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Abstract. We show that solutions to a classical Fokker-Plank equation can

be approximated by solutions to nonlocal evolution problems when a rescaling
parameter that controls the size of the nonlocality goes to zero.

1. Introduction

Nonlocal reaction-diffusion equations of the form

(1) ut(x, t) =

∫
RN

K(x, y)u(y, t)dy − u(x, t),

where K : RN × RN → R is a nonnegative smooth kernel (usually assumed to be
symmetric, but here this may not be the case) such that

∫
K(x, y)dx = 1, and varia-

tions of it, have been recently studied to model diffusion process. If u(y, t) is thought
of as a density of a population at location y at time t and K(x, y) as the probability
distribution of jumping from y to x, then the rate at which individuals are arriving
to x is

∫
K(x, y)u(y, t)dy. On the other hand, the rate at which individuals are

leaving location x to travel to other places is −
∫
K(y, x)u(x, t)dy = −u(x, t). In

the absence of external sources this implies that the density satisfies equation (1).

New in this work is to consider kernels of the form

(2) K(x, y) = J
(
M(y)(x− y)

)
detM(y).

Here J : RN → R is a nonnegative radial function such that

(3) J ∈ Cc(Rn),

∫
RN

J(z)dz = 1 and

∫
RN

J(z)z2Ndz = C(J) <∞

and M(y) is a N ×N real matrix with smooth and bounded coefficients such that
detM(y) ≥ γ > 0. Note that, for this kind of kernels, we have a mass preserving
property, that is,∫

RN

∫
RN

J
(
M(y)(x− y)

)
detM(y)u(y)dydx =

∫
RN

u(x)dx, ∀u ∈ C(RN ).

Our main goal in this work is to show that solutions to the nonlocal problem
(1) with kernels of the form (2) adequately rescaled approximate solutions to the
classical local Fokker-Plank equation.
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In more detail, consider the following local diffusion problem

(4)

 vt(x, t) =
∑
i,j

∂2

∂xi∂xj
(aij(x)v(x, t)) , x ∈ RN , t ∈ [0, T ],

v(x, 0) = v0(x), x ∈ RN ,

where A(x) = (aij(x)) is a real positive-definite matrix.

Throughout the paper, we make the following assumptions on the matrix A:
A(x) = (aij(x)) is a real N×N symmetric and positive-definite matrix with smooth
coefficients such that

δ‖ξ‖2 ≤
∑
i,j

aij(x)ξiξj ≤ β‖ξ‖2, ∀x, ξ ∈ RN ,

for some constants 0 < δ < β and we will also assume that

(5) max
x

∑
i,j

∂2aij(x)

∂xi∂xj

 <∞.

Given A(x), we let B(x) = (bij(x)) be a real N × N matrix with strictly positive
determinant and smooth coefficients satisfying B(x)Bt(x) = A(x), x ∈ RN . Note
that such decomposition is possible since A is a positive-definite matrix (e.g. using
Cholesky factorization).

Now, let us consider the following nonlocal equation

(6)

 uεt =
C

ε2

{∫
RN

Kε(x, y)u(y, t)dy − u(x, t)

}
, x ∈ RN , t ∈ [0, T ],

uε(x, 0) = v0(x), x ∈ RN ,

where C−1 = 1
2

∫
J(z)z2Ndz is a constant that depends only on J and the kernel

Kε is given by

Kε(x, y) =
1

εN
J
(
B−1(y)

(x− y)

ε

)
detB−1(y),

with B as above, that is, such that BBt = A and J satisfying (3).

As we have mentioned, our aim is to show that solutions of (6) converge uniformly
to solutions of (4). Our main result reads as follows:

Theorem 1.1. Let v be a classical solution of Fokker-Planck equation (4) with
initial datum v0 ∈ C(RN ) ∩ L∞(RN ). For every ε > 0, consider uε the solution of
the nonlocal equation (6). Then,

sup
t∈[0,T ]

‖uε(·, t)− v(·, t)‖L∞ → 0,

as ε→ 0.

Now, let us comment briefly on previous results concerning approximations of
local PDEs by nonlocal problems.

Kernels of the form (2) cover a wide variety of nonlocal diffusion problems treated
in the past twenty years. For example, taking the simplest case M(y) = Id,
equation (1) reduces to the following convolution type diffusion problem

ut(x, t) = (J ∗ u− u)(x, t) =

∫
RN

J(x− y)u(y, t)dy − u(x, t).
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This model has been treated by several authors in different contexts, see for example
[1, 2, 6] and the references given therein. In addition, in [5] the authors prove that,
under an appropriate rescaling of the kernel, that is, solutions to

uεt (x, t) =
C

ε2

{∫
RN

1

εN
J
(x− y

ε

)
u(y, t)dy − u(x, t)

}
,

converge, as ε→ 0, to solutions to the local heat equation, vt = ∆v.

Another example is the kernel (2) with M(y) = g−1(y)Id, being g a positive
scalar function. In this case (1) takes the form

ut(x, t) =

∫
RN

J

(
x− y
g(y)

)
u(y, t)

gN (y)
dy − u(x, t).

Note that in this evolution problem the step size, g(y), depends on the position
y. Such kind of diffusion kernel was introduced in [3] in order to model a non-
homogeneous dispersal process. See also [4] and [7]. For this problem in [13] the
authors prove that under appropriate rescaling of the kernel, i.e. when the problem
takes the form

(7) uεt (x, t) =
C

ε2

{∫
RN

1

εN
J
(x− y
εg(y)

)u(y, t)

gN (y)
dy − u(x, t)

}
,

solutions converge to solutions to the local equation

vt(x, t) =
∑
i

(g2(x)v(x, t))xixi
.

Closely related to this work is [11] where we find kernels for nonlocal evolution
problems that, when appropriately rescaled as above, have solutions that approxi-
mate solutions to local problems with spatial dependence in divergence form,

vt(x, t) =
∑
i,j

(aij(x)vxj
)xi

(x, t)

or in non-divergence form,

vt(x, t) =
∑
i,j

aij(x)vxixj (x, t).

