇θ∞|p +

∫
Ω
λ(θ∞).

Hence ∫
up>0

λp1 ≤
1

p
λp1|Ω|+

∫
{θ∞>0}

λp1 +

∫
{θ∞<0}

λp2.

Therefore

|{up > 0}| ≤ 1

p
|Ω|+ |{θ∞ > 0}|+ |Ω|λ

p
2

λp1
. (2.4)

Now we observe that

{u∞ > 0} =
⋃
η>0

{u∞ > η}.

Hence,
|{u∞ > 0}| = lim

η→0
|{u∞ > η}|,

and then, given any ε > 0, one can find an η > 0 such that

|{u∞ > 0}| − |{u∞ > η}| ≤ ε.

Now we observe that, from the uniform convergence of up to u∞, one gets

{u∞ > η} ⊂ {up > 0}

for every p ≥ p0, and hence

|{u∞ > 0}| ≤ |{u∞ > η}|+ ε ≤ |{up > 0}|+ ε.

We conclude that, since ε is arbitrary,

|{u∞ > 0}| ≤ lim inf
p→∞

|{up > 0}|.

With this in mind we can take limit in (2.4) as p→∞ and we get

|{u∞ > 0}| ≤ |{θ∞ > 0}|,

for any Lipschitz continuous function θ∞ with Lipschitz constant less than
or equal to λ1 that verifies θ∞ = σ on ∂Ω.

Therefore we have that any uniform limit of up is a solution of the min-
imization problem of

minimizing |{u > 0}|, subject to Lip(u) ≤ λ1, u|∂Ω = σ (2.5)
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We observe that v∞ satisfies the hypothesis imposed on θ∞. Therefore,
we conclude that

|{v∞ > 0}| ≥ |{u∞ > 0}|.

As a result, both v∞ and u∞ are solutions to the minimization problem
(2.5), and

{u∞ > 0} = {v∞ > 0} ∪ Z

for a set Z of measure zero, due to the fact that {v∞ > 0} ⊆ {u∞ > 0}.
Next, we assume that λ1 < Lip(σ). Take any Lipschitz continuous func-

tion θ∞ such that θ∞ = σ on ∂Ω. Note that σ is such a function, and that
Lip(θ∞) ≥ Lip(σ) for any such θ∞. This function θ∞ can be viewed as a
competitor for up in the minimization problem for the functional Jp and
hence (

1

p

∫
Ω
|∇up|p + λp1|{up > 0}|+ λp2|{up ≤ 0}|

) 1
p

≤
(

1

p

∫
Ω
|∇θ∞|p + λp1|{θ∞ > 0}|+ λp2|{θ∞ ≤ 0}|

) 1
p

.

Therefore(
1

p

∫
Ω
|∇up|p

) 1
p

≤
(

1

p

∫
Ω
|∇θ∞|p + λp1|{θ∞ > 0}|+ λp2|{θ∞ ≤ 0}|

) 1
p

.

On account of the reason stated in the proof of Lemma 2.10, one may con-
clude that

Lip(u∞) ≤ lim inf
p→∞

(
1

p

∫
Ω
|∇up|p

) 1
p

,

In addition, since θ∞ is Lipschitz, one gets

lim
p→∞

(
1

p

∫
Ω
|∇θ∞|p

) 1
p

= Lip(θ∞).

Using the above two inequalities and one equation and the fact that Lip(θ∞) ≥
Lip(σ) > λ1 > λ2, one gets

Lip(u∞) ≤ Lip(θ∞).

Therefore we conclude that u∞ is a minimizer of the Lipschitz norm Lip(u)
over the region Ω in the set of Lipschitz functions that take on the boundary
value σ on ∂Ω.
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To finish the proof, we show that, when Lip(σ) ≤ λ1, there is a boundary
condition on the boundary of the set {u∞ > 0} ∩ Ω. In fact, we show that
the limit u∞ satisfies u+

ν = λ1 on ∂{u∞ > 0} ∩ Ω in the sense that, if
x0 ∈ ∂{u∞ > 0} ∩ Ω then

lim
ε↓0

u∞(x0 − εν)− u∞(x0)

ε
= λ1,

where ν is a external normal vector to the set {u∞ > 0} at x0.
We have the explicit form for the positive set of the limit

{u∞ > 0} ⊇ P =
⋃

z∈∂Ω,σ(z)>0

Bσ(z)/λ1
(z) = {v∞ > 0}.

