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Abstract. In this paper we study the blow-up phenomenon for non-
negative solutions to the following parabolic problem:

ut(x, t) = ∆u(x, t) + (u(x, t))p(x), in Ω× (0, T ),

where 0 < p− = min p ≤ p(x) ≤ max p = p+ is a smooth bounded
function. After discussing existence and uniqueness we characterize the
critical exponents for this problem. We prove that there are solutions
with blow-up in finite time if and only if p+ > 1.

When Ω = RN we show that if p− > 1 + 2/N then there are global
nontrivial solutions while if 1 < p− ≤ p+ ≤ 1+2/N then all solutions to
the problem blow up in finite time. Moreover, in case p− < 1+2/N < p+

there are functions p(x) such that all solutions blow up in finite time
and functions p(x) such that the problem possesses global nontrivial
solutions.

When Ω is a bounded domain we prove that there are functions p(x)
and domains Ω such that all solutions to the problem blow up in finite
time. On the other hand, if Ω is small enough then the problem possesses
global nontrivial solutions regardless the size of p(x).

1. Introduction

We consider nonnegative solutions to the following parabolic semilinear
problem with a reaction given by a variable exponent:

(1.1)
{

ut(x, t) = ∆u(x, t) + (u(x, t))p(x), in Ω× (0, T ),
u(x, 0) = u0(x), in Ω,

where u0(x) and p(x) are two nonnegative continuous, bounded functions.
For future references let us denote

(1.2) p− = inf
x

p(x), and p+ = sup
x

p(x).

We study both cases Ω = RN or Ω a bounded smooth domain in which case
we impose Dirichlet boundary conditions to our problem

(1.3) u(x, t) = 0, on ∂Ω× (0, T ).

For this problem, we consider bounded initial data u(x, 0) = u0(x). Exis-
tence of a solution can be easily achieved, but uniqueness is subtle due to the
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fact that p(x) can be less than one in some region of Ω. The difficulty comes
from the non-Lipschitz character of the reaction, see [1]. Nevertheless, in
this case we can prove existence of a maximal and a minimal solution. More-
over, a comparison principle among maximal solutions and among minimal
solutions can be easily obtained. In the case p− < 1 we show that these
solutions are always different for the initial value u0 ≡ 0 (and hence we
have nonuniqueness). We are also able to prove that this is the only case of
nonuniqueness, what is denoted by almost uniqueness in [16], when p+ < 1
and Ω = RN . We conjecture that almost uniqueness is true in the general
case p− < 1 ≤ p+. When p− ≥ 1 uniqueness is standard. We will discuss
these issues in the next section.

When dealing with a parabolic problem there are several interesting fea-
tures to analyze, but the first step is to identify the so-called critical expo-
nents. For p constant we have that there are solutions to (1.1) with T < ∞
if and only if p > 1. In this case, we have

lim
t↗T

‖u(·, t)‖∞ = +∞,

a phenomenon that is called blow-up in the literature and has deserved a
great interest, see for instance the books [20], [21], the survey papers [2],
[3], [10], [14] and the references therein. However, up to our knowledge, this
seems to be the first paper where the blow-up phenomenon is studied with
a variable exponent as a reaction term.

Hence, the first critical exponent one has to look for in a parabolic problem
is the blow-up exponent, a exponent such that there are solutions with blow-
up if and only if p > pb. When Ω = RN and p is constant we have pb = 1.
Moreover, in this case there exists a second critical exponent, called Fujita
exponent, see [7], [9], [11], [23] and the survey [14]. We quote also [5], [8], [12],
[15], [17], [18], [19] and [22] for more references concerning Fujita exponents
in other related problems. For p > pf = 1 + 2/N there are solutions with
blow-up and global solutions while for 1 < p ≤ pf every nontrivial solution
blows up. Thus, the Fujita exponent separates regions of parameters for
which all nontrivial solutions blow up and regions where there are both
global and blow-up solutions.