Notations. Given A(x) = (aij(x)) we denote by atij(x) and a−1ij (x) the coef-

ficients of the matrices At(x), A−1(x) respectively. Also, for any given function

f : RN → R we denote by f ′i(s) = ∂f(s)
∂si

and by [f ]+(s) = max{0, f(s)}.
The paper is organized as follows: in Section 2 we show existence, uniqueness

and a comparison principle for the nonlocal problem and in Section 3 we prove the
convergence of the solutions as the scaling parameter ε goes to zero.

2. Existence, uniqueness and comparison principle

We start this section proving the comparison principle for our problem

(P )

 ut(x, t)=

∫
RN

J (M(y)(x− y)) detM(y)u(y, t)dy − u(x, t), x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN .

For this purpose, we first set the notion of sub and supersolution for (P ).
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Definition 2.1. A function u ∈ C1
(
[0,∞), C(RN )

)
is a subsolution of problem (P )

if it satisfies ut(x, t)≤
∫
RN

J (M(y)(x− y)) detM(y)u(y, t)dy − u(x, t), x ∈ RN , t > 0,

u(x, 0) ≤ u0(x), x ∈ RN .

As usual, a supersolution is defined analogously by replacing ” ≤ ” by ” ≥ ”.

Theorem 2.2. [Comparison Principle] Let u, v be a subsolution and supersolution
respectively of problem (P ). Then u ≤ v.

Proof. To prove this result we follow closely [13, Theorem 2.5]. Set w = u−v, then

(8)

 wt(x, t)≤
∫
RN

J (M(y)(x− y)) detM(y)w(y, t)dy − w(x, t) x ∈ RN , t > 0,

w(x, 0) ≤ 0, x ∈ RN .

Let us consider the following function

s(x, t) =

{
1, if w(x, t) ≥ 0,
0, if w(x, t) < 0.

Multiplying (8) by s(x, t) and taking into account that wt(x, t)s(x, t) = ([w]+)t (x, t)
and w(y, t) ≤ [w]+(y, t), we obtain, dropping the positive term w(x, t)s(x, t), that

([w]+)t (x, t) ≤
∫
RN

J (M(y)(x− y)) detM(y) [w]+(y, t)dy,

integrating in RN and by using the mass preserving property, we get∫
RN

([w]+)t (x, t) ≤
∫
RN

[w]+(y, t)dy.

Finally, integrating in (0, t) and since [w]+(x, 0) = 0 we can assert, using Fubini’s
theorem, that

(9) h(t) ≤
∫ t

0

h(s)ds,

where

h(t) =

∫
RN

[w]+(x, t)dx.

Hence, applying Gronwall’s Lemma in (9), we conclude that

h(t) ≤ 0.

Now, since [w]+(x, t) ≥ 0 and by the continuity of [w]+, we get that [w]+(x, t) = 0
and, consequently,

u(x, t) ≤ v(x, t)

for all x ∈ RN , t > 0. �

Note that the previous proof works locally in time, that is, a supersolution
v and a subsolution u defined both for t ∈ [0, T ] verify u(x, t) ≤ v(x, t) for all
x ∈ RN , 0 ≤ t ≤ T .
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Definition 2.3. By a solution of the problem (P ), we mean a function u ∈
C
(
[0,∞); C(RN )

)
that satisfies

u(x, t) =

∫ t

0

∫
RN

J (M(y)(x− y)) detM(y)u(y, s)dyds−
∫ t

0

u(x, s)ds+ u0(x),

for all x ∈ RN , t ∈ [0,∞). Consequently, due to this integral expression, we can
assert that u ∈ C1

(
[0,∞); C(RN )

)
.

Now, we prove existence and uniqueness of a solution which is bounded in RN .

Theorem 2.4. [Existence] For every continuous and bounded initial data u0 there
exists a unique solution u ∈ C

(
[0,∞); C(RN ) ∩ L∞(RN )

)
of problem (P ).

Proof. For T > 0 we consider the Banach space

X = C
(
[0, T ]; C(RN ) ∩ L∞(RN )

)
,

with the norm

‖w‖ = max
0≤t≤T

e−k(M+1)t‖w(·, t)‖L∞ .

Here M = max
x∈RN

detM(x) > 0 and k is any value greater than one.

Now, let Y be the closed ball of X with radius k‖u0‖∞ and centered at the
origin. Note that Y is a complete metric space with the induced metric d(w1, w2) =
‖w1 − w2‖.

In order to establish the existence and uniqueness of solutions of (P ) via Banach
contraction principle, we define the operator T : Y −→ Y by

T (w)(x, t) =

∫ t

0

∫
RN

J (M(y)(x− y)) detM(y)w(y, s)dyds−
∫ t

0

w(x, s)ds+ u0(x).

Let us first prove that this operator is well defined. Clearly T (w) is belongs to
X and satisfies

‖T (w)(·, t)‖L∞ ≤ max
x

∣∣∣∣∫ t

0

∫
RN

J (M(y)(x− y)) detM(y)w(y, s)dyds

∣∣∣∣
+

∫ t

0

‖w(·, s)‖L∞ds+ ‖u0‖L∞ ≤ (M + 1)

∫ t

0

‖w(·, s)‖L∞ds+ ‖u0‖L∞ .

Since ‖w‖ ≤ k‖u0‖L∞ , we obtain that, for 0 ≤ t ≤ T ,

‖T (w)(·, t)‖L∞ ≤ ek(M+1)T ‖u0‖L∞ ,

therefore, for T small, ‖T (w)‖ ≤ k‖u0‖L∞ and T (w) belongs to Y .

Now, let us show that the operator T is a contraction. we have

d(T (w1), T (w2)) ≤ max
0≤t≤T

e−k(M+1)t(M + 1)

∫ t

0

‖w1(·, s)− w2(·, s)‖L∞ds.

