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Abstract. We study existence of large solutions, that is, solutions that
verify u(x)→ +∞ as x→ ∂Ω, for equations like

−I(u, x) + u(x)p = 0, x ∈ Ω,

where Ω is a bounded smooth domain in RN , p > 1 and I is a nonlocal
operator of the form

I(u, x) = P.V.

∫
|z|≤%(x)

[u(x+ z)− u(x)]|z|−(N+α)dz,

where α ∈ (0, 2) and % : Ω̄→ R is a function whose main particularity is
that 0 < %(x) ≤ dist(x, ∂Ω). We also obtain uniqueness of the solution
in a class of large solutions whose blow-up rate depends on p, α and the
rate at which % shrinks near the boundary.

1. Introduction.

Let Ω ⊂ RN be a bounded domain with smooth boundary. This paper is
concerned with the nonlocal equation

(1.1) −I(u, x) + up(x) = 0, x ∈ Ω,

where p > 1 and I is a nonlocal operator with the form

I(u, x) =

∫
|z|≤%(x)

[u(x+ z)− u(x)− 1B〈Du(x), z〉]ν(dz),

where ν is a positive, regular measure in RN and % : Ω̄ → R is a function
whose main particularity is that 0 < %(x) ≤ dist(x, ∂Ω) for each x ∈ Ω. The
precise set of assumptions on ν, % and p will be given later on.

Our interest here is the study of large solutions also called blow-up solu-
tions for (1.1), that is, solutions of (1.1) satisfying

(1.2) u(x)→ +∞ as x→ ∂Ω.
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The study of large solutions for (1.1) is motivated by the wide literature
concerning second-order operators, namely equations of the form

(1.3) −∆u+ f(u) = 0 in Ω,

with f : R → R satisfying adequate assumptions. In the seminal works of
Keller [22] and Osserman [28], it is proved that the interaction between the
diffusive and the reactive term in (1.3) allows the existence of large solutions
to this problem, if and only if the nonlinearity f satisfies the so-called Keller-
Osserman condition given by∫ +∞

1

ds√
F (s)

< +∞, where F (s) =

∫ s

0
f(t)dt.

In particular, when f(t) = tp, the above condition is verified by a superlinear
nonlinearity, that is, for p > 1.

After the works by Keller and Osserman, a broad variety of very interest-
ing results concerning existence, uniqueness and asymptotic behavior near
the boundary for large solutions of second-order reaction-diffusion equa-
tions have been obtained in the PDE framework using different techniques,
see [3, 12, 14, 25, 26, 27, 29] for a nonexhaustive list of references. It is also
worth to mention the deep connection of problems like (1.3) with stochastic
superprocesses and the so-called Brownian snake, see [15, 24] and references
therein. Additionally, we remark that the study of large solutions is also ad-
dressed in second-order quasilinear problems associated to coercive gradient
terms in [23] and in infinity Laplacian problems in [21].

In recent years, large solutions for reaction-diffusion problems associated
to anomalous diffusion have been subject of study by several authors. The
typical example of this anomalous diffusive operator is the so-called frac-
tional Laplacian of order α ∈ (0, 2), defined as

(1.4) (−∆)αu(x) = CN,αP.V.

∫
RN

[u(x+ z)− u(x)]|z|−(N+α)dz,

where P.V. stands for the Cauchy principal value and CN,α is a well-known
normalizing constant, see [16] for a very complete introduction to this oper-
ator. In this case, the prototype equation takes the form

(1.5) (−∆)αu+ up = 0 in Ω.

Typically, in addition to (1.5), we must prescribe the value of u in Ωc

as an exterior data in order to evaluate u in the fractional Laplacian. This
is the first feature that must be taken into account in addressing problems
like (1.5). For instance, in [17] the authors construct large solutions to (1.5)
provided the exterior data blows-up at the boundary. This condition was
afterwards relaxed in the subsequent paper [11], where in addition it is
provided a uniqueness result for a class of large solutions with a controlled
blow-up rate at the boundary. We also remark that the blow-up rate is
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naturally restricted by the request convergence of the integral defining the
fractional Laplacian.

In this paper we get the existence of a large solution following the method
used in some local and nonlocal problems of the references mentioned above,
where a large solution is obtained as the limit of a sequence of solutions of
Dirichlet problems with bounded boundary data tending to infinity. In this
task, the reaction-diffusion nature of the problem and suitable comparison
principles provide the required compactness to pass to the limit. The reac-
tive term (the nonlinearity) allows us to construct a locally bounded super-
solution which implies the approximating sequence is uniformly bounded in
L∞loc(Ω), meanwhile the diffusive term (the elliptic operator) allows to con-
struct an adequate subsolution which “lifts to infinity” the approximating
sequence at the boundary. This diffusive term is also the key ingredient in
the application of elliptic regularity results.

At this point we should mention the main features of our problem playing
a role in the application of the aforementioned method. We start remarking
that I has a censored or regional nature since by its form we don’t need to
consider any datum outside Ω. Moreover, this can be understood as a weaker
nonlocality (compared, for instance, with the fractional Laplacian (1.4))
since we just require the values of u in a neighborhood of x (depending on
%(x)) to compute I(u) at x. Despite this feature, the nonlocal dependence
on Ω of I is strong enough to prevent the use of some second-order meth-
ods concerning the analysis of auxiliary problems localized in subdomains,
basically because in that case we are qualitatively changing the structure of
the problem. On the other hand, this type of nonlocality can be understood
as a degenerate ellipticity: for integro-differential operators the ellipticity is
related with the singularity at the origin of the measure ν defining I, but as
we will see below, in our case this ellipticity is also influenced by the rate at
which the function % shrinks near the boundary. In fact, the blow-up rate of
the constructed large solution is determined both by the singularity of the
measure ν and the rate at which %(x) shrinks as x→ ∂Ω.

The paper is organized as follows: In Section 2 we introduce the precise
assumptions we use to deal with this problem and state the main results.
Two important estimates are provided in Section 3. These estimates are
used in Section 4 to solve the Dirichlet problem with bounded datum, which
is the key step to get the existence of a large solution given in Section 5. We
prove uniqueness (in a certain class of large solutions) in Section 6 and we
finish with a precise estimate of the blow-up rate in Section 7.

Basic Notation. For x ∈ RN and r > 0, we denote Br(x) the open ball
centered at x with radius r, Br if x = 0, and B if additionally r = 1.

For x ∈ O, we denote dO(x) = dist(x, ∂O). In the case O = Ω we simply
write d(x). For δ > 0, we denote Aδ(O) = {x ∈ O : dO(x) < δ}, and we
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simplify to Aδ if O = Ω. By the smoothness of the boundary of the domain,
we can find δ0 > 0 such that the distance function is of class C2 in Aδ0 ,
see [18]. We can also assume that δ0 < 1.

For a set D ⊂ RN , x ∈ Ω, p ∈ RN and φ ∈ L1(Ω), we define

I[D](φ, x, p) =

∫
B%(x)∩D

[φ(x+ z)− φ(x)− 1B〈p, z〉]ν(dz),

each time the integral makes sense. We also write

I[D](φ, x) = I[D](φ, x,Dφ(x)).

Since in most of the cases the arguments are carried out near the bound-
ary, we are typically integrating on balls with a small radius and therefore
we omit the 1B term in the integrand.