In the Dirichlet case, we also have that the blow-up exponent is pb = 1
and there is no Fujita type exponent, since for p > 1 there are always both
global and blow-up solutions.

Our main aim in this paper is to find conditions on the variable exponent
function p(x), analogous to the above for constant p, in order to have exis-
tence or nonexistence of global solutions and/or blow-up solutions. These
conditions are called blow-up conditions or Fujita type conditions.

We prove a sharp result concerning the blow-up occurence, Theorem 1.1,
and two conditions of Fujita type in RN , Theorem 1.2, that are comple-
mented with two examples. We also present a new phenomenon of Fujita
type in bounded domains: roughly speaking, if p(x) < 1 in some large set
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and p(x) > 1 in some other set, also large, then every solution blows up, see
Theorem 1.3.

First, let us look for the critical blow-up condition. In this case we have
that p+ = 1 is the critical condition for both (1.1) in RN and in Ω bounded
with (1.3). Indeed, it is enough for p(x) to be larger than 1 in a small ball
to have existence of blow-up solutions.

Theorem 1.1. For problem (1.1) in RN or in a bounded domain with (1.3),
we have:

(1) if p+ > 1, then there are solutions that blow up in finite time.
(2) if p+ ≤ 1, then every solution is global.

Next we look for the Fujita condition. For Ω = RN we have the following
result that says that the value pf = 1 + 2/N plays a role. If p(x) lies
above pf everywhere then there are global solutions and if p(x) lies below
pf everywhere then every solution blows up, while there are functions p(x)
crossing the value pf that show that in this case we can have both situations.

Theorem 1.2.
(1) If p− > 1 + 2/N , then problem (1.1) possesses global nontrivial so-

lutions.
(2) If 1 < p− < p+ ≤ 1 + 2/N , then all solutions to problem (1.1) blow

up in finite time.
(3) If p− < 1 + 2/N < p+, then there are functions p(x) such that

problem (1.1) possesses global nontrivial solutions and functions p(x)
such that all solutions blow up.

In a bounded domain with Dirichlet boundary conditions we find the
surprising fact that there is also a Fujita type phenomenon. In fact we
can have that every nontrivial solution to (1.1) with Dirichlet boundary
conditions (1.3) blows up. This has to be contrasted with the case p constant
in which there are always nontrivial global solutions. On the other hand if
the domain is small enough then there are global solutions regardless the
function p(x). Both situations constitute the core of the following theorem.

Theorem 1.3.
(1) There are functions p(x) and domains Ω such that all solutions to

problem (1.1)-(1.3) blow up in finite time.
(2) If Ω ⊂ Br(x0) for some x0 ∈ RN and r <

√
2N then problem

(1.1)-(1.3) possesses global nontrivial solutions regardless the expo-
nent p(x).

(3) If p− > 1 then there are global solutions regardless the size of the
domain Ω.

The paper is structured as follows: in the following section we deal with
the questions of existence, comparison and uniqueness for the solutions of
our problems; in Section 3 we perform the study of the blow-up phenomenon.
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2. Existence and uniqueness

To begin our analysis, we discuss briefly existence and uniqueness of so-
lutions to problem (1.1).

If p− ≥ 1, then the reaction term f(x, u) = up(x) is continuous in both
variables and locally Lipschitz in the second one. So, there exists a unique
classical solution for any bounded initial datum, see [6]. Moreover, a com-
parison principle also holds: if u0 ≥ v0 (and in addition u ≥ v on ∂Ω in the
Dirichlet problem case), then u(x, t) ≥ v(x, t). See [6] for Ω bounded and
[1] for comparison in the whole space.

If p− < 1 we still have existence of a solution but uniqueness is not true
in general. For instance, when p(x) is constant p(x) ≡ p < 1 and Ω = RN ,
the function

U(t) = c∗t
1

1−p , c∗ = (1− p)
1

1−p ,

is a nontrivial solution with zero initial datum.
In the general case we can construct a maximal solution just by taking

the limit
u = lim

ε→0
u(ε),

where u(ε) is the unique solution to our problem with initial condition
u(ε)(x, 0) = u0(x)+ ε, and with the reaction f(x, t) = u(x, t)p(x) replaced by

f(ε)(x, t) =
{

(u(ε)(x, t))p(x) if p(x) ≥ ε,

εp(x)−1u(ε)(x, t) if p(x) < ε.