Arguing as above, we obtain

d(T (w1), T (w2)) ≤ max
0≤t≤T

1

k
‖w1 − w2‖

(
1− e−k(M+1)t

)
≤ 1

k
d(w1, w2).
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Hence, using Banach’s Fixed Point Theorem there exists u a fix point of T , that is
the unique solution of problem (P ) for t ∈ [0, T ] and belongs to Y . Finally, since
from the comparison principle we have that

−‖u0‖L∞e(maxx

∫
K(x,y)dy−1)t ≤ u(x, t) ≤ ‖u0‖L∞e(maxx

∫
K(x,y)dy−1)t,

we obtain a global solution, u ∈ C
(
[0,∞); C(RN ) ∩ L∞(RN )

)
. �

3. Approximations of the Fokker-Planck equation by nonlocal
problems

In this section we prove our main result, that is, that solutions of the Fokker-
Planck equation can be approximated by solutions of the nonlocal problem by
rescaling the kernel.

Recall that the general Fokker-Planck equation is given by

(F−P )

 vt(x, t) =
∑
i,j

∂2

∂xi∂xj
(aij(x)v(x, t)) , x ∈ RN , t ∈ [0, T ],

v(x, 0) = v0(x), x ∈ RN ,

We will call a solution to the Cauchy problem for the Fokker-Planck equation
(F−P ) a classical solution if v ∈ C2+α,1+α/2

(
RN , [0, T ]

)
. Note that the regularity

of v is related with smoothness of aij(x) and the initial datum v0; see [8, 10].

We first need to prove the following technical lemmas.

Lemma 3.1. Let J be a function satisfying hypothesis (3). Then, the following
properties are satisfied:

(1)

∫
RN

J ′j(w)wpwqwrdw =


−3C(J), if p = q = r = j,

−C(J), if

 p = j and r = q 6= j, or
q = j and r = p 6= j, or
r = j and p = q 6= j,

0, in other case.

(2)

∫
RN

J ′′jj(w)wlwnwswtdw =


12C(J), if l = n = s = t = j,

2C(J),

 if two indexes are equal to j
and the others two are equal
to each other and different to j.

0, in other case.
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(3) For j 6= p

∫
RN

J ′′jp(w)wlwnwswtdw =



3C(J),

 if three indexes are equal to j
and the other one are equal
to p, or viceversa.

C(J),


if one index is equal to j, another
index is equal to p, and the
others two are equal to each
other but different to j and p.

0, in other case.

Proof. (1) If p = q = r = j and since J has compact support, integrating by parts
it follows that ∫

RN

J ′j(w)w3
jdw = −3

∫
RN

J(w)w2
jdw = −3C(J).

Similarly, if one of the indexes is equal to j and the others two are equal between
them and different from j, integrating by parts respect to the variable j, we obtain∫

RN

J ′j(w)wjw
2
sdw = −

∫
RN

J(w)w2
sdw = −C(J),

for s = p, q, r. Finally, in the same way we show that is zero occurs in any different
case.

(2) For the first case, integrating by parts twice, we get∫
RN

J ′′jj(w)w4
jdw = −4

∫
RN

J ′j(w)w3
jdw = 12

∫
RN

J(w)w2
jdw = 12C(J).

We proceed likewise, if two indexes are equal to j and the other two are equal
between them and different from j (there are 6 cases). For example, taking l = n = j
and s = t 6= j, we obtain integrating by parts twice∫

RN

J ′′jj(w)w2
jw

2
sdw = −2

∫
RN

J ′j(w)wjw
2
sdw = 2

∫
RN

J(w)w2
jdw = 2C(J).

Finally, the proof in any other case follows similarly and is left to the reader.

(3) We apply the same reasoning, integrating by parts twice, respect to the
variable p and j. First, if three indexes are equal to j and the other one is equal to
p (there are 8 cases) we get, taking for example l = n = s = j and t = p, that∫

RN

J ′′jp(w)w3
jwpdw = −

∫
RN

J ′j(w)w3
jdw = 3

∫
RN

J(w)w2
jdw = 3C(J).

Analogously, if one index is equal to j, another index is equal to p, and the other
two are equalbetween them but different from j and p (there are 12 cases) we have,
choosing for example l = j, n = p and s = t 6= j, p, that∫

RN

J ′′jp(w)wjwpw
2
sdw = −

∫
RN

J ′j(w)wjw
2
sdw =

∫
RN

J(w)w2
sdw = C(J).

We leave it to the reader to verify that in any other case the integral expression is
equal to zero. �
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Lemma 3.2. Let A(x) = (aij(x)) be a N×N non-singular real matrix with smooth
coefficients aij : RN → R, i, j = 1 . . . N , then the following properties are satisfied:

(1) ∑
k

(
a−1ik

)′
m

(x)akj(x) = −
∑
k

a−1ik (x) (akj)
′
m (x),

(2)∑
k

(a−1jk )′′mp(x)akq(x) = −
∑
k

{
(a−1jk )′m(x)(akq)

′
p(x)

+(a−1jk )′p(x)(akq)
′
m(x) + a−1jk (x) (akq)

′′
mp (x)

}
,

(3) ∑
j,k

a−1jk (x)(akj)
′
m(x) = detA−1(x) (detA(x))

′
m .

Proof.

(1) It follows by computing the derivate of
∑
k a
−1
ik (x)akj(x) = δij .

(2) It is easy to prove when we compute the derivate of the expression in (1).

(3) See [9] for a simple and original proof. �

Also the following propositions will be needed in the proof of our main theorem.
To simplify the notation, in what follows we let

Jε(s) =
1

εN
J
(s
ε

)
.

Proposition 3.3. Let u be a C2+α,1+α/2
(
RN × [0, T ]

)
function and let L1

ε and Λ
be the operators given by

L1
ε(u(x, t)) =

C

ε2

∫
RN

Jε
(
B−1(y)(x− y)

)
detB−1(y)(u(y, t)− u(x, t))dy,

Λ(u(x, t)) =
∑
i,j

∂2u(x, t)

∂xi∂xj
aij(x) + 2

∑
i,j

∂u(x, t)

∂xi

∂aij(x)

∂xj
.

