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Abstract. We find an estimate for the blow-up time in terms of
the initial data for solutions of the equation ut = (um)xx + um

in R × (0, T ) and for solutions of the problem ut = (um)xx in
(0,∞)× (0, T ) with −(um)x(0, t) = um(0, t) on (0, T ) with m > 1.

To Djairo, ”El Maestro”

Introduction.

In this short note we find an estimate for the blow-up time in terms
of the initial data for solutions of the following problems

(1.1)

{
ut = (um)xx + um, (x, t) ∈ R× (0, T ),
u(x, 0) = u0(x), x ∈ R,

and

(1.2)





ut = (um)xx, (x, t) ∈ (0, +∞)× (0, T ),
−(um)x(0, t) = um(0, t), t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ (0, +∞).

For both problems we assume that m > 1 and u0 is nonnegative com-
pactly supported and smooth in its positivity domain.

A remarkable and well known fact is that the solution of parabolic
problems can become unbounded in finite time (a phenomena that is
known as blow-up), no matter how smooth the initial data are. The
study of blow-up solutions has attracted a considerable attention in
recent years, see [10], [14] and the references therein. For our prob-
lems it is known that all nontrivial solutions blow up in finite time
(see [8], [14] for (1.1) and [6] for (1.2)), in the sense that the solu-
tion is defined on a maximal time interval, [0, T ) with T < +∞ and
limt↗T ‖u(·, t)‖L∞ = +∞.
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It is interesting to investigate the dependence of the blow-up time
with respect to the initial data. For continuity results for the blow-up
time as a function of the initial data we refer to [1], [2], [7], [9], [11],
[12] and [13].

Our concern here is to obtain bounds for T = T (u0) in terms of u0.

Let us look first to (1.1). The main tool involved in our analysis relies
on the natural scaling invariance of the problem. There exits a family
(parametrized by T̂ ) of self-similar, compactly supported, solutions of

the form uT̂ (x, t) = (T̂ − t)−1/(m−1)ϕ(x). These solutions uT̂ blow up

at time T̂ and has initial data uT̂ (x, 0) = T̂−1/(m−1)ϕ(x).

Theorem 1.1. The blow-up time T of a solution of (1.1) with initial
datum u0 verifies

(1.3) min
x

(
ϕ

u0

)m−1

≤ T ≤ max
x

(
ϕ

u0

)m−1

.

The self-similar profile ϕ(x) is a solution of 0 = (ϕm)′′(x) + ϕm(x)−
1

m−1
ϕ(x) that is composed by a finite number of disjoint copies of a

radial bump, see [3], [4]. The radial bump is explicit, it takes the form

ϕ(x) =
(
c1 cos2(c2x)

)a

+
,

for some explicit constants a, c1, c2, see [14]. Therefore the bounds
provided by Theorem 1.1 are computable.

Remark that when the support of u0 and the support of ϕ do not
coincide then one (or both) of the estimates is immediate.

With the same approach we can prove a similar result for solutions
of (1.2). In this case there exists a unique self-similar solution of the

form uT̂ (x, t) = (T̂ − t)−1/(m−1)ψ(x).

Theorem 1.2. The blow-up time T of a solution of (1.2) with initial
datum u0 verifies

(1.4) min
x

(
ψ

u0

)m−1

≤ T ≤ max
x

(
ψ

u0

)m−1

.

The profile ψ is explicit and has the form

ψ(x) = c1((c2 − x)+)a,

see [5], [6].

Finally, we remark that the same approach can be also used to deal
with equations involving other operators and/or source terms like ut =
div(|∇u|q−2∇u) + uq−1 or ut = u(uxx + u). We only need the existence
of a self-similar solution (that comes usually from a scaling invariance
law) together with a comparison result.
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Proof of the results.

Proof of Theorem 1.1. To prove Theorem 1.1 we will make use of
the comparison principle that holds for solutions of (1.1).

Let us begin by the lower estimate. Consider the set

A =
{

T̂ : uT̂ (x, t) ≥ u(x, t) for all 0 ≤ t < T̂
}

.

By the use of the comparison principle we have that this definition is
equivalent to the following

A =
{

T̂ : T̂−1/(m−1)ϕ(x) = uT̂ (x, 0) ≥ u0(x)
}

.

Remark that A is closed. Assume that

min
x

ϕ

u0

is positive (otherwise the estimate holds trivially) and let

T = sup A.

For every T̂ > T we have that T̂ 6∈ A and then there exists a point x0

such that
T̂−1/(m−1)ϕ(x0) < u0(x0).

Then, every T̂ > T satisfies

T̂ >

(
ϕ(x0)

u0(x0)

)m−1

≥ min
x

(
ϕ

u0

)m−1

.

Therefore, we obtain

T ≥ min
x

(
ϕ

u0

)m−1

.

Now we just have to observe that by the definition of A we have
uT (x, t) ≥ u(x, t) for every 0 ≤ t < T . Therefore u(x, t) is bounded for
0 ≤ t < T and hence

T ≥ T ≥ min
x

(
ϕ

u0

)m−1

.

This proves the lower bound in (1.3).

To prove the upper bound on T we proceed as before but in this case
we have to consider the set

B =
{

T̂ : uT̂ (x, t) ≤ u(x, t) for all t ≤ T
}

,

which is equivalent to

B =
{

T̂ : T̂−1/(m−1)ϕ(x) = uT̂ (x, 0) ≤ u0(x)
}

.
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Let
T = inf B.

As before for any T̂ < T there must be a point x1 with

T̂−1/(m−1)ϕ(x1) > u0(x1).

That is

T̂ <

(
ϕ(x1)

u0(x1)

)m−1

≤ max
x

(
ϕ

u0

)m−1

.

Arguing as before, we get

T ≤ max
x

(
ϕ

u0

)m−1

.

By the definition of B we conclude

T ≤ T ≤ max
x

(
ϕ

u0

)m−1

.

This shows the upper bound in (1.3) and finishes the proof. ¤
Proof of Theorem 1.2. The proof of Theorem 1.2 is completely
analogous to the previous one.
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Departamento de Matemática, FCEyN., UBA (1428) Buenos Aires,
Argentina.

E-mail address: jrossi@dm.uba.ar