In the Dirichlet case we also replace the boundary condition by u(ε) = ε
on ∂Ω. Since the problem for u(ε) has comparison, we get in the limit a
comparison result for maximal solutions. A minimal solution is obtained
by taking limits for Lipschitz problems that approximate (1.1) from below.
More precisely let

u = lim
ε→0

u(ε),

where u(ε) is the unique solution to the problem (1.1) with f replaced by
f(ε) and with the same initial data. Clearly we have, for any solution u to
problem (1.1), the inequalities

0 ≤ u ≤ u ≤ u.

Even more, any supersolution z to the equation (1.1) satisfies z ≥ u, though
comparison with u does not necessarily hold, but it does hold if z is strictly
positive, z ≥ µ > 0. An analogous property is true for subsolutions. When
p(x) is constant, p(x) ≡ p < 1 and u0 ≡ 0, we have that the minimal and
maximal solutions are

u(x, t) ≡ 0, u(x, t) = U(t) = c∗t
1

1−p ,

while a continuous family of different solutions between u and u exists,
namely u(x, t) = U(t− τ) for t > τ > 0, u(x, t) = 0 for 0 ≤ t ≤ τ .
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We now prove that the same phenomenon occurs if only p− < 1: a non-
trivial solution exists when u0 ≡ 0. Therefore in this case u 6= u.

Theorem 2.1. Let u0 ≡ 0 in problem (1.1), and assume that the exponent
satisfies p(x) ≤ γ < 1 for every x ∈ D, an open bounded subset of RN . Then
the corresponding maximal solution satisfies u(x, t) > 0 for every x ∈ D, and
for any t > 0.

Proof. We construct a nontrivial positive subsolution. To this end let

w(x, t) = a(t)ϕ1(x),

where ϕ1 is the first eigenfunction of the laplacian with Dirichlet boundary
condition in D, namely ϕ1 satisfies −∆ϕ1 = λ1ϕ1 in D, ϕ1 = 0 on ∂D,
normalized according with maxD ϕ = 1. We want to choose a(t) with a(0) =
0 such that w is a subsolution to (1.1). We first need, for x ∈ D,

wt −∆w = a′(t)ϕ1 + λ1a(t)ϕ1 ≤ a(t)p(x)ϕ
p(x)
1 = wp(x).

To get this inequality fulfilled it suffices to consider, for small t, for instance
t ≤ 1, the function

a(t) = ct
1

1−γ ,

with a suitable small constant c > 0. Now, extending w by zero outside
D, we get that w is a subsolution to (1.1), for 0 ≤ t ≤ 1. This implies
u ≥ w > 0 in D, for 0 ≤ t ≤ 1. Finally for times k < t ≤ k + 1 we compare
with w(x, t) replaced by w(x, t− k). ¤

In the case p(x) ≤ p+ < 1 for every x ∈ RN we are able to prove almost
uniqueness. We first need an universal lower estimate in the spirit of [1] and
[16]. We recall that the proofs included in those papers work only when p(x)
is constant.

Lemma 2.2. Assume p+ < 1 and let u be any solution to problem (1.1)
with initial datum u0(x) 6≡ 0. Then

(2.1) u(x, t) ≥ c∗t
1

1−p+ , c∗ = (1− p+)
1

1−p+ ,

for every x ∈ RN , 0 ≤ t ≤ 1.

Proof. We want to refine the proof of Theorem 2.1. First of all, since com-
parison is not true for general solutions, we construct a strictly positive
subsolution and perform a comparison argument in a set where our solution
is also strictly positive.

It is clear that, since u is a supersolution to the heat equation, we have
that, given x0 ∈ RN , r > 0 and t0 > 0 small enough, then

µ = min{u(x, t) : x ∈ Br(x0), t0 ≤ t ≤ t0 + 1 } > 0.