Then,
sup
t∈[0,T ]

‖
(
L1
ε − Λ

)
(u(·, t))‖L∞ → 0 as ε→ 0.

Proof. Under the change variables y = x− εz and by a simple Taylor expansion we
obtain

L1
ε(u(x, t)) =

∑
i,j

∂2u(x, t)

∂xi∂xj
H1
ε (x) +

∑
i

∂u(x, t)

∂xi
H2
ε (x) +O(εα),

being

H1
ε (x) =

C

2

∫
RN

J
(
B−1(x− εz)z

)
detB−1(x− εz)zizjdz,

and

H2
ε (x) = −C

ε

∫
RN

J
(
B−1(x− εz)z

)
detB−1(x− εz)zidz.

First, we claim that
H1
ε (x)→ aij(x)
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as ε→ 0. Indeed, changing variables as ω = B−1(x)z we get

lim
ε→0

H1
ε (x) =

C

2
detB−1(x)

∫
RN

J
(
B−1(x)z

)
zizjdz

=
C

2

∑
k,m

bik(x)bjm(x)

∫
RN

J(w)wkwmdw.

Taking into account that ∫
RN

J(w)wkwmdw = 0

if k 6= m and the value of the constant C, we get that

lim
ε→0

H1
ε (x) =

∑
k

bik(x)bjk(x) =
∑
k

bik(x)btkj(x) = aij(x).

Now, we claim that

H2
ε (x)→ 2

∑
j

∂aij(x)

∂xj

as ε→ 0. Indeed, since J is a radial function, it follows that∫
RN

J(B−1(x)z)zidz = 0.

Therefore, limε→0H
2
ε (x) = 0

0 and we can use L’Hopital rule to obtain

lim
ε→0

H2
ε (x) = lim

ε→0
−C
∫
RN

(
F 1
ε (x, z) + F 2

ε (x, z)
)
dz,

where

F 1
ε (x, z) =

∂

∂ε

(
J(B−1(x− εz)z)

)
detB−1(x− εz)zi,

and

F 2
ε (x, z) = J(B−1(x− εz)z) ∂

∂ε

(
detB−1(x− εz)

)
zi.

To compute the first part, we note that

(10)

∂

∂ε

(
J(B−1(x− εz)z)

)
=
∑
j

{
J ′j(B

−1(x− εz)z) ∂
∂ε

∑
k

b−1jk (x− εz)zk

}
=
∑
j,k,m

J ′j(B
−1(x− εz)z)

(
b−1jk

)′
m

(x− εz)zk(−zm).

In this way we obtain

(11) lim
ε→0
−C
∫
RN

F 1
ε (x, z)dz = C detB−1(x)

∑
j,k,m

(
b−1jk

)′
m
(x)

∫
RN

J ′j(B
−1(x)z)zkzmzidz.

Now, we change variables as w = B−1(x)z to obtain

C
∑

j,k,m,p,q,r

(
b−1jk

)′
m

(x)bkp(x)bmq(x)bir(x)

∫
RN

J ′j(w)wpwqwrdw.
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Using property (1) from Lemma 3.1 we get

(12)

= −6
∑
j,k,m

(b−1jk )′m(x)bkj(x)bmj(x)bij(x)

−2
∑

j,k,m,q 6=j

(b−1jk )′m(x)bkj(x)bmq(x)biq(x)

−2
∑

j,k,m,p 6=j

(b−1jk )′m(x)bkp(x)bmj(x)bip(x)

−2
∑

j,k,m,p 6=j

(b−1jk )′m(x)bkp(x)bmp(x)bij(x)

= −2
∑

j,k,m,p

(b−1jk )′m(x) [bkj(x)bmp(x)bip(x)

+bkp(x)bmj(x)bip(x)

+bkp(x)bmp(x)bij(x)] ,

which by property (1) from Lemma 3.2 turns out to be equal to

(13)

2
∑

j,k,m,p

b−1jk (x)(bkj)
′
m(x)bmp(x)bip(x)

+ 2
∑
k,p

(bkp)
′
k(x)bip(x) + 2

∑
m,p

(bip)
′
m(x)bmp(x)

= 2
∑

j,k,m,p

b−1jk (x)(bkj)
′
m(x)bmp(x)bip(x) + 2

∑
j

∂aij(x)

∂xj
,

where in the last equality we have used that aij(x) =
∑
p bip(x)bjp(x) and we have

replaced the indexes k and p by j.

To conclude the claim, we have to compute the second part and to verify that
it is cancelled with the first term of the last part of (13). To be more specific, we
need to show that

lim
ε→0

C

∫
RN

F 2
ε (x, z)dz = 2

∑
j,k,m,p

b−1jk (x)(bkj)
′
m(x)bmp(x)bip(x).

In fact, by virtue of

(14)

∂

∂ε

(
detB−1(x− εz)

)
=
∑
m

(
detB−1(x− εz)

)′
m

(−zm)

=
∑
m

detB−2(x− εz) (detB(x− εz))′m zm,

we have that

lim
ε→0

C

∫
RN

F 2
ε (x, z)dz = C detB−2(x)

∑
m

(detB(x))
′
m

∫
RN

J
(
B−1(x)z

)
zmzidz

changing variables again w = B−1(x)z

= 2 detB−1(x)
∑
m,p

(detB(x))
′
m bmp(x)bip(x)

and finally, using property (3) from Lemma 3.2 we get

= 2
∑

j,k,m,p

b−1jk (x)(bkj)
′
m(x)bmp(x)bip(x)
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and the proof is finished. �

Proposition 3.4. Let u be a C2+α,1+α/2
(
RN × [0, T ]

)
function and let L2

ε, Γ be
the operators defined as

L2
ε(u(x, t)) =

C

ε2

[∫
RN

Jε
(
B−1(y)(x− y)

)
detB−1(y)dy − 1

]
u(x, t),

and

Γ(u(x, t)) =
∑
i,j

∂2aij(x)

∂xi∂xj
u(x, t),

Then,
sup
t∈[0,T ]

‖
(
L2
ε − Γ

)
(u(x, t))‖L∞ → 0 as ε→ 0.