Hence, given x0 ∈ ∂{u∞ > 0} ∩ Ω ⊂ P ∩ Ω, there exists a z0 ∈ ∂Ω ∩ {z :
σ(z) > 0} such that

0 = u∞(x0) = max
z∈∂Ω,σ(z)>0

(σ(z)− λ1|x− z|)+ = σ(z0)− λ1|x0 − z0|.

Take

ν =
x0 − z0

|x0 − z0|
.

We have that ν is a normal exterior vector to the set {u∞ > 0} (in fact we
have that {x ∈ Ω : σ(z0)− λ1|x− z0| > 0} ⊂ {u∞ > 0}).

By the same arguments used before we have that for any ε > 0 small
enough,

u∞(x0 − εν) ≥ σ(z0)− λ1|x0 − z0 − εν| = σ(z0)− λ1(|x0 − z0| − ε)

and, from the fact that Lip(u∞) ≤ λ1 and the explicit formulas we obtain

λ1 ≥ lim
ε↓0

u∞(x0 − εν)− u∞(x0)

ε
≥ lim

ε↓0

λ1ε

ε
= λ1,

as we wanted to show.

Remark 2.12 Note that if we have that u∞ is∞-harmonic in Ω\{u∞ > 0}
since it has boundary data σ on ∂Ω∩ ∂(Ω\{u∞ > 0}) and 0 on Ω∩ ∂{u∞ >
0}, we get that the limit is unique.

Also note that up to this point we only had uniform convergence of a
subsequence of up but if we have uniqueness of the limit (and this holds u∞
is ∞-harmonic in Ω\{u∞ > 0}), we have convergence of the whole family
up as p→∞.
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Remark 2.13 If we call zp the p-harmonic function, −∆pzp = 0, with
boundary conditions zp = σ then we have that

up ≤ zp

and passing to the limit we conclude that

u∞ ≤ z∞

where z∞ is the AMLE of σ |∂Ω. This implies that

{u∞ > 0} ⊂ {z∞ > 0}.

And in fact, when λ1 ≥ Lip(σ) we have obtained this property in the previ-
ous proof, but this inclusion holds also for the case λ1 < Lip(σ).

The explicit formula that we have for the limit in the positive set in the
case Lip(σ) ≤ λ1 is monotone decreasing with λ1. Therefore the positive
set of the limit decreases as λ1 increases in this case.

In general we do not have a two-sided free boundary condition as the
following example shows (in fact in this simple 1 − d example one can see
all the features described in the general case in Theorem 1.1).

Example 2.14 The 1− d example. Let us solve the problem in Ω = (0, 1)
with boundary conditions up(0) = σ0 > 0 and up(1) = σ1 < 0.

Recall that the functional that we want to minimize is given by

Jp(u) =
1

p

∫ 1

0
|u′|p + λp1|{u > 0}|+ λp2|{u < 0}|.

First, let us tackle the case in which we have a flat zero region. That is,
there are two points

0 < x+
p < x−p < 1

such that
up ≡ 0, in (x+

p , x
−
p ).

In this case the energy is minimized by a function of the form

up(x) =


− σ0

x+
p

(x− x+
p ), x ∈ (0, x+

p ),

0, x ∈ [x+
p , x

−
p ],

σ1

1− x−p
(x− x−p ), x ∈ (x−p , 1),
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and is given by

Jp(up) =
1

p
σp0(x+

p )1−p +
1

p
|σ1|p(1− x−p )1−p + λp1x

+
p + λp2(1− x−p ).

Since Jp attains its minimum at up we get that

x+
p =

(
p− 1

p

) 1
p σ0

λ1
and 1− x−p =

(
p− 1

p

) 1
p |σ1|
λ2

.

As we have assumed that 0 < x+
p < x−p < 1 we conclude that a solution

with a zero region exists if and only if

σ0

λ1
− σ1

λ2
< 1.

In this case the limit as p→∞ of x+
p and x−p are given by

x+
∞ =

σ0

λ1
and x−∞ =

|σ1|
λ2

and hence the limit of up is

u∞(x) =


−λ1(x− x+

∞), x ∈ (0, x+
∞),

0, x ∈ [x+
∞, x

−
∞],

−λ2(x− x−∞), x ∈ (x−∞, 1),

Now, assume that there is no flat zero region, that is, x+
p = x−p . We have

that up vanishes at only one point, that we call xp ∈ (0, 1), that must verify∣∣∣∣σ0

xp

∣∣∣∣p − ∣∣∣∣ σ1

1− xp

∣∣∣∣p =
p

p− 1
(λp1 − λ

p
2) . (2.6)

Once this point is fixed then up is given by

up(x) =


σ0 −

σ0

xp
x, x ∈ (0, xp)

σ1 −
σ1

1− xp
(1− x), x ∈ (xp, 1).