Now consider the function

w̃(x, t) = µ + ctαϕ1

(
x− x0

r

)
, α =

1
1− p+

,
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where ϕ1 is the first eigenfunction of the laplacian in the unit ball with
ϕ(0) = 1. We want to compare u(x, t + t0) with w̃(x, t) in Br(0) × (0, 1).
The ingredients we need are the following:

- the problem has the comparison property: both functions satisfy u(x, t+
t0) ≥ µ, w̃(x, t) ≥ µ, for (x, t) ∈ Br(x0)× (0, 1);

- comparison of the initial conditions: w̃(x, 0) = µ ≤ u(x, t0);
- comparison of the boundary data: w̃(x, t) = µ ≤ u(x, t) for x ∈ ∂Br(x0);
- an inequality for the equation: substituting w̃ in the equation we need

c > 0 to satisfy

cαtα−1ϕ1 + ctα
λ1

r2
ϕ1 − (ctαϕ1 + µ)p(x) ≤ 0.

This holds if we choose c = (α + λ1
r2 )−α.

This implies u(x, t + t0) ≥ w̃(x, t), and thus u(x0, t + t0) ≥ ctα + µ for
0 ≤ t ≤ 1. We finally let t0 → 0 and r → ∞ to get the desired result with
the sharp constant. ¤

With this estimate we now prove the almost uniqueness result.

Theorem 2.3. If p+ < 1, then problem (1.1) in RN has a unique solution
for every nontrivial initial datum u0 6≡ 0.

Proof. Let u be the minimal solution to problem (1.1), and define for k > 1
and η > 0 fixed, the function z(x, t) = ku(x, t + η). We want to show that
z ≥ u, the maximal solution, at least for small times. Letting k → 1 and
η → 0 we conclude u ≥ u, which means u = u.

Notice that since p+ < 1 and k > 1 the function z is a supersolution to
the equation. Therefore, by definition of maximal solution we only need to
prove the comparison of the initial conditions z(x, 0) ≥ u0(x) + ε for every
ε > 0 small enough, i.e.

(2.2) ku(x, η) ≥ u0(x) + ε.

We thus consider the two following sets

G =
{

x ∈ RN : u0(x) ≤ 1
2

c∗ηα

}
, B = RN \G,

and take ε < 1
2c∗ηα.

By the estimate (2.1), it suffices to prove that

kc∗ηα ≥ u0(x) + ε,

which in the good set G holds trivially. Let us then consider the set B.
Since u is a supersolution to the heat equation, by continuous dependence
in time of the solution to this last equation, we have that for every δ < 1,
δ ≈ 1, there exists η > 0 small enough such that

u(x, η) ≥ δu0(x).
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Then (2.2) holds if

(kδ − 1)
1
2

c∗ηα ≥ ε.

Taking δ−2 = k, and ε > 0 small to get the last inequality fulfilled, we obtain
the desired comparison. ¤

3. Blow-up

Now we focus our attention on the blow-up phenomenon, and consider
the question of wether the solutions to our problems blow up or not. This
leads to two types of results. Namely, on one hand, under which conditions
on the reaction exponent p(x) do we have existence of blow-up solutions
or all solutions are globally defined. On the other hand, we also look for
conditions on p(x) such that every solution blows up or there exist also
global solutions.

The first result concerning existence of blow-up solutions is an application
of the Kaplan’s method of eigenfunctions if p(x) > 1 somewhere. We need
the following version of Jensen’s inequality. It uses some easy properties of
the functional spaces Lp(x), see for instance [4].

Lemma 3.1. Let µ be a positive measure in B ⊂ RN with
∫
B dµ = 1 and

let f ∈ Lγ(B, dµ) and 1 ≤ δ ≤ p(x) ≤ γ for x ∈ B. Then, there exists a
constant c > 0 such that∫

B
|f |p(x) dµ ≥ c min

{(∫

B
|f | dµ

)δ
,
(∫

B
|f | dµ

)γ}
.