2. Assumptions and statements of the main results.

The nonlocal operator I that will be considered in this work has the form

(2.1) I(u, x) =

∫
B%(x)

[u(x+ z)− u(x)− 1B〈Du(x), z〉]Kα(z)dz,

where for some α ∈ (0, 2), Kα(z) := K(z)|z|−(N+α), z ∈ RN \ {0} and the
functions K, % satisfy the following assumptions:

(M) K : RN → R is measurable, bounded, radially symmetric function
satisfying K ≥ κ > 0 in RN , for some κ > 0.

(D) There exists σ ≥ 1 and 0 < Λ ≤ 1 such that

%(x) = Λdσ(x).

Note that the symmetry of K and the form of the region of integration
defining (2.1) allow us to write

I(u, x) = P.V.

∫
B%(x)

[u(x+ z)− u(x)]Kα(z)dz,

where P.V. stands for the Cauchy principal value. Moreover, we can drop
the P.V. in the case α ∈ (0, 1), see [16]. We use this fact to avoid the
compensator term 1B〈Du(x), z〉 in some situations, for a sake of simplicity.

Our first result reads as follows:

Theorem 2.1. Let I as in (2.1) satisfying (M). Assume (D) holds with p,
σ and Λ satisfying one of the following configurations:

(i) Linear Censorship: σ = Λ = 1 and p > 1 + α.

(ii) Linear Strict Censorship: σ = 1,Λ < 1 and p > 1.

(iii) Superlinear Censorship: 1 < σ < 2/(2− α) and p > 1.
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Define

(2.2) γ = ασ/(p− 1),

with

(2.3) ασ = σ(α− 2) + 2 > 0.

Then, there exists a classical solution u to problem (1.1)-(1.2). This solu-
tion is strictly positive in Ω and it is the minimal solution over the class of
large solutions, in the sense that any solution v to (1.1)-(1.2) satisfies u ≤ v
in Ω. In addition, there exist constants 0 < c̄ < C̄ such that

(2.4) c̄ d−γ(x) ≤ u(x) ≤ C̄ d−γ(x), for x→ ∂Ω.

Moreover, this solution is the unique solution in the class of large solutions
v : Ω→ R satisfying the boundary blow-up rate

(2.5) 0 < lim inf
Ω3x→∂Ω

v(x)d−γ(x) ≤ lim sup
Ω3x→∂Ω

v(x)d−γ(x) < +∞.

Roughly speaking, ασ represents the order of the operator I in the differ-
ent configurations of the problem. Note that this order is not only influenced
by the degree of the singularity of Kα, but by the speed at which the domain
of integration shrinks near the boundary.

Note that in cases (ii) and (iii) of the above theorem, the domain of
integration in the nonlocal operator “does not touches the boundary” when
x is sufficiently close to ∂Ω and for this reason we intend them as the “strictly
censored case”. The main particularity in this situation is that the problem
allows blow-up solutions which are not in L1(Ω). This makes a qualitative
difference with the remaining case (i) (which, just to differentiate it from
the previous case, we refer as “weakly censored case”). In this case, the
integrable blow-up profile at the boundary of the solution is a structural
requirement to evaluate it in the nonlocal operator, see also [11, 17] for
further discussions about this fact.

Our second result deals with the precise blow-up rate for a large solution
to problem (1.1).

Theorem 2.2. Let I defined as in (2.1) satisfying (M) with K continuous
at the origin. Let (D) holds with Λ, σ and p satisfying one of the configura-
tions of Theorem 2.1. Then, the blow-up solution u to problem (1.1) satisfies
the asymptotic behavior

(2.6) lim
d(x)→0

u(x)dγ(x) = C̄0,

where γ is given in (2.2) and C̄0 > 0 is a constant depending on N , Λ, σ,
α, p, b0 and K(0).

Our results are obtained in the framework of viscosity solutions theory
for nonlocal problems, see [5, 6] and references therein. See also [13] for
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a complete introduction of the viscosity theory for second-order operators.
Thus, for a (bounded) subsolution for a problem set up in an open set O
we mean an upper semicontinuous function on Ō which satisfies the sub-
solution’s viscosity inequality associated to the problem in O. Analogous
remark can be done for supersolutions and therefore for solutions. For a
large solution u to a problem set up in O we mean a viscosity solution in O
satisfying the blow-up condition (1.2).

We remark that the application of (nonlocal) elliptic regularity results
to our problem (see [4, 9, 10]) and a standard bootstrap argument allows
us to conclude that (continuous) viscosity solutions to (1.1)-(1.2) which are
locally bounded in Ω are in fact classical solutions.

3. Two important estimates.

Recalling δ0 > 0 is such that the distance function x 7→ dist(x, ∂Ω) is
smooth in Aδ0 , in this section we consider d : Ω̄ → R a smooth function,
strictly positive in Ω \Aδ0 and such that d(x) = dist(x, ∂Ω) on Āδ0 .

We start with the following estimate which is related with the existence
of a blow-up supersolution, see Proposition 5.1 below.

Lemma 3.1. Let β > 0 in the strictly censored case and β ∈ (0, 1) in the
weakly censored case. Then there exist C0 > 0 and δ̄ ∈ (0, δ0) such that

−Iσ(d−β, x) ≥ −C0d
−β−ασ(x), for all x ∈ Aδ̄.

Proof: We start with the strictly censored case. A simple Taylor expansion
allows us to write

I(d−β, x) =
1

2

∫
B%(x)

∫ 1

0
〈D2d−β(x+ sz)z, z〉Kα(z)dz.

From the explicit expression

D2d−β(x) = β(β + 1)d−(β+2)(x)Dd(x)⊗Dd(x)− βd−(β+1)(x)D2d(x),

using that for s ∈ (0, 1) and that for z ∈ B%(x) the term d(x+ sz) is compa-
rable to d(x), together with the smoothness of d, we obtain the existence of
a constant C > 0 depending only on the data such that

I(d−β, x) ≤ Cd−(β+2)(x)

∫
B%(x)

|z|2Kα(z)dz,

from which we obtain the result.

For the case Λ = σ = 1, we consider ε ∈ (0, 1) and we write

I(d−γ , x) = I[B(1−ε)d(x)](d
−β, x) + I[Bd(x) \B(1−ε)d(x)](d

−β, x).
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For the first term in the right-hand side, performing the above analysis
we get the existence of a constant Cε > 0 such that

I[B(1−ε)d(x)](d
−β, x) ≤ Cεd−β−α(x),

meanwhile, for the second term we can write

I[Bd(x) \B(1−ε)d(x)](d
−β, x) ≤ ||K||L∞

∫
B%(x)

d−β(x+ z)|z|−(N+α)dz,

and using that d(x + z) ≥ d(x) − |z| for all z ∈ B%(x), there exists C > 0
depending only on the data such that

I[Bd(x) \B(1−ε)d(x)](d
−β, x) ≤ C

∫ d(x)

(1−ε)d(x)
(d(x)− r)−βr−(1+α)dr,

from which, since β ∈ (0, 1), we obtain that

I[Bd(x) \B(1−ε)d(x)](d
−β, x) = oε(1)d−β−α(x),

where oε(1) → 0 as ε → 0 uniformly on x ∈ Aδ̄. Fixing ε ∈ (0, 1), we
conclude the result. �

The following lemma is related with the existence of a subsolution that
allows us to “lift” to infinity the solution to our problem near the boundary
(see Proposition 5.2 below).