Proof. Under the change variables y = x− εz we obtain

(15) L2
ε(u(x, t)) =

C

ε2

[∫
RN

J
(
B−1(x− εz)z

)
detB−1(x− εz)dz − 1

]
u(x, t).

Note that

lim
ε→0

∫
RN

J
(
B−1(x− εz)z

)
detB−1(x− εz)dz =

∫
RN

J
(
B−1(x)z

)
detB−1(x)dz = 1.

Therefore, using L’Hopital rule in (15) we get

(16) lim
ε→0
L2
ε(u(x, t)) =

C

2ε

∫
RN

(
G1
ε(x, z) +G2

ε(x, z)
)
dz u(x, t),

where

G1
ε(x, z) =

∂

∂ε

(
J(B−1(x− εz)z)

)
detB−1(x− εz),

and

G2
ε(x, z) = J(B−1(x− εz)z) ∂

∂ε

(
detB−1(x− εz)

)
.

Now, the proof splits naturally into two parts:

Part 1: To compute

lim
ε→0

C

2ε

∫
RN

G1
ε(x, z)dz.

Using equality (10), it is equivalent to compute

lim
ε→0

C

2ε

∑
j,k,m

∫
RN

J ′j(B
−1(x− εz)z) (b−1jk )′m(x− εz) zk(−zm) detB−1(x− εz)dz.

Taking into account that ∫
RN

J ′j(w)wqwpdw = 0,

a simple computation gives that the above expression is 0
0 and we can use L’Hopital

rule again, to obtain
(17)

lim
ε→0

C

2ε

∫
RN

G1
ε(x, z)dz = lim

ε→0

C

2

∑
j,k,m

∫
RN

(
A1
ε(x, z) +A2

ε(x, z) +A3
ε(x, z)

)
dz,

where

A1
ε(x, z) =

∂

∂ε

[
J ′j(B

−1(x− εz)z)
]

(b−1jk )′m(x− εz) detB−1(x− εz)zk(−zm)dz,
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A2
ε(x, z) = J ′j(B

−1(x− εz)z) ∂

∂ε

[
(b−1jk )′m(x− εz)

]
detB−1(x− εz)zk(−zm)dz

and

A3
ε(x, z) = J ′j(B

−1(x− εz)z) (b−1jk )′m(x− εz) ∂

∂ε

[
detB−1(x− εz)

]
zk(−zm)dz.

Therefore, the Part 1 will be splitter again into three steps:

Part 1.a: Compute

lim
ε→0

C

2

∑
j,k,m

∫
RN

A1
ε(x, z)dz.

By an argument similar to (10), we have

∂

∂ε

[
J ′j(B

−1(x− εz)z)
]

=
∑
p,q,r

J ′′jp(B
−1(x− εz)z) (b−1pq )′r(x− εz) zq(−zr),

thus

lim
ε→0

C

2

∑
j,k,m

∫
RN

A1
ε(x, z)dz

=
C

2

∑
j,k,m,p,q,r

(b−1pq )′r(x)(b−1jk )′m(x) detB−1(x)

∫
RN

J ′′jp(B
−1(x)z) zqzrzkzmdz.

Now we change variables as w = B−1(x)z to obtain

C

2

∑
j,k,m,p,q,r,l,n,s,t

(b−1pq )′r(x)(b−1jk )′m(x)bql(x)brn(x)bks(x)bmt(x)

×
∫
RN

J ′′jp(w)wlwnwswtdw.

Finally, by properties (2) and (3) from Lemma 3.1, proceeding with similar argu-
ments applied in (12) with easy modifications, we obtain that

(18)

lim
ε→0

C

2

∑
j,k,m

∫
RN

A1
ε(x, z)dz =∑

j,k,m,p,q,r,s

(b−1pq )′r(x)(b−1jk )′m(x) [bqj(x)brp(x)bks(x)bms(x)

+bqj(x)brs(x)bkp(x)bms(x) + bqj(x)brs(x)bks(x)bmp(x)

+bqp(x)brj(x)bks(x)bms(x) + bqs(x)brj(x)bkp(x)bms(x)

+bqs(x)brj(x)bks(x)bmp(x) + bqp(x)brs(x)bkj(x)bms(x)

+bqs(x)brp(x)bkj(x)bms(x) + bqs(x)brs(x)bkj(x)bmp(x)

+bqp(x)brs(x)bks(x)bmj(x) + bqs(x)brp(x)bks(x)bmj(x)

+bqs(x)brs(x)bkp(x)bmj(x)] .

Part 1.b: Compute

lim
ε→0

C

2

∑
j,k,m

∫
RN

A2
ε(x, z)dz.
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Since
∂

∂ε

[
(b−1jk )′m(x− εz)

]
=
∑
p

(b−1jk )′′mp(x− εz)(−zp),

it follows, letting ε→ 0 and changing variables w = B−1(x)z, that

lim
ε→0

C

2

∑
j,k,m

∫
RN

A2
ε(x, z)dz =

C

2

∑
j,k,m,p,q,r,s

(b−1jk )′′mp(x)bpq(x)bkr(x)bms(x)

×
∫
RN

J ′j(w)wqwrwsdw

which due to property (1) from Lemma 3.1 and arguing as in (12) is equal to

−
∑

j,k,m,p,q

(b−1jk )′′mp(x) [bpq(x)bkq(x)bmj(x) + bpj(x)bkq(x)bmq(x) + bpq(x)bkj(x)bmq(x)] .