Proof. Following [4] we consider the space

Lp(x)(B, dµ) =
{

g measurable :
∫

B
|g(x)|p(x) dµ < ∞

}
,

with the norm

‖g‖∗ ≡ ‖g‖Lp(x)(B,dµ) = inf

{
τ > 0 :

∫

B

∣∣∣∣
g(x)
τ

∣∣∣∣
p(x)

dµ ≤ 1

}
.

The condition on f guarantees f ∈ Lp(x)(B, dµ). It is easily verified that
∫

B
|f |p(x)dµ ≥

{
‖f‖δ∗ if ‖f‖∗ ≥ 1,

‖f‖γ
∗ if ‖f‖∗ ≤ 1.

On the other hand, a Hölder inequality holds in the above defined space, so
we also have ∫

B
|f | dµ ≤ c1‖f‖∗ .

The constant c1 is explicit in terms of the bounds on p(x), and it satisfies
c1 < 2, see [4]. We also have used the fact that ‖ 1 ‖∗ = 1. Therefore, we
have proved the statement with c = (1/2)γ . ¤

Two useful consequences are given next.
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Corollary 3.2. In the above hypotheses we have

(1)
∫

B
|f |p(x) dµ ≥ c min

{(∫

B
|f |δ dµ

)
,
(∫

B
|f |δ dµ

)γ/δ}
,

(2)
∫

B
|f | dµ ≥ 1 ⇒

∫

B
|f |p(x) dµ ≥ c

(∫

B
|f | dµ

)δ
.

We are now in a position to reproduce the classical Kaplan’s argument
for blow-up, see [13], and proceed with the proof of Theorem 1.1.

Theorem 3.3. If there exists some ball B ⊂ Ω in which the exponent func-
tion satisfies p(x) ≥ δ > 1 then there exist solutions to problem (1.1) (with
(1.3) in a bounded domain) that blow up in finite time.

On the other hand, if p(x) ≤ 1 everywhere, then every nontrivial solution
to problem (1.1) (with (1.3) in a bounded domain) is globally defined.

Proof. Take ϕ the first eigenfunction of −∆ with Dirichlet boundary con-
ditions in B (with eigenvalue λ), normalized this time to have integral one.
Let

J(t) =
∫

B
uϕ.

From the equation (1.1) and the above corollary we have,

J ′ =
∫

Ω
u∆ϕ +

∫

Ω
up(x)ϕ ≥ −λJ + c Jδ,

whenever J(t) ≥ 1. Clearly this implies blow-up provided J(0) is large.
That is, if the initial datum is such that J(0) ≥ max{1, (2δλ)1/(δ−1)}, then
the solution blows up.

To see that solutions are global when p(x) ≤ 1 in the whole Ω it suffices
to observe that the function

w(t) = ‖u0‖∞et

is a strictly positive supersolution to equation (1.1). Hence, for any t0 > 0
the maximal solution to the problem is bounded in RN× [0, t0] and then it is
global. Observe that it is crucial that w is strictly positive to use comparison
arguments. Therefore, any solution is global. ¤

We next consider the problem in the whole space RN and study the so-
called Fujita phenomenon.

Theorem 3.4. If p− > 1+2/N , then problem (1.1) with Ω = RN possesses
global solutions.

Proof. We only have to consider as supersolution a global solution to the
problem with constant reaction exponent p− such that it lies always below
one, see [7]. ¤

Theorem 3.5. If 1 < p− ≤ p+ ≤ 1 + 2/N , then all solutions to problem
(1.1) with Ω = RN blow up in finite time.