Lemma 3.2. Let β ∈ (0, 1). There exists c0 > 0 and δ̄ ∈ (0, 1) such that

−I(dβ, x) ≥ c0d
β−ασ(x), for all x ∈ Aδ̄.

Proof: We focus our attention in the strictly censored case. As we did in
Lemma 3.1, we consider δ̄ < δ0 and apply a Taylor expansion with reminder
to write

I(dβ, x) =
β(β − 1)

2

∫
B%(x)

∫ 1

0
dβ−2(x+ sz)|〈Dd(x+ sz), z〉|2Kα(z)dz

+
β

2

∫
B%(x)

∫ 1

0
dβ−1(x+ sz)〈D2d(x+ sz)z, z〉Kα(z)dz

=:I1 + I2.

Concerning I2, by the strict censorship of the jumps, we note that for
s ∈ (0, 1) and z ∈ B%(x), d(x+sz) is comparable to d(x). This together with
the smoothness of ∂Ω allows us to write

I2 ≤ Cdβ−1(x)

∫
B%(x)

|z|2−N−αdz ≤ Cdβ−1+σ(2−α)(x) = Cdβ+1−ασ(x),

for some constant C > 0 depending only on β and the data.

For I1, we denote by Dx the set

Dx = {z ∈ B%(x) : |〈Dd(x), z〉| ≥ |z|/2}.



8 J. D. ROSSI AND E. TOPP

Thus, using the smoothness of the distance function, for each z ∈ Dx and
s ∈ (0, 1) we can write

|〈Dd(x+ sz), z〉| ≥ |z|/2− |s〈D2(ξ)z, z〉|,

for some ξ in the line joining x and x+sz. Thus, taking δ̄ smaller if necessary,
we conclude that

|〈Dd(x+ sz), z〉| ≥ |z|/4,
for all s ∈ (0, 1) and z ∈ Dx. Using this estimate, the strict censorship of
the operator, the positivity of the integrand and that β < 1, we obtain

I1 ≥ cκdβ−2(x)

∫
Dx

|z|2−N−αdz,

where c > 0 depends on β and the data. Now, since the measure of Dx is
comparable to the measure of the whole ball of radius %(x) we get

I1 ≥ cdβ−2+σ(2−α)(x) = cdβ−ασ(x),

where c > 0. Thus, joining the estimates for I1 and I2, we arrive at

I(dβ, x) ≥ dβ−ασ(x)(c− Cd(x)),

and we conclude the result by taking δ̄ small in terms of c and C. �

4. The Dirichlet problem with bounded boundary data.

In this section we provide comparison principles which are going to play a
key role in the remaining sections of this paper. We start with the following:

Proposition 4.1. (Comparison Principle) Let I as in (2.1) satisfying
(M) and (D), and let p > 0. Let u, v be viscosity sub and supersolution for
problem (1.1) respectively. If u ≤ v on ∂Ω, then u ≤ v in Ω.

The proof of this result follows the classical lines of the viscosity theory,
for instance see [20] and references therein.

We need a second version of the comparison principle. For its statement,
we introduce the following notation: Given O ⊂ RN a bounded domain and
ω ⊂ O, we define

(4.1) Σ(ω,O) =
⋃
x∈ω

B%(x)(x),

where % is defined as in (D) relative to dO. If O = Ω we simply put Σ(ω)
and if ω = Ω \Aa for some a > 0, we write Σa.

Proposition 4.2. (Annular Comparison Principle) Let I defined as
in (2.1) satisfying (M) and (D), and a, p > 0. Let u, v ∈ L1(Σa)∩L∞loc(Σa)
be respective viscosity sub and supersolution to equation (1.1) in Ω\Āa, with
u ≤ v in Āa ∩ Σa. Then, u ≤ v in Ω \ Āa.
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Proof: We start considering the case u, v ∈ L∞(Ω). Arguing by contradic-
tion, assume that

(4.2) M := sup
x∈Ω\Āa

{u(x)− v(x)} > 0.

By the assumptions on u and v we have that this supremum is achieved
at some point x0 ∈ Ω \ Aa, and since u ≤ v in Āa ∩ Σa we conclude that
x0 ∈ Ω \ Āa. For ε, η > 0 we consider the function

(x, y) 7→ Φ(x, y) := u(x)− v(y)− φ(x, y),

where φ(x, y) = |x− y|2/ε2 + η|x− x0|2.

Note that there exists (x̄, ȳ) ∈ (Ω \ Aa) × (Ω \ Aa) depending on ε, η,
maximum point of Φ in this set. Using the inequality Φ(x̄, ȳ) ≥ Φ(x0, x0)
and the boundedness of u and v in Ω \ Aa, classical arguments in viscosity
solution’s theory drive us to the following facts

(4.3) x̄, ȳ → x0, u(x̄)→ u(x0), v(ȳ)→ v(x0); as ε→ 0.

Without loss of generality, we may assume that d(x̄) ≥ d(ȳ). Since
d(x0) > a, by the first convergence in (4.3) we can assume d(ȳ) − a ≥
(d(x0)− a)/2 for all ε small.

Since for all ε small we have x̄, ȳ ∈ Ω \ Āa, we can use the viscosity
inequalities for u and v at x̄ and ȳ, respectively. Hence, we denote

h = (d(x0)− a)/2 > 0

and for all 0 < δ ≤ h we can write

−I[Bδ](φ(·, ȳ), x̄)− I[Bc
δ ](u, x̄,Dxφ(x̄, ȳ)) + u(x̄)p ≤ 0,

and

I[Bδ](φ(x̄, ·), x̄)− I[Bc
δ ](v, ȳ,−Dyφ(x̄, ȳ)) + v(ȳ)p ≥ 0.

We substract the above inequalities to obtain

−(ε−2 + η)oδ(1)− I1 − I2 + u(x̄)p − v(ȳ)p ≤ 0,(4.4)

where

I1 =

∫
B%(ȳ)\Bδ

[u(x̄+ z)− v(ȳ + z)− (u(x̄)− v(ȳ))

− 2η1B〈x̄− x0, z〉]Kα(z)dz,

I2 =

∫
B%(x̄)\B%(ȳ)

[u(x̄+ z)− u(x̄)]Kα(z)dz.
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Now we deal with these nonlocal terms. For I1, we consider the sets

Dint := {z : x̄+ z, ȳ + z ∈ Ω \Aa},
Θ1 := B%(ȳ) ∩Dint,

and

Θ2 := B%(ȳ) \Dint.

Note that Dint → ((Ω \Aa)− x0) as ε→ 0. Hence, we see that Bh ⊂ Θ1

and Θ2 ⊂ Bc
h for all ε small, depending only on h. In particular, we have

Θ2 = Θ2 \Bδ for all such an ε.

Using that (x̄, ȳ) is a maximum of Φ in (Ω \Aa)× (Ω \Aa), for all z ∈ Θ1

we have the inequality

u(x̄+ z)− v(ȳ + z) ≤ u(x̄)− v(ȳ) + η(|x̄+ z − x0|2 − |x̄− x0|2).

On the other hand, for all ε small the function Kα1Θ2 is uniformly
bounded. We divide the region of integration of I1 as follows:

B%(ȳ) \Bδ = (Θ1 \Bδ) ∪Θ2.