Thus, using (2) from Lemma 3.2, we get

(19)

lim
ε→0

C

2

∑
j,k,m

∫
RN

A2
ε(x, z)dz =

∑
j,k,m,p,q

{
(b−1jk )′m(x)(bkq)

′
p(x)bpq(x)bmj(x)

+(b−1jk )′p(x)(bkq)
′
m(x)bpq(x)bmj(x) + (bkq)

′′
mp(x)bmj(x)b−1jk (x)bpq(x)

+(b−1jk )′m(x)(bkq)
′
p(x)bpj(x)bmq(x) + (b−1jk )′p(x)(bkq)

′
m(x)bpj(x)bmq(x)

+(bkq)
′′
mp(x)bpj(x)b−1jk (x)bmq(x) + (b−1jk )′m(x)(bkj)

′
p(x)bpq(x)bmq(x)

+(b−1jk )′p(x)(bkj)
′
m(x)bpq(x)bmq(x) + (bkj)

′′
mp(x)bpq(x)b−1jk (x)bmq(x).

Note that, thanks to (1) from Lemma 3.2, some terms from expressions (18) and
(19) cancel. In fact, the 12th term of (18) verifies∑

j,k,m,p,q,r,s

(b−1pq )′r(x)(b−1jk )′m(x)bqs(x)brs(x)bkp(x)bmj(x)

= −
∑

j,k,m,p,q,r,s

b−1pq (x)(b−1jk )′m(x)(bqs)
′
r(x)brs(x)bkp(x)bmj(x)

and since ∑
p

bkp(x)b−1pq (x) = 1

if k = q and vanishes if k 6= q we obtain

−
∑

j,k,m,r,s

(b−1jk )′m(x)(bks)
′
r(x)brs(x)bmj(x).

Replacing s by q and r by p, this last expression is cancelled by the 1st term of
(19). We leave it to the reader to verify that, in the same way, the 2nd, 4th, 5th

and 7th terms of expression (19) are cancelled by the 5th, 3rd, 1st and 2nd terms
of expression (18) respectively. Hence, from Part 1.b only the 3rd, 6th, 8th and 9th

terms remain.

Part 1.c: Compute

lim
ε→0

C

2

∑
j,k,m

∫
RN

A3
ε(x, z)dz.
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By equality (14) we obtain

(20)

lim
ε→0

C

2

∑
j,k,m

∫
RN

A3
ε(x, z)dz

= −C
2

detB−2(x)
∑

j,k,m,p

(b−1jk )′m(x)(detB(x))′p

∫
RN

J ′j(B
−1(x)z)zkzmzpdz.

Furthermore, thanks to the result obtained from equality (11) in (13), inside the
proof of Proposition 3.3 we get

(21)

C detB−1(x)
∑
j,k,m(b−1jk )′m(x)

∫
RN

J ′j(B
−1(x)z)zkzmzpdz

= 2
∑

j,k,m,s

b−1jk (x)(bkj)
′
m(x)bms(x)bps(x)

+ 2
∑
k,j

(bjk)′j(x)bpk(x) + 2
∑
k,j

(bpk)′j(x)bjk(x).

In addition, we have [9], that is,

(22) detB−1(x)(detB(x))′p =
∑
q,r

b−1qr (x)(brq)
′
p(x).

Replacing (21) and (22) in equality (20), we have

(23)

lim
ε→0

C

2

∑
j,k,m

∫
RN

A3
ε(x, z)dz

= −
∑

j,k,m,p,q,r,s

b−1qr (x)(brq)
′
p(x)b−1jk (x)(bkj)

′
m(x)bms(x)bps(x)

−
∑

j,k,m,p,q,r

b−1qr (x)(brq)
′
p(x)

{
(bjk)′j(x)bpk(x) + (bpk)′j(x)bjk(x)

}
.

Note that above expression is cancelled with the 7th, 10th and 4th terms of expres-
sion (18).

Summarizing, we conclude Part 1 of the proof as follows:

(24)

lim
ε→0

C

2ε

∫
RN

G1
ε(x, z)dz = lim

ε→0

C

2

∑
j,k,m

∫
RN

(
A1
ε(x, z) +A2

ε(x, z) +A3
ε(x, z)

)
dz

=
∑

j,k,m,p,q,r,s

(b−1pq )′r(x)(b−1jk )′m(x) [bqs(x)brj(x)bks(x)bmp(x)

+ bqs(x)brp(x)bkj(x)bms(x) + bqs(x)brs(x)bkj(x)bmp(x)

+bqs(x)brp(x)bks(x)bmj(x)]

+
∑

j,k,m,p,q

{
(bkq)

′′
mp(x)bmj(x)b−1jk (x)bpq(x)

+(bkq)
′′
mp(x)bpj(x)b−1jk (x)bmq(x) + (b−1jk )′p(x)(bkj)

′
m(x)bpq(x)bmq(x)

+(bkj)
′′
mp(x)bpq(x)b−1jk (x)bmq(x)

}
.

Part 2: We have to compute

lim
ε→0

C

2ε

∫
RN

G2
ε(x, z)dz.
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Which due to relation (14), it is equivalent to compute

lim
ε→0

C

2ε

∑
p

∫
RN

J(B−1(x− εz)z)
(detB(x− εz))′p
detB2(x− εz)

zp dz.

Note that since ∫
RN

J(B−1(x)z) zp dz = 0,

letting ε→ 0, we have that the above expression is 0
0 . Consequently, by L’Hopital

rule we obtain

lim
ε→0

C

2ε

∫
RN

G2
ε(x, z)dz =

C

2

∑
p

∫
RN

(
R1
ε(x, z) +R2

ε(x, z) +R3
ε(x, z)

)
dz,

where

R1
ε(x, z) =

∂

∂ε

[
J(B−1(x− εz)z)

] (detB(x− εz))′p
detB2(x− εz)

zp,

R2
ε(x, z) = J(B−1(x− εz)z) ∂

∂ε

[
(detB(x− εz))′p

detB(x− εz)

]
detB−1(x− εz)zp,

and

R3
ε(x, z) = J(B−1(x− εz)z)

(detB(x− εz))′p
detB(x− εz)

∂

∂ε

[
detB−1(x− εz)

]
zp.

Therefore, the Part 2 will be divided into three steps:

Part 2.a: Compute

lim
ε→0

C

2

∑
p

∫
RN

R1
ε(x, z)dz.