A PARABOLIC EQUATION WITH VARIABLE REACTION 9

Proof. Again the proof follows the classical methods of Fujita and Weissler
for the constant exponent case, [7, 23], once we have established Jensen’s
inequality, Corollary 3.2. Assume then first that 1 < p− ≤ p+ < 1 + 2/N .
Applying Kaplan’s method with φ replaced by φµ(x) = µNφ1(µx), where φ1

is any nonnegative function satisfying
∫
RN φ1 = 1 and ∆φ1 + φ1 ≥ 0 in RN

(for instance a gaussian), and using Lemma 3.1 we have

(3.1) J ′ ≥ −µ2J + c min{Jp− , Jp+}.
Now take µ > 0 small enough such that J(0) > (µ2/c)1/(p+−1). This is
possible because of the restriction on p+. In fact,

∫

RN

µNφ1(µx)u0(x) dx = J(0) > (µ2/c)1/(p+−1)

means ∫

RN

φ1(µx)u0(x) dx > c−1/(p+−1)µ2/(p+−1)−N → 0.

Now, whenever J(t) is small, (3.1) implies

J ′ ≥ −µ2J + cJp+
> c̃Jp+

.

This gives that J(t) increases and for times t > t1, where t1 is such that
J(t1) = 1, the inequality (3.1) becomes

J ′ ≥ −µ2J + cJp− > c̃Jp− .

This implies blow-up since p− > 1.
Let now p+ = 1 + 2/N . Here it suffices to show that the integral∫

RN u(·, t) dx is large for t large. Without loss of generality we may assume,
as in [23], that the initial datum is above some gaussian, u0(x) ≥ Gε(x) =
(4πε)−N/2exp(−|x|2/4ε). Therefore u(x, t) ≥ Gt+ε(x) for every t ≥ 0. Now,
by the integral representation of the solution of the semilinear equation, we
have

u(x, t) ≥
∫ t

0
Gt−s ∗ up(x)(x, s) ds ≥

∫ t

0
Gt−s ∗G

p(x)
s+ε (x) ds.

Integrating in RN and using Corollary 3.2 we obtain
∫

RN

u(x, t) dx ≥
∫ t

0
min

{(∫

RN

G
p−
s+ε(x) dx

)
,
(∫

RN

G
p−
s+ε(x) dx

)p+/p−}
ds.

But a simple computation shows that
∫

RN

G
p−
s+ε(x) dx = c

∫

RN

(s + ε)(1−p−)N/2G(s+ε)/p−(x) dx

= c(s + ε)(1−p−)N/2.

Since p− ≤ 1 + 2/N we have (1 − p−)N/2 ≥ −1, and thus the integral of
this last term diverges as t →∞. ¤
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Next we show some examples for the intermediate case, that is, for func-
tions p(x) with 1 < p− < 1 + 2/N < p+. In the first one every solution
blows up and in the second one there are global solutions.

Example 1. Consider (1.1) in R and let p(x) be any function such that
p(x) agrees with its minimum, that we fix between 1 and 2, in the half line,

p(x) = p− ∈ (1, 2) for x ≥ 0.

In this example we construct a subsolution with finite time blow-up. First,
we note that the solution u to (1.1) is positive for all t > 0. Therefore we
can take a nontrivial function w0(x) ≤ u(x, t0) with w0(0) = 0.

Now we consider the following problem



wt = wxx + wp− , in R+ × (0, T̃ ),
w(0, t) = 0, in (0, T̃ ),
w(x, 0) = w0(x), in R+.

It is clear from the above that u is a supersolution to this problem. On the
other hand, it is known that for this problem the blow-up and the Fujita
exponents are given by pb = 1 and pf = 2 respectively, see [15].

Therefore any solution to our problem with the chosen reaction exponent
blows up.

Example 2. We take,

p(x) =
{

p+ |x| > R
p− |x| ≤ R

where p+ > N/(N − 2) > 1 + 2/N .
In this case, we construct a stationary supersolution. In the region |x| > R

we consider the explicit radial solution

u(r) = cr−α , α =
2

p+ − 1
, c = (α(N − 2− α))

1
p+−1 .

In the inner region we consider a radial solution of{
∆v + vp− = 0, x ∈ BR(0),
v = cR−α, x ∈ ∂BR(0).