Using the above facts together with the positivity of u(x̄)− v(ȳ) and that
|x̄− x0| = oε(1) for all ε small, we are able to write

I1 ≤ η
∫

Θ1\Bδ
|z|2Kα(z)dz +

∫
Θ2

[u(x̄+ z)− v(ȳ + z)]Kα(z)dz + ηoε(1).

For the first integral term in the right-hand side, we use that α ∈ (0, 2)
to write ∫

Θ1\Bδ
|z|2Kα(z)dz ≤ Cη,

for some C > 0 depending only on the data.

For the second integral term, we use the boundedness of u and v, the
upper semicontinuity of u − v, the first fact in (4.3) and Fatou’s Lemma,
together with the condition u ≤ v in Āa to get

lim sup
ε→0

∫
Θ2

[u(x̄+ z)− v(ȳ + z)]Kα(z)dz ≤ 0.

Joining the last two estimates, we conclude that

I1 ≤ Cη + oε(1).

On the other hand, noting that the set B%(x̄) \B%(ȳ) vanishes and remains
uniformly away the origin as ε → 0, using the boundedness of u and v and
applying Dominated Convergence Theorem we see that

|I2| = oε(1).

Thus, using the estimates for I1, I2 into (4.4) we conclude

−(ε−2 + η)oδ(1)−O(η)− oε(1) + u(x̄)p − v(ȳ)p ≤ 0,
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from which, letting δ → 0, ε→ 0 and η → 0 we arrive at

up(x0)− vp(x0) ≤ 0,

which contradicts (4.2).

In the general case, for R > 0 and x ∈ Σa, we define the functions

uR(x) = max{min{u(x), R},−R},

and

vR(x) = max{min{v(x), R},−R}.

Since u, v ∈ L∞loc(Σa), we have u = uR, v = vR in Ω\Am(R) with m(R)→ 0
as R → ∞, and from this point, we consider R large in order to have
m(R) ≤ a/4. Since u, v ∈ L1(Σa), for all R large enough there exists a
constant cR > 0 with cR → 0 as R→∞, such that uR, vR satisfy

−I(uR, x) + uR(x) ≤ cR x ∈ Ω \Aa,
and

−I(vR, x) + vR(x) ≥ −cR x ∈ Ω \Aa.

From this point, we argue as in the previous case, fixing R large in order
to have 2cR ≤ (u(x0)p − v(x0)p)/2. This concludes the proof. �

We also require the following maximum principle, whose proof follows
classical arguments

Proposition 4.3. Let I defined in (2.1) satisfying (M) and (D). Let ω ⊂ Ω
and assume a u : Σ(ω)→ R bounded satisfies −I(u) ≤ 0 in ω. If there exists
a constant C such that u ≤ C in Σ(ω) \ ω, then u ≤ C in ω.

Remark 4.4. Assumptions (M), (D) can be relaxed in the above compar-
ison results. In fact, the kernel Kα in (M) can be replaced by a positive,
regular measure ν in RN satisfying the Lévy condition∫

RN
min{1, |z|2}ν(dz) < +∞,

meanwhile, instead of (D) we can consider % ∈ C(Ω̄) satisfying

λ0 d
σ(x) ≤ %(x) ≤ Λ0 d(x),

for some σ ≥ 1 and 0 < λ0 ≤ Λ0.

Lemma 4.5. Let I as in (2.1) satisfying (M) and (D), and p > 0. Then,
if g ∈ C2(Ω̄), there exist ψ1, ψ2 ∈ C(Ω̄), respective viscosity sub and super-
solution to (1.1) with ψ1 = ψ2 = g on ∂Ω and ψ1 ≤ g ≤ ψ2 in Ω.

Proof: We look for the supersolution’s case (the result for subsolutions is
analogous). Consider β ∈ (0, 1), and for M > 0 to be fixed later, we consider
the function

v(x) = g(x) +Mdβ(x).
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For each x ∈ Ω with d(x) ≤ δ̄, using Lemma 3.2 we have

−I(v, x) ≥Mc0d(x)β−ασ − C‖g‖C2(Ω̄)d(x)2−ασ ,

for some C > 0. Thus, there exist c̄1 > 0 and 0 < δ1 < δ̄ such that

−I(v, x) ≥Mc̄1d(x)β−ασ ,

for all d(x) ≤ δ1.

Denote Cg = ‖g‖L∞(Ω̄) and consider the function

w(x) = Cg +M(δ1/2)β + 1.

Note that for all d(x) ≤ δ1/2

v(x) ≤ Cg +M(δ1/2)β,

concluding that for all M > 0 we have

(4.5) v(x) < w(x), for all d(x) ≤ δ1/2.

On the other hand, we can choose M large depending on δ1, ζ, Cg and β
in order to get

M(δβ1 − (δ1/2)β) ≥ 2Cg + 1,

which implies, for all d(x) ≥ δ1 the inequality

v(x) ≥ −Cg +Mδβ1 > Cg +M(δ1/2)β + 1,

and therefore
v(x) > w(x), for all d(x) ≥ δ1.

Now define ψ = min{v, w}. Note ψ ∈ C(Ω̄), ψ ≥ g in Ω and ψ = g on
∂Ω. We claim this function ψ is a supersolution for (1.1). Let x0 ∈ Ω and
φ smooth such that x0 is a minimum point of ψ − φ in Ω. Without loss of
generality, we may assume ψ(x0) = φ(x0) and then we have ψ(x) ≥ φ(x) for
all x ∈ Ω. We split the analysis in three cases:

Case 1: d(x0) ≥ δ1/2 and ψ(x0) = w(x0). In this case, we note that for all
z ∈ Ω we have

w(z)− φ(z) ≥ ψ(z)− φ(z) ≥ ψ(x0)− φ(x0) = w(x0)− φ(x0),

and therefore the function w− φ has a minimum at x0 and in particular we
see that Dφ(x0) = Dw(x0) = 0. Then, for each δ > 0 we can write

− I[Bδ](φ, x0) ≥ −I[Bδ](w, x0) = 0,

and

− I[Bc
δ ](ψ, x0, Dφ(x0)) ≥ −I[Bc

δ ](w, x0) = 0,

concluding that

−I[Bδ](φ, x0)− I[Bc
δ ](ψ, x0, Dφ(x0)) + ψp(x0) ≥ 0,

which is the desired viscosity inequality.
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Case 2: d(x0) ≥ δ1/2 and ψ(x0) 6= w(x0). In this case, by (4.5) we neces-
sarily have d(x0) ≤ δ1 and φ(x0) = v(x0). Hence, using the same argument
as in the previous case but with v playing the role of w, we have

I[Bδ](φ, x0)− I[Bc
δ ](ψ, x0, Dφ(x0)) + ψp(x0)

≥ −I(v, x0) + vp(x0)

≥ Mc̄1d(x0)β−ασ + v(x0)p,

and we take 0 < β < min{1, ασ} to get a negative power in d(x0). Thus, by
the boundedness of g, we conclude the supersolution’s inequality by taking
δ1 smaller if it is necessary.