By identity (10) and letting ε to 0, we get

= −C
2

detB−2(x)
∑

j,k,m,p

(b−1jk )′m(x)(detB(x))′p

∫
RN

J ′j(B
−1(x)z)zkzmzpdz.

Which coincides with expression (20). Hence,

(25)

lim
ε→0

C

2

∑
p

∫
RN

R1
ε(x, z)dz

= −
∑

j,k,m,p,q,r,s

b−1qr (x)(brq)
′
p(x)b−1jk (x)(bkj)

′
m(x)bms(x)bps(x)

−
∑

j,k,m,p,q,r

b−1qr (x)(brq)
′
p(x)

{
(bjk)′j(x)bpk(x) + (bpk)′j(x)bjk(x)

}
.

Part 2.b: Compute

lim
ε→0

C

2

∑
p

∫
RN

R2
ε(x, z)dz.

If we compute de derivative of (22), we obtain that

∂

∂ε

[
(detB(x− εz))′p

detB(x− εz)

]
=

∂

∂ε

∑
j,k

b−1jk (x− εz)(bkj)′p(x− εz)

= −
∑
j,k,m

{
(b−1jk )′m(x− εz)zm(bkj)

′
p(x− εz) + b−1jk (x− εz)(bkj)′′pm(x− εz)zm

}
.
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Therefore, replacing the above expression, letting ε → 0 and change variables as
w = B−1(x)z, Part 2.b reads as follows

(26)

lim
ε→0

C

2

∑
p

∫
RN

R2
ε(x, z)dz

= −
∑

j,k,m,p,q

{
(b−1jk )′m(x)(bkj)

′
p(x)bpq(x)bmq(x)

+b−1jk (x)(bkj)
′′
pm(x)bpq(x)bmq(x)

}
.

Part 2.c: Compute

lim
ε→0

C

2

∑
p

∫
RN

R3
ε(x, z)dz.

Using again the equalities (22) and (14), letting ε → 0 and change variables
w = B−1(x)z, we get

(27)

lim
ε→0

C

2

∑
p

∫
RN

R3
ε(x, z)dz

=
∑

j,k,m,p,q,r,s

b−1jk (x)(bkj)
′
mb
−1
qr (x)(brq)

′
p(x)bms(x)bps(x).

Note that this expression cancels with the first part of (25) from Part 2.a.

Summarizing, we conclude Part 2 of the proof as follows:

(28)

lim
ε→0

C

2ε

∫
RN

G2
ε(x, z)dz = lim

ε→0

C

2

∑
p

∫
RN

(
R1
ε(x, z) +R2

ε(x, z) +R3
ε(x, z)

)
dz

= −
∑

j,k,m,p,q,r

b−1qr (x)(brq)
′
p(x)

{
(bjk)′j(x)bpk(x) + (bpk)′j(x)bjk(x)

}
−

∑
j,k,m,p,q

{
(b−1jk )′m(x)(bkj)

′
p(x)bpq(x)bmq(x)

+b−1jk (x)(bkj)
′′
pm(x)bpq(x)bmq(x)

}
.

Finally, taking into account that the first sum of (28) is cancelled with the 2nd

and 3rd term of (24) and the second sum of (28) is cancelled with the last two
terms of (24). We have, adding Part 1 and Part 2 in (16), that

lim
ε→0
L2
ε(u(x, t)) =

 ∑
j,k,m,p,q,r,s

(b−1pq )′r(x)(b−1jk )′m(x)bqs(x)brj(x)bks(x)bmp(x)

+
∑

j,k,m,p,q,r,s

(b−1pq )′r(x)(b−1jk )′m(x)bqs(x)brp(x)bks(x)bmj(x)

+
∑

j,k,m,p,q

(bkq)
′′
mp(x)bmj(x)b−1jk (x)bpq(x)

+
∑

j,k,m,p,q

(bkq)
′′
mp(x)bpj(x)b−1jk (x)bmq(x)

u(x, t).
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Now, applying property (1) from Lemma 3.2, each sum satisfies

(29)

∑
j,k,m,p,q,r,s

(b−1pq )′r(x)(b−1jk )′m(x)bqs(x)brj(x)bks(x)bmp(x)

=
∑

j,k,m,p,q,r,s

b−1pq (x)b−1jk (x)(bqs)
′
r(x)brj(x)(bks)

′
m(x)bmp(x)

=
∑
k,q,s

(bqs)
′
k(x)(bks)

′
q(x) =

∑
i,j,k

(bik)′j(x)(bjk)′i(x),

replacing, in the last equality, indexes {q, k, s} by {i, j, k} respectively. We have

(30)

∑
j,k,m,p,q,r,s

(b−1pq )′r(x)(b−1jk )′m(x)bqs(x)brp(x)bks(x)bmj(x)

=
∑

j,k,m,p,q,r,s

b−1pq (x)b−1jk (x)(brp)
′
r(x)bqs(x)(bmj)

′
m(x)bks(x)

=
∑
m,p,r

(brp)
′
r(x)(bmp)

′
m(x) =

∑
i,j,k

(bik)′i(x)(bjk)′j(x),

replacing, in the last equality, indexes {r,m, p} by {i, j, k} respectively.

Now,

(31)

∑
j,k,m,p,q

(bkq)
′′
mp(x)bmj(x)b−1jk (x)bpq(x) =

∑
k,p,q

(bkq)
′′
kp(x)bpq(x)

=
∑
i,j,k

(bik)′′ij(x)bjk(x),

replacing, in the last equality, indexes {k, p, q} by {i, j, k} respectively.

Also, we have

(32)

∑
j,k,m,p,q

(bkq)
′′
mp(x)bpj(x)b−1jk (x)bmq(x) =

∑
k,m,q

(bkq)
′′
mk(x)bmq(x)

=
∑
i,j,k

(bjk)′′ij(x)bik(x),

replacing, in the last equality, indexes {m, k, q} by {i, j, k} respectively.