Notice that the function

U(x) =
{

v(|x|) x ∈ BR(0),
u(|x|) x ∈ RN \BR(0),

is a supersolution in the whole space if and only if |v′(R)| ≤ |u′(R)|. In
order to estimate v′(r) we consider the function

w(r) =
v(Rr)
cR−α

,

which verifies the problem{
∆w + cp−1R2+α(1−p−)wp = 0, x ∈ B1(0),
w = 1, x ∈ ∂B1(0).
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Observe that for R = 0 we obtain the constant solution w(r) = 1. It is easy
to check that for R small enough we have

w(r) = 1 + o(1) and w′(r) = o(1).

This gives us v′(r) = o(R−α−1). On the other hand, u verifies that u′(R) =
−cαR−α−1, then taking R small enough, the function U is a supersolution
to our problem.

Now we deal with the occurrence of a Fujita type phenomenon in a
bounded domain. Actually we find sufficient conditions ensuring that every
solution to problem (1.1)–(1.3) corresponding to a nontrivial nonnegative
initial datum u0, with Ω bounded, blows up. Note that this is an impor-
tant difference with respect to the problem with a constant exponent in the
reaction possed in a bounded domain. To build such examples we argue as
follows: first we need a large region in which p(x) lies below 1 (this will force
the solution to grow in the whole Ω) and a large region where p(x) is above
one (this is necessary for blow-up to occur, see Theorem 1.1).

We begin with a preliminary lemma.

Lemma 3.6. If there exists some ball BR(x0) ⊂ Ω in which the exponent
function satisfies 0 < δ ≤ p(x) ≤ γ < 1, then any solution to problem (1.1)–
(1.3) verifies for every x ∈ BR/2(x0) that u(x, t0) ≥ cR1/(1−γ), from some
time t0 > 0, with c > 0 independent of R.

Proof. Without loss of generality let us suppose that the ball in the hypothe-
ses is centered at the origin.

First, we analyze the easiest case, that is p(x) ≡ γ < 1. It is clear that
the maximal solution to problem

(3.2)





vt = ∆v + vγ , in BR(0),
v = 0, on ∂BR(0),
v = u0, for t = 0,

converges uniformly to a stationary solution, that we denote as V . Indeed,
we have a Lyapunov functional for (3.2),

F (v) =
1
2

∫

BR(0)
|∇v|2 − 1

γ + 1

∫

BR(0)
vγ+1.

It is also easy to check that the stationary solution V verifies that

V (x) = R2/(1−γ)Ṽ (x/R),

where Ṽ solves the stationary problem in the unit ball. Therefore, for any
x ∈ BR/2(0) it holds that

V (x) = R2/(1−γ)Ṽ (x/R) ≥ R2/(1−γ) min
x∈B1/2(0)

Ṽ .
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The proof of this case concludes taking into account that u is supersolution
to problem (3.2), therefore for t0 large enough

u(x, t) ≥ 1
2
V (x) ≥ 1

2
R2/(1−γ) min

x∈B1/2(0)
Ṽ ,

for all t ≥ t0 and x ∈ BR/2(0).

For a general function p satisfying 0 < δ ≤ p(x) ≤ γ < 1 we argue as
before using comparison arguments which are valid for maximal solutions.
We consider the maximal solution of the Dirichlet problem





vt = ∆v + vp(x), in BR(0),
v = 0, on ∂BR(0),
v = v0, for t = 0,

which converges to a stationary solution V as t →∞. Observe that in this
case the Lyapunov functional is given by

F (v) =
1
2

∫

BR(0)
|∇v|2 −

∫

BR(0)

|v|p(x)+1

p(x) + 1
.

Now, we pass to the unit ball with the change of scales,

V (x) = R
1

1−γ Ṽ (x/R),

where Ṽ verifies

(3.3)
{ −∆Ṽ ≥ Ṽ p(Rx), in B1(0),

Ṽ = 0, on ∂B1(0).