Case 3: d(x0) < δ1/2. By an argument similar to the last one, we can write

I[Bδ](φ, x0)− I[Bc
δ ](ψ, x0, Dφ(x0)) + ψp(x0)

≥Mc̄1d(x0)β−ασ + v(x0)p,

and taking δ1 smaller only on terms of Cg and p, we get the result. �

Theorem 4.6. Let I be as in (2.1) satifying (M) and (D), let p > 0 and
g ∈ C2(Ω̄). Then, there exists a unique viscosity solution u ∈ C(Ω̄) for the
equation (1.1) satisfying u = g on ∂Ω.

This result follows by the application of Perron’s method (see [19]), com-
parison principle given in Proposition 4.1 Lemma 4.5. It is also possible to
show a well-posedness result for problem (1.1) with u = g on ∂Ω in the case
the boundary condition g is merely continuous. We refer to [20] for a proof
of this kind of result.

5. Proof of Theorem 2.1: Existence.

Lemma 3.1 together with the influence of the reactive term in (1.1) allows
us to contruct a blow-up supersolution to our problem.

Proposition 5.1. Let δ̄ > 0 as in Lemma 3.1. Under the assumptions of
Theorem 2.1, there exist M,L > 0 such that the function

w̄(x) = Md−γ(x) + L,

is a viscosity supersolution to the problem (1.1)–(1.2).

Proof: Note that for x ∈ Ω such that d(x) < δ̄/2, the lower bound in
Lemma 3.1 we have

−I(w̄, x) + w̄p(x) ≥ −C0Md−γp(x) +Mpd−γp(x),

and since p > 1, this last term is positive provided we take M > 0 large in
terms of C0. From this point, we fix such an M .
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Now we deal with the supersolution’s visosity inequality in Ω \ Aδ̄/4 to

conclude the proof. In the strictly censored case, for all x ∈ Ω \ Aδ̄/4 the
function

d−γ(x+ z)− d−γ(x)− 1B〈Dd−γ(x), z〉
is uniformly bounded (depending on δ̄) for each z ∈ B%(x). This fact and
the smoothness of d in Ω \Aδ̄/4 allows us to write for each x in this set

|I(w̄, x)| ≤ C(δ̄).

Thus, taking L ≥ C(δ̄)1/p, we have the result.

On the other hand, in the weakly censored case we can argue in the same
way as in Lemma 3.1, writing the nonlocal operator as

I(w̄, x) = I[B(1−ε)d(x)](w̄, x) + I[Bd(x) \B(1−ε)d(x)](w̄, x).

We use the above analysis for the first term. For the second term, we
argue by integrability of w̄ since γ < 1 in this case. �

We show next the existence of a subsolution to (1.1). As we will see, in
this task the diffusive term plays a key role.

Proposition 5.2. For R,µ > 0 and β ∈ (0, 1), consider the function

wR(x) = µ(R−R
β
γ

+1
dβ(x))+.

Then, there exists µ0 small (depending only on the data) such that, for
all µ ≤ µ0 and all R large enough, wR is a viscosity subsolution to equa-
tion (1.1).

Proof: Denoting δR = R−1/γ , we have wR = 0 in Ω\AδR . If x ∈ Ω\ĀδR , we
have wR(x) = 0 and since it is a minimum point of wR in Ω, we clearly have
I(wR, x) ≥ 0, concluding the subsolution’s inequality for (1.1). Moreover,
if x ∈ ∂AδR ∩ Ω, we see that there is no smooth function touching wR from
above at x, concluding at once that wR is subsolution for (1.1) in Ω \AδR .

Now, consider R large enough in order to have δR ≤ δ̄/2 with δ̄ given in
Lemma 3.2. Thus, since

wR ≥ µ(R−R
β
γ

+1
dβ)

with equality when we evaluate at x ∈ AδR , for all such points we can write

I(wR, x) ≥ −µR
β
γ

+1I(dβ, x).

Then, applying Lemma 3.2 to the above inequality we arrive at

−I(wR, x) ≤ −µR
β
γ

+1
c0 d

β−ασ(x), for each x ∈ AδR ,
and consequently, for x in this set we have

−I(wR, x) + wR(x)p ≤ −µc0R
γ+ασ
γ + µpRp.
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Recalling the definition of γ in (2.2) we have (γ + ασ)/γ = p and hence

−I(wR, x) = µRp(−c0 + µp−1).

Taking µ > 0 small in terms of c0 and p, we conclude the result. �

Proof of Theorem 2.1 - Existence: Take R > 0 and denote by uR the
unique solution for the problem (1.1) with uR = R on ∂Ω, whose existence
is guarranteed by Theorem 4.6. We note that, by the comparison principle
given in Proposition 4.1, we have 0 ≤ uR ≤ R on Ω̄ and the sequence {uR}R
is increasing in R.

Let w̄ be as in Proposition 5.1 and for eachR > 0 denote δR = (R/M)−1/γ .
Note that for all x ∈ ĀδR we have w̄ ≥ R. Applying the annular comparison
principle (Proposition 4.2) in Ω \ ĀδR we can write

(5.1) uR ≤ w̄ in Ω, for all R > 0.

In particular, this says that {uR}R is bounded in L∞loc(Ω). Thus, for each
δ > 0 we have the existence of a constant Cδ > 0 not depending on R such
that uR ≤ Cδ in Ω\Aδ. Recalling the definition of Σδ given in (4.1), consider
ũR : RN → R the function defined as ũR = uR in Σδ and ũR = 0 in Σc

δ.
Then, ũR satisfies

−I(ũR, x) = −ũpR(x) + ΘR(x) x ∈ Ω \Aδ,
where

(5.2) I(φ, x) :=

∫
RN

[φ(x+ z)− φ(x)− 1B〈Dφ(x), z〉]Kα(z)dz,

and

ΘR(x) :=

∫
Bc
%(x)

[ũR(x+ z)− ũR(x)]Kα(z)dz.

But we see that for each x ∈ Ω \ Aδ we have d(x) ≥ δ and therefore
the function z 7→ Kα(z)1B%(x)

(z) is bounded (depending on δ) for each

x ∈ Ω \Aδ. Then, for each x ∈ Ω \Aδ we see that

|ΘR(x)| ≤ Kδ

(
1 +

∫
Σδ\Bδ(x)

w̄(z)dz
)
,

where Kδ > 0 is a constant not depending on R. From this, we conclude
that

|ΘR(x)| ≤ K̄δ,

for some K̄δ > 0 depending on δ, but not on R > 0, since w̄ is in L1(Σδ)

for all δ > 0. In conclusion, we get the existence of a constant C̃δ > 0 not
depending on R such that

|I(ũR)| ≤ C̃δ in Ω \Aδ,
but assumption (M) says I defined in (5.2) is uniformly elliptic in the sense
of Caffarelli and Silvestre (see [9, 10]). Hence, applying interior regularity
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results and recalling ũR = uR in Ω, we conclude {uR} is bounded in C1,σ
loc (Ω),

for some σ > 0. Thus, standard stability results for viscosity solutions allow
us to take the limit as R → 0 and conclude the existence of u ∈ C1,σ

loc (Ω),
viscosity solution to problem (1.1). This solution is in fact classical, and
by (5.1) we see that u ≤ w̄ in Ω.

Now we show that u blows-up at the boundary. For this, by Proposi-
tion 5.2 and the comparison principle we have uR ≥ wR in Ω. Then, since
uR is increasing in R, for all R large enough and β ∈ (0, 1) we see that

(5.3) u(x) ≥ wR(x) = µ(R−R
β
γ

+1
dβ(x))+, for all x ∈ Ω.