Since xp is bounded we can extract a converging subsequence xp → x∞.
Now, we just take the limit in (2.6),∣∣∣∣σ0

xp

∣∣∣∣p(1−
∣∣∣∣ σ1xp
σ0(1− xp)

∣∣∣∣p) =
p

p− 1
(λp1 − λ

p
2) ∼ λp1
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to obtain
σ0

x∞
= λ1,

this can be done provided that

−σ1x∞
σ0(1− x∞)

< 1,

that is,
−σ1

λ1(1− σ0
λ1

)
< 1,

that holds if and only if
−σ1

λ1 − σ0
< 1,

that is,
σ0 − σ1 < λ1,

and hence u∞ (the uniform limit of the up) is uniquely determined and is
given by

u∞(x) =


σ0 −

σ0

x∞
x, x ∈ (0, x∞)

σ1 −
σ1

1− x∞
(1− x), x ∈ (x∞, 1).

In the case σ0 − σ1 ≥ λ1 we get from our previous results that u∞ is a
Lipschitz function with boundary values σ0 and σ1 and Lipschitz constants
less or equal to σ0 − σ1 so the only possibility is the strait line,

u∞(x) = σ0 + (σ1 − σ0)x.

Note that in this case we lost the free boundary condition since the limit
does not depends on λ1 and λ2.

Summarizing, we have:

• If
σ0

λ1
− σ1

λ2
< 1

then there is a zero flat region for large p (and also for p =∞).

• If
σ0

λ1
− σ1

λ2
≥ 1 and σ0 − σ1 < λ1

there is no flat region for p large and the limit problem shows a free
boundary condition governed by λ1.
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• If
σ0 − σ1 ≥ λ1

there is no flat region for large p and in the limit the free boundary
condition is lost (the limit is just the AMLE (in this simple 1−d case
the strait line)).

2.3 The limit as p→∞ for Q 6= 1.

Proof of Theorem 1.4. First, we obtain the analogous to Lemma 2.9.
We observe that using σ as a competitor for up we get Jp(up) ≤ Jp(σ) and
hence∫

Ω
|∇up|p ≤

∫
Ω
|∇σ|p + p

∫
Ω
Qpλ(σ)

≤ (Lip(σ))p|Ω|+ pλp1‖Q‖
p
L∞({σ>0})|{σ > 0}|+ pλp2‖Q‖

p
L∞({σ≤0})|{σ ≤ 0}|.

Then (∫
Ω
|∇up|p

) 1
p

≤ C(p, σ),

where

lim
p→∞

C(p, σ) = max{Lip(σ);λ1‖Q‖L∞({σ>0});λ2‖Q‖L∞({σ≤0})}.

From this fact we can (arguing as in Lemma 2.10) obtain that there is
a uniform limit, u∞, of a subsequence of {up}p, as p → ∞. Moreover, the
limit u∞ satisfies

u∞ = σ on ∂Ω,

and u∞ ∈W 1,∞(Ω) with

‖∇u∞‖L∞(Ω) ≤ max{Lip(σ);λ1‖Q‖L∞({σ>0});λ2‖Q‖L∞({σ≤0})}.

Now let us look for a variational problem verified by u∞. To this end,
let us consider

A =
{
u : Lip(u) ≤ max{Lip(σ);λ1‖Q‖L∞(σ>0);λ2‖Q‖L∞(σ≤0)}

}
We have that up is a minimizer of the functional Jp. Take any θ∞ ∈ A

such that θ∞ = σ on ∂Ω (note that σ verifies this, so the set of such functions
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is not empty). This function θ∞ can be viewed as a competitor for up and
we obtain

1

p

∫
Ω
|∇up|p +

∫
Ω
Qpλ(up) ≤

1

p

∫
Ω
|∇θ∞|p +

∫
Ω
Qpλ(θ∞).

Hence(
1

p

∫
Ω
|∇up|p + λp1

∫
{up>0}

Qp + λp2

∫
{up≤0}

Qp

) 1
p

≤

(
1

p

∫
Ω
|∇θ∞|p + λp1

∫
{θ∞>0}

Qp + λp2

∫
{θ∞≤0}

Qp

) 1
p

(2.7)

Since

lim sup
p→∞

(ap + bp + cp)
1
p ≤ max

{
lim sup
p→∞

(ap)
1
p ; lim sup

p→∞
(bp)

1
p ; lim sup

p→∞
(cp)

1
p

}
we have that the limsup of the right hand side in (2.7) is bounded by

max
{
Lip(θ∞);λ1‖Q‖L∞(θ∞>0);λ2‖Q‖L∞(θ∞≤0)

}
.