Summarizing, from (29), (30), (31) and (32), we conclude that

lim
ε→0
L2
ε(u(x, t)) =

∑
i,j,k

{
(bik)′j(x)(bjk)′i(x) + (bik)′i(x)(bjk)′j(x)

+(bik)′′ij(x)bjk(x) + (bjk)′′ij(x)bik(x)
}
u(x, t) =

∑
i,j

∂2aij(x)

∂xi∂xj
u(x, t),

and the Proposition gets proved. �

Proposition 3.5. Let u be a C2+α,1+α/2
(
RN × [0, T ]

)
function and let Lε be the

operator defined as

(33) Lε(u(x, t)) =
C

ε2

{∫
RN

Jε
(
B−1(y)(x− y)

)
detB−1(y)u(y, t)dy − u(x, t)

}
.

Then,

sup
t∈[0,T ]

∥∥∥Lε(u(x, t))−
∑
i,j

∂2

∂xi∂xj
(aij(x)u(x, t))

∥∥∥
L∞
→ 0 as ε→ 0.
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Proof. Thanks to Propostion 3.3 and Proposition 3.4 we obtain that

sup
t∈[0,T ]

∥∥∥Lε(u(x, t))−
∑
i,j

∂2

∂xi∂xj
(aij(x)u(x, t))

∥∥∥
L∞

≤ sup
t∈[0,T ]

‖
(
L1
ε − Λ

)
(u(x, t))‖L∞ + sup

t∈[0,T ]

‖
(
L2
ε − Γ

)
(u(x, t))‖L∞ → 0,

as ε→ 0. �

We are now ready to prove our main result.

Proof of Theorem 1.1. We will denote by wε = uε − v. Note that wε satisfies the
following equation

(34)

 wεt (x, t) = Lε(wε(x, t)) + F̃ (x, t), x ∈ RN , t ∈ [0, T ],

wε(x, 0) = 0, x ∈ RN ,
where

F̃ (x, t) = Lε(v(x, t))−
∑
i,j

∂2

∂xi∂xj
(aij(x)v(x, t)) .

In addition, thanks to Proposition 3.5, we can assert that there exists a positive
function θ such that |F̃ (x, t)| ≤ θ(ε)→ 0 as ε→ 0, for every x ∈ RN , t ∈ [0, T ].

Next, let us consider

η(ε) = max

{
C

ε2

[∫
RN

Jε
(
B−1(y)(x− y)

)
detB−1(y)dy − 1

]
, x ∈ RN

}
,

it is easy to check that η(ε) <∞, for every ε > 0. Futhermore, by Proposition 3.4
and (5) we obtain

η(ε)→ max

∑
i,j

∂2aij(x)

∂xi∂xj
, x ∈ RN

 <∞.

In this way, we set the following function

w(x, t) =


θ(ε)

η(ε)

(
eη(ε)t − 1

)
+ ε eη(ε)t, if η(ε) 6= 0,

θ(ε)t+ ε, if η(ε) = 0,

for x ∈ RN , t ∈ [0, T ]. Now, we claim that w is a supersolution of (34). Indeed, for
η(ε) 6= 0

wt(x, t) = θ(ε)eη(ε)t + ε η(ε) eη(ε)t = η(ε)w(x, t) + θ(ε)

≥ L2
ε(w(x, t)) + F̃ (x, t) = Lε(w(x, t)) + F̃ (x, t),

taking into account that L1
ε(w(x, t)) = 0 in the last equality. We left to the reader

to check the case η(ε) = 0. Finally, as w(x, 0) = ε, the claim is proved.

Similar arguments applied to the case w(x, t) = −w(x, t) leads us to assert that
w(x, t) is a subsolution of problem (34).

We conclude from the comparison principle, Theorem 2.2, that

w ≤ wε ≤ w
and since w(x, t), w(x, t)→ 0 as ε→ 0 our main result gets proved. �
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Remark 3.6. One can easily check that, for all test function ϕ ∈ C2c (RN ) and
u ∈ L1(RN ) ∩ C2+α(RN ), it holds that

(35)

∫
RN

Lεu(x)ϕ(x)dx =

∫
RN

∑
j,k

ϕ′′xjxk
(x) (B(x)Bt(x))(j,k) u(x) dx+ 0(εα)

and hence, integrating by parts twice, we get∫
RN

Lεu(x)ϕ(x)dx =

∫
RN

∑
j,k

∂2

∂xjxk
(ajk(x)u(x))ϕ(x)dx+ 0(εα).

In fact, for ϕ ∈ C2c (RN ) we have∫
RN

Lεu(x)ϕ(x)dx

=

∫
RN

C

ε2

{∫
Jε(B

−1(y)(x− y)) detB−1(y)u(y)ϕ(x)dy − u(x)ϕ(x)

}
dx

=

∫
RN

C

ε2

(∫
Jε(B

−1(y)(x− y)) detB−1(y)ϕ(x)dx

)
u(y)dy − C

ε2

∫
RN

u(x)ϕ(x)dx

=

∫
RN

u(y)
C

ε2

{∫
Jε(B

−1(y)y − z)ϕ(B(y)z) dz − ϕ(y)

}
dy

=

∫
RN

u(y)
C

ε2

{∫
Jε(B

−1(y)y − z)φ(z) dz − φ(B−1(y)y)

}
dy,

with φ(z) := ϕ(B(y)z). Now we observe that it is well known (see [2]) that this
last expression verifies

=

∫
RN

u(y)∆φ(B−1(y)y) dy +O(εα).

Using that

∆φ(B−1(x)x) =
∑
j,k

ϕ′′xjxk
(x) (B(x)Bt(x))(j,k)

we obtain (35).

Remark 3.7. Our results can be interpreted from a stochastic processes viewpoint.
In fact, given the stochastic differential equation

dXt = B(Xt) dWt,

where Xt is an N -dimensional random variable vector and Wt is an N -dimensional
standard Wiener process. Our main result states that

Solutions of the rescaled nonlocal problem (6), uε(x, t), converge uniformly to the
probability density, u(x, t), that corresponds to the process Xt.

See [12] for more details.
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