Note that given a > 0 small enough, the function

θa(R) = (R−R
β
γ

+1
aβ)+

is strictly positive in the interval (0, a−γ/β) and attains its maximum at

R(a) := ((β + γ)γ−1)
− γ
β a−γ < a−γ/β,

for all β ∈ (0, 1) and all a < a0 with a0 not depending on β. Then, the
maximum value of θa is

θa(R(a)) =
β

β + γ

(β + γ

γ

)−γ/β
a−γ .

Thus, for each x with d(x) ≤ a0, inequality (5.3) drives us to

u(x) ≥ µmax{θd(x)(R) : R > 0} =
µβ

β + γ

(β + γ

γ

)−γ/β
d−γ(x),

and since we can maximize in β ∈ (0, 1) the expression in the right-hand
side of the last inequality, we conclude the existence of Cγ > 0 such that

u(x) ≥ µCγd−γ(x),

which implies the blow-up behavior of the solution and the lower bound
in (2.5).

Finally, we note that if v is a large solutionn for (1.1), we can use Propo-
sition 4.2 in the same way as we did to obtain (5.1) to get uR ≤ v for all
R > 0 large enough. Taking limit as R → ∞, we conclude that u ≤ v,
concluding u is minimal. The strict positivity of the solution can be easily
obtained by contradiction, evaluating at a point x0 ∈ Ω where the solution
vanishes, which would coincide with a minimum of the function. �

6. Proof of Theorem 2.1: Uniqueness.

We will follow closely the ideas given in [11]. The strategy consists in
considering any large solution v to (1.1) in the class (2.5) and the minimal
large solution u given by the existence proof. Then, we define the open set

(6.1) A = {x ∈ Ω : v(x) > u(x)},
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and we conclude by proving that this set is empty. Thus, our argument
relies on obtaining a contradiction from the assumption A 6= ∅.

Lemma 6.1. Let k > 1 and denote wk = v − ku. If

Ak := {x ∈ Ω : wk > 0} 6= ∅,
then

∂Ak ∩ ∂Ω 6= ∅.

Proof: If we assume Ak ⊂⊂ Ω, then wk attains a strictly positive maximum
in Ω at a point x̄ ∈ Ak. Using this and the equation satisfied by u and v,
we clearly have

0 ≤ −I(wk, x̄) = −I(v, x̄) + kI(u, x̄) = −vp(x̄) + kup(x̄).

Since x̄ ∈ Ak we can write

−vp(x̄) + kup(x̄) = −vp(x̄) + (ku(x̄))p − (kp − k)up(x̄) < −(kp − k)up(x̄),

from which we arrive at

0 ≤ −kp(1− k1−p)up(x̄).

Since p, k > 1 and u is strictly positive, we arrive to a contradiction. �

Lemma 6.2. Consider Ṽ the function

Ṽ (x) = (1− |x|2)31B.

Let x0 ∈ Ω, denote r = Λd(x0)/2 and consider V the function

V (x) = Ṽ ((x− x0)/r).

Then, there exists θ0 > 0 not depending on r nor on x0 such that

−I(V, x) ≤ θ0 r
−ασ , for all x ∈ Br(x0).

Proof: Note that V is bounded and smooth. By definition, we can write

− I(V, x)

=

∫
B%(x)

[Ṽ ((x− x0)/r + z/r)− Ṽ ((x− x0)/r)]Kα(z)

= r−α
∫
B%(x)/r

[Ṽ ((x− x0)/r + y)− Ṽ ((x− x0)/r)]K(ry)|y|−(N+α)dy,

and since Ṽ is smooth and K is uniformly bounded, we arrive at

−I(V, x) ≤ Cr−α
∫
B%(x)/r

|y|2−N−αdy,

for some C depending only on ||Ṽ ||C2 and K, but not on x0, x or r. Now,
since d(x) is comparable to d(x0), we have that %(x) is comparable to %(x0)
and then, from the definition of r we get the existence of a constant C > 0
such that %(x)/r ≤ Crσ−1. Using this, after integration we conclude that

−I(V, x) ≤ θ0 r
(σ−1)(2−α)−α = θ0 r

−ασ ,
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for some constant θ0 > 0 depending on the data. �

Lemma 6.3. Let k > 1 and wk,Ak as in Lemma 6.1. If Ak 6= ∅, then

sup{wk : x ∈ Ω} = +∞.

Proof: Assume

sup{wk : x ∈ Ω} = M̄ < +∞.
As in Lemma 6.1, this supremum cannot be achieved in Ω. Let x0 ∈ Ak
sufficiently close to the boundary and let r = Λd(x0)/2. Note that

−I(wk, x) ≤ −kp(1− k1−p)up(x),

for each x ∈ Br(x0) ∩ Ak. Now, recalling that γ is given by (2.2), since
we know that there exists a constant c > 0 such that udγ ≥ c in an Ω-
neighborhood of ∂Ω, we conclude that

(6.2) −I(wk, x) ≤ −ckd−γp(x), for all x ∈ Br(x0) ∩ Ak,
where ck = ckp(1− k1−p). On the other hand, let us consider the function

w(x) = 2M̄V (0)−1V (x), x ∈ Ω,

where V is the function defined in Lemma 6.2 associated to x0 and r. Note
that w(x0) = maxΩ{w} = 2M̄ and by Lemma 6.2 we have

−I(w, x) ≤ 2M̄V (0)−1θ0r
−ασ , for all x ∈ Br(x0).

From the fact that 0 < ασ < γp and since d(x) is comparable to r, taking
x0 closer to the boundary if necessary (and therefore r smaller), the last
inequality together with (6.2) and the linearity of I allow us to write

−I(wk + w, x) ≤ 0, in Br(x0) ∩ Ak.

Recalling the definition of Σ in (4.1), denote

Ω̃ = Σ(Br(x0) ∩ Ak).

Let x ∈ Ω̃ \ (Br(x0) ∩Ak). If x ∈ Ak, then (wk +w)(x) ≤ M̄ , meanwhile
if x ∈ (Br(x0) ∪ Ak)c, then (wk + w)(x) ≤ 0. Thus, by maximum principle
given in Proposition 4.3, for all x ∈ Br(x0) ∩ Ak we see that

(wk + w)(x) ≤ max{M̄, sup{(w + wk)(y) : y ∈ Ω̃ ∩Br(x0) \ Ak}}.

At this point, we remark that the above maximum equals M̄ , otherwise,
evaluating the left-hand side of the above expression at x0 and using that
wk ≤ 0 in Ack we can write

2M̄ = w(x0) ≤ sup{w(y) : y ∈ Ω̃ ∩Br(x0) \ Ak} − wk(x0) < 2M̄,

which is a contradiction. Hence, we have

(6.3) wk(x0) + w(x0) ≤ M̄,

which is again a contradiction. �
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Now we are ready to provide the proof of the uniqueness part in Theo-
rem 2.1.

Proof of Theorem 2.1 - Uniqueness: Assuming A 6= ∅, there exists
k > 1 such that Ak 6= ∅. Then, by Lemma 6.3 we have the existence of
x0 ∈ Ak close to ∂Ω such that

wk(x0) = max{wk(y) : y ∈ Ω \Ad(x0)} > 0.