Therefore, from (2.7), we obtain

max
{

lim inf
p→∞

(
1

p

∫
Ω
|∇up|p

) 1
p

; lim inf
p→∞

(
λp1

∫
{up>0}

Qp

) 1
p }

≤ max
{
Lip(θ∞);λ1‖Q‖L∞(θ∞>0);λ2‖Q‖L∞(θ∞≤0)

}
.

(2.8)

From our previous discussion we have that

Lip(u∞) ≤ lim inf
p→∞

(
1

p

∫
Ω
|∇up|p

) 1
p

and hence we get

Lip(u∞) ≤ max
{
Lip(θ∞);λ1‖Q‖L∞(θ∞>0);λ2‖Q‖L∞(θ∞≤0)

}
.

Now, using that Q is continuous, given ε > 0, one fixes η > 0 such that∣∣‖Q‖L∞({u∞>0}) − ‖Q‖L∞({u∞>η})
∣∣ ≤ ε.
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We observe that, from the uniform convergence of up to u∞, one gets

{u∞ > η} ⊂ {up > 0}

for every p ≥ p0, and hence

‖Q‖L∞({u∞>0}) ≤ ‖Q‖L∞({u∞>η}) + ε ≤ lim
p→∞

(∫
{u∞>η}

Qp

) 1
p

+ ε

≤ lim inf
p→∞

(∫
{up>0}

Qp

) 1
p

+ ε.

We conclude that, since ε is arbitrary,

λ1‖Q‖L∞({u∞>0}) ≤ lim inf
p→∞

(
λp1

∫
{up>0}

Qp

) 1
p

,

and hence from (2.8) we get

λ1‖Q‖L∞({u∞>0}) ≤ max
{
Lip(θ∞);λ1‖Q‖L∞(θ∞>0);λ2‖Q‖L∞(θ∞≤0)

}
.

To finish the proof we need a bound for

λ2‖Q‖L∞({u∞≤0}).

This task is different from the previous one since we can not assert that the
sets {u∞ ≤ 0} and {up ≤ 0} are similar from the uniform convergence.

From (2.7) we get(
λp1

∫
{up>0}

Qp + λp2

∫
{up≤0}

Qp

) 1
p

≤

(
1

p

∫
Ω
|∇θ∞|p + λp1

∫
{θ∞>0}

Qp + λp2

∫
{θ∞≤0}

Qp

) 1
p

.

(2.9)

Using that λ1 < λ2 and that Ω = {up > 0} ∩ {up ≤ 0} we get(
λp2

∫
{u∞≤0}

Qp

) 1
p

≤

(
λp1

∫
{up>0}

Qp + λp2

∫
{up≤0}

Qp

) 1
p

.
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Taking p→∞, using (2.9) and our previous argument, we obtain

λ2‖Q‖L∞({u∞≤0}) ≤ lim
p→∞

(
λp2

∫
{u∞≤0}

Qp

) 1
p

≤ lim sup
p→∞

(
1

p

∫
Ω
|∇θ∞|p + λp1

∫
{θ∞>0}

Qp + λp2

∫
{θ∞≤0}

Qp

) 1
p

≤ max
{
Lip(θ∞);λ1‖Q‖L∞(θ∞>0);λ2‖Q‖L∞(θ∞≤0)

}
.

Therefore, collecting all these bounds, we have obtained that any uniform
limit of up is a solution of the minimization problem

min
u∈A, u|∂Ω=σ

max
{
Lip(u);λ1‖Q‖L∞(u>0);λ2‖Q‖L∞(u≤0)

}
. (2.10)

Remark 2.15 Remark that the limit problem be scaled as follows: if u is a
solution to the limit problem with constants λ1, λ2 and boundary datum σ,
then uk(x) = ku(x), for k > 0, is a also a solution with constants λ1/k, λ2/k
and boundary datum σk(x) = σ(x)/k. Moreover if we let uk(x) = u(x/k)
then we obtain a solution in the domain Ωk = kΩ with constants λ1/k, λ2/k
and boundary datum σk(x) = σ(x/k). Note that the Lipschitz constant of
σk is the Lipschitz constant of σ over k. These facts are easy consequences
of Remark 2.8 or can be obtained directly by scaling the limit minimization
problem (2.10) as described above.
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