In order to get rid of the dependence on R of the exponent we observe that
Ṽ is a supersolution of the problem

{ −∆z = zδχ{z≥1} + zγχ{z<1} in B1(0),
z = 0, on ∂B1(0),

which does not depend on R. Summing up, we get that for x ∈ B1/2(0) and
t > t0

u(x, t) ≥ 1
2
V (x) =

1
2
R

1
1−γ Ṽ (x/R) ≥ 1

2
R

1
1−γ min

x∈B1/2(0)
z(x).

¤

We are now ready to estate sufficient conditions ensuring blow-up occur-
rence for every solution to problem (1.1)–(1.3).

Theorem 3.7. For every q, an arbitrary function defined in the unit ball
B1(0) verifying that q(x) − 1 changes sign, there exists L > 0 sufficiently
large such that, if the ball BL(x0) ⊂ Ω, then the solution to (1.1)–(1.3)
blows up in finite time for any nontrivial nonnegative initial datum u0, being
p(x) ≡ q((x− x0)/L), for every x ∈ BL(x0).
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Proof. We assume for simplicity x0 = 0. Since L is large enough we have
that p is in the hypothesis of Lemma 3.6, that is, there exists a ball of
radius R1 large where p satisfies 0 < δ ≤ p(x) ≤ γ < 1. Then, by this
lemma we know that for some t0 > 0 it holds that u(x, t0) ≥ cR

1/(1−γ)
1 , for

any x ∈ BR1/2(0) (we assume again that this ball is centered at the origin).
It is not difficult to see that u is supersolution to the following problem





ωt = ∆ω, in Ω \BR1/2(0),
ω = 0, on ∂Ω,

ω = cR
1/(1−γ)
1 − 1, on ∂BR1/2(0),

ω(x, 0) = u(x, t0), in Ω \BR1/2(0).

Thus u(x, t) ≥ ω(x, t) for every t > t0 and x ∈ Ω \ BR1/2(0). Let us denote
by r(x) the stationary solution to the problem above. Since ω converges
uniformly to r, it holds that u(x, t) ≥ r(x) − δ, for every t > t1 for some
t1 > t0. On the other hand, we are assuming that the dilatation Lx is large
enough. Thus there exists a ball B2 of radius R2 large where p(x) ≥ δ > 1.
Moreover, since

J(t1) =
∫

B2

uϕB2 ≥
∫

B2

(r(x)− δ)ϕB2 > 2,

by Theorem 3.3 we conclude that the solution blows up in finite time. ¤

Now we prove that when Ω is contained in a small ball then there are
global solutions regardless the size of p(x).

Theorem 3.8. If there exists some ball Br(x0) ⊃ Ω with r <
√

2N , then
there are global solutions to (1.1) with Dirichlet boundary conditions (1.3)
for every p(x) ≥ 0.

Proof. We only note that the function

w(x) =
2N − |x− x0|2

2N

is a supersolution of (1.1). Indeed, since r <
√

2N we have that w(x) > 0
at ∂Ω. Moreover, w(x) ≤ 1, hence w(x)p(x) ≤ 1 = −∆w(x). ¤

Theorem 3.9. Let p− > 1, then there is a global nontrivial solution to
(1.1)–(1.3).

Proof. Let
z(x, t) = εe−λtϕ1(x),

where ϕ1 is the first eigenfunction of the Laplacian in Ω with Dirichlet
boundary conditions, normalizad with maxx ϕ1(x) = 1.

Then we have that z is a supersolution provided λ and ε are small. In
fact, we have

zt(x, t) = −λz(x, t)
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and
∆z(x, t) + zp(x)(x, t) = −λ1z(x, t) + (εe−λtϕ1(x))p(x)

≤ −λ1z(x, t) + (εe−λtϕ1(x))p− .

And hence it suffices with

λz(x, t) ≤ λ1z(x, t)− zp−(x, t),

that is,
(λ1 − λ)z(x, t) ≥ zp−(x, t),

which holds choosing λ and ε small enough, since p− > 1. ¤
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IMDEA Matemáticas, C-IX, Campus UAM,
Madrid, Spain
On leave from Departamento de Matemática,
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