Let r = Λd(x0)/2 and for L > 0 to be fixed, we consider the function

w(x) = L r−γV (x),

which, by Lemma 6.2, satisfies

−I(w, x) ≤ L θ0 r
−γ−ασ in Br(x0).

For n ∈ N define

Mn = max{wk(y) : y ∈ Ω \Ar/n}
and the function w̃n given by

w̃n = (wk + w)1{wk≤Mn} +Mn1{wk>Mn}.

In what follows, we are always assuming n ≥ 4 and therefore we have
Br(x0) ∩Ar/n = ∅.

Claim: Let ck = kp(1− k1−p) and consider L = c ck for some c > 0 small
and independent of k or x0. Consider n0 ≥ 4 in the strict censored case and
n0 = (c ck/4)1/(γ−1) in the weakly censored case. Then, we have

(6.4) −I(w̃n0 , x) ≤ 0 in Br(x0) ∩ Ak.

We use this claim to conclude the uniqueness result and postpone its
proof. Using the same argument as at the end of the proof of Lemma 6.3
(see the inequality (6.3)), we conclude

(6.5) w̃n0(x0) = wk(x0) + w(x0) ≤Mn0 .

Let x1 ∈ Ω \Ar/n0
such that wk(x1) = Mn0 . By the asymptotic behavior

of u given by (2.5), we can write

C̄−1n−γ0 u(x1) ≤ r−γ ,
and applying (6.5) we arrive at

LC̄−1n−γ0 u(x1) ≤ Lr−γ = w(x0) < wk(x0) + w(x0) ≤Mn0 = wk(x1),

from which we obtain

(1 + c∗)ku(x1) ≤ v(x1),

where c∗ = c∗(k) > 0 not depending on x0 and increasing with k by the
above claim. Thus, we can repeat the argument above replacing x0 by x1
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and k by k1 = k(1 + c∗). Then, we proceed inductuively to construct a
sequence (xm) such that

(1 + c∗)mku(xm) ≤ v(xm),

which contradicts the fact that u and v belong to the same class (2.5).

Now we prove the claim. Note that

−I(w̃n, x) = −I(wk + w, x)− I(w̃n − (wk + w), x) =: −I1 − I2,(6.6)

and we should estimate each term in the right-hand side.

Concerning I1, since d(x) is comparable to r for each x ∈ Br(x0), we
proceed as in Lemma 6.3 to write

−I1 ≤ −Cckr−γp + Lθ0r
−γ−ασ ,

where C > 0 is an universal constant and ck = kp(1 − k1−p). But we have
γp = γ + ασ and therefore we get

(6.7) −I1 ≤ (−Cck + Lθ0)r−γp.

For I2, we denote Θn = {wk > Mn} − x and by definition of w̃n we have

0 ≤ −I2 = −
∫
B%(x)∩Θn

[Mn − (wk + w)(x+ z)]Kα(z)dz.(6.8)

Note that {wk > Mn} ⊂ Ar/n. Then, we divide the analysis depending
on the operator is strictly censored or not. If σ = 1 and Λ < 1, for each
x ∈ Br(x0) we have d(x) ≥ d(x0)(1− Λ/2) and then we see that

d(x+ z) ≥ d(x)− %(x) = (1− Λ)d(x) ≥ d(x0)(1− Λ/2)(1− Λ),

for each z ∈ B%(x). Thus, for all n ≥ Λ(1 − Λ/2)(1 − Λ)/2 (note that this
number is independent of x0) we see that B%(x) ∩ Θ = ∅, concluding that
I2 = 0. If σ > 1, we have d(x) ≥ d(x0)/2 and then, for each z ∈ B%(x) we
can see that

d(x+ z) ≥ d(x0)(1− dσ−1(x))/2 ≥ d(x0)/4,

if we consider x0 closer to the boundary if necessary. Taking n ≥ 4 we
conclude I2 = 0 as before.

If σ = Λ = 1, using that Mn and u are nonnegative, that w ≤ CLr−γ for
some C > 0 and that v is in the class (2.5), from (6.8) we obtain

−I2 ≤ C||K||∞
∫
Bd(x)∩Θn

(
C̄d−γ(x+ z) + Lr−γ

)
|z|−(N+α)dz

where, C > 0 depends on the data and the constants in (2.5), and γ < 1.
At this point, we use d(x+ z) ≥ d(x)− |z| for all z ∈ Bd(x). Recalling that



LARGE SOLUTIONS FOR INTEGRO-DIFFERENTIAL EQUATIONS 21

d(x) ≥ r for each x ∈ Br(x0), and that Bd(x) ∩ Θn ⊂ Bd(x) \ Bd(x)−r/n for
n ≥ 4, we arrive at

−I2 ≤ C
∫
Bd(x)\Bd(x)−r/n

(
(d(x)− |z|)−γ + Lr−γ

)
|z|−(N+α)dz

≤ C
(
d(x)−(γ+α)

∫ 1

1− 1
n

(1− s)−γs−(1+α)ds+ Lr−γd(x)−α
∫ 1

1− 1
n

s−(1+α)ds
)

and since d(x) ≥ r, from the last expression we can write

−I2 ≤ C(nγ−1 + Ln−1)r−(γ+α)

for some C > 0 not depending on x0 or n. Using this last fact and (6.7)
into (6.6) and recalling γp = γ+α in the weakly censored case, we arrive at

−I(w̃n, x) ≤ C(−c ck + L+ nγ−1 + Ln−1)r−γp,

for some C, c > 0 depending on the data, but not on x, x0 or r. From this,
we conclude the claim by taking L = c ck/4; and n ≥ 4 in the strict censored

case and n = (c ck/4)1/(γ−1) in the weakly censored case. �

7. Proof of Theorem 2.2.

We start with the following lemma.

Lemma 7.1. Let I as in (2.1) satisfying (M) and denote

K = lim inf
y→0

K(y) and K = lim sup
y→0

K(y).

Assume (D) holds and let β ∈ (0, 1) in the weakly censored case (case (i)
of Theorem 2.1) and β > 0 in the strict censored case (cases (ii), (iii) of
Theorem 2.1). Then, there exists δ̄ ∈ (0, δ0) such that

cK(1 + od(x)(1)) ≤ dασ+β(x)I(d−β, x) ≤ cK̄(1 + od(x)(1)), x ∈ Aδ̄,
where ασ is defined in (2.3) and c > 0 is a constant depending only on
N, σ,Λ and α.

Proof: We concentrate first in the strict censored case. For a set A ⊂ RN
we denote ξA(x) the projection of x to A which satisfies |x−ξA(x)| = dA(x).
In the case A = ∂Ω, we simply write ξ(x) = ξ∂Ω(x).

From this point, we consider x ∈ Ω close to the boundary. After a trasla-
tion and rotation, we may assume x = d(x)eN with eN = (0′, 1) and ξ(x) = 0
is the origin. Denote Ωx = d(x)−1Ω, Kx(z) = K(d(x)z) and write

d(x)β+α I(d−β, x)

= d(x)α
∫
B%(x)

[d−β(eN + z/d(x))− 1 + βDd(x) · (z/d(x))]Kα(z)dz

=

∫
BΛdσ−1(x)

[d−βΩx
(eN + y)− 1 + βyN ]Kx(y)|y|−(N+α)dy,
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where we have used that Dd(x) = eN . Defining C̃ as

C̃(x) :=

∫
BΛdσ−1(x)

[d−βΩx
(eN + y)− 1 + βyN ]|y|−(N+α)dy,

from the definition of K,K we see that

(K − od(x)(1))C̃(x) ≤ d(x)β+αI(d−β, x) ≤ (K − od(x)(1))C̃(x),

and then our interest turns out to give an estimate for C̃. We claim the
existence of constants c, δ̄ > 0 such that

(7.1) C̃(x) = c d−ασ+α(x)(1 + od(x)(1)), for x ∈ Aδ̄,

from which we conclude the result.

We start with the estimates of C̃ when the boundary is flat. Denote
H+ = {(z′, zN ) ∈ RN : zN > 0}, assume there exists a radius R > 0
such that BR ∩ Ω ⊂ H+, BR ∩ ∂Ω ⊂ ∂H+, and that ξ(y) = (y′, 0) for all
y = (y′, yN ) ∈ Bd(x)(x). In this case, we can write

C̃(x) =

∫
BΛdσ−1(x)

[(1 + yN )−β − 1 + βyN ]|y|−(N+α)dy,

and since we are in the strict censored setting, we can perform a Taylor
expansion in order to write

C̃(x) =

∫ 1

0
(1− s)

∫
BΛdσ−1(x)

(1 + syN )−(β+2)y2
N |y|−(N+α)dy ds

= d(σ−1)(2−α)(x) Ψ(dσ−1(x)),

where

(7.2) Ψ(τ) := Λ2−α
∫ 1

0
(1− s)

∫
B1

(1 + sΛτzN )−(β+2)z2
N |z|−(N+α)dz ds,

which is well defined and smooth in (−Λ−1,Λ−1) and does not depend on x.
In case (ii) we have Λ−1 > 1 and therefore we evaluate directly Ψ at τ = 1.
Since σ = 1 we see that ασ = α and then we can write

C̃(x) = Ψ(1) = Ψ(1)d−ασ+α(x).

On the other hand, we remark that the function Ψ is bounded with
bounded derivatives in (−Λ−1/2,Λ−1/2). Hence, in case (iii) we can as-
sume d(x)σ−1 < Λ−1/2 and performing a Taylor expansion of Ψ at τ = 0
we conclude that

C̃(x) = Ψ(0)d−ασ+α(x)(1 + od(x)(1)).

From these last two estimates we conclude (7.1) for the flat boundary,
with c = Ψ(1) in case (ii) and c = Ψ(0) in case (iii).
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For a general domain, by the smoothness of dΩx (inherited from d), for
each y ∈ BΛdσ−1(x) we can write

dΩx(eN + y) = dΩx(eN ) + 〈DdΩx(eN ), y〉+
1

2
〈D2dΩx(ỹ)y, y〉,

for some ỹ on the line joining eN and eN +y, which lies inside BΛdσ−1(x)(eN ).
We remark that dΩx(eN ) = 1, DdΩx(eN ) = eN , and since

dΩx(z) = d−1(x)d(d(x)z) for all z ∈ BΛdσ−1(x)(eN ),

we conclude the existence of a constant C > 0 depending only on the smooth-
ness of ∂Ω, Λ and σ such that, for all x sufficiently close to the boundary

|d−βΩx
(eN + y)− (1 + yN )−β| ≤ Cd(x)|y|2, for all y ∈ BΛdσ−1(x).

From this, since α ∈ (0, 2) we see that

C̃(x) = d(σ−1)(2−α)(x) Ψ(dσ−1(x)) + od(x)(1),

and using the estimates for Ψ given in the flat case, we arrive to (7.1).

Finally, for the case (i), we consider ε > 0 and write

I(d−β, x) = I[B(1−ε)d(x)](d
−β, x) + I[Bd(x) \B(1−ε)d(x)](d

−β, x)

Note that the first integral can be tackled as an operator in the case (ii).
On the other hand, since β ∈ (0, 1) we have

I[Bd(x) \B(1−ε)d(x)](d
−β, x) = oε(1),

and we conclude the result performing the above analysis and let ε → 0,
together with the Dominated Convergence Theorem. �

Corollary 7.2. Assume hypotheses of Lemma 7.1 hold, with K continuous
at the origin. Then, there exists C0 > 0 such that, for each x ∈ Ω near the
boundary we have

I(d−β, x) = C0 d
−(ασ+β)(x)(1 + od(x)(1)).

The constant C0 depends only on N, σ,Λ, α and K(0).

Proof of Theorem 2.2: Let h > 0 and denote

Ωh = {x ∈ RN : dist(x, ∂Ω) > −h}.

Consider the problem

(7.3) −Ih(u) + up = 0 in Ω,

where Ih is the operator defined in (2.1) associated to dΩh .
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Let γ be as in (2.2) and C̄0 = C
1/(p−1)
0 , with C0 as in Corollary 7.2. Let

ε > 0 and for Cε > 0 a large constant to be fixed later, consider the functions

w̄ε,h(x) = (C̄0 + ε)d−γΩh
(x) + Cε,

and

wε,h(x) = (C̄0 − ε)d−γΩh
(x)− Cε.

Note that by Corollary 7.2, we can take Cε large enough in order to have
wε,h, w̄ε,h are respective viscosity sub and supersolution to (7.3). Then, by
Proposition 4.2, we can state a version for Perron’s method in the same way
as in [20] and conclude the existence of a (discontinuous) solution uε,h for
the problem (7.3) in the sense that u∗ε,h is a viscosity subsolution and (uε,h)∗
is a viscosity supersolution. In fact, uε,h satisfies, for all ε, h > 0

(7.4) wε,h ≤ (uε,h)∗ ≤ uε,h ≤ u∗ε,h ≤ w̄ε,h in Ωh \ Ω.

Moreover, there exists a constant C̃ > 0 large enough such that, for all
ε > 0 and each h small enough depending on ε, the functions

w̃1(x) = 2C̄0d
−γ
Ωh

(x) + C̃, w̃2(x) = C̄0d
−γ
Ωh

(x)/2− C̃,

are respective viscosity sub and supersolutions for the problem (7.3) and
satisfy

w̃2 ≤ wε,h ≤ uε,h ≤ w̄ε,h ≤ w̃1 in Ωh \ Ω.

Thus, applying the annular comparison principle given in Proposition 4.2,
the family of solutions {uε,h} is uniformly bounded in L∞loc(Ω) for all ε and
h ≤ hε with hε small in terms of ε. Then, half-relaxed limits method (see [7,
8]) implies that the functions u, ū defined as

u(x) = lim sup
h,ε→0+,y→x

u∗ε,h(y); ū(x) = lim inf
h,ε→0+,y→x

(uε,h)∗(y)

are sub and supersolutions to (1.1) in Ω respectively, which, by definition,
satisfy ū ≤ u. But from (7.4) we have

lim
x→∂Ω

d−γ(x)ū(x) = lim
x→∂Ω

d−γ(x)u(x) = C̄0,

and therefore, for each β ∈ (0, 1), βu ≤ ū in Aδ for some δ = δ(β) > 0, and
we clearly have

−I(βu) + up ≤ −I(ū) + ūp in Ω \Aδ.

Thus, by the annular comparison principle, we arrive at βu ≤ ū in Ω
and therefore, making β → 1 we conclude that u := u = ū is a continuous
viscosity solution to (1.1) (and classical, a fortiori) with the asymptotic
behavior given by (2.6). �
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