AN OPTIMAL MASS TRANSPORT APPROACH FOR LIMITS OF EIGENVALUE PROBLEMS FOR THE FRACTIONAL p-LAPLACIAN.

L. M. DEL PEZZO, J. D. ROSSI, N. SAINTIER, AND A. SALORT

ABSTRACT. We find interpretation using optimal mass transport theory for eigenvalue problems obtained as limits of the eigenvalue problems for the fractional p–Laplacian operators as $p \to +\infty$. We deal both with Dirichlet and Neumann boundary conditions.

1. Introduction

Our main goal in this paper is to use tools from mass transport theory to study eigenvalue problems that are obtained taking limits as $p \to +\infty$ in eigenvalue problems that involve fractional spaces $W^{s,p}$ (with $0 < s < 1$ and $1 < p \leq +\infty$). We deal both with Dirichlet and Neumann boundary conditions.

Along this paper we take U a smooth bounded domain in \mathbb{R}^n, $1 < p < +\infty$ and $0 < s < 1$. We also fix $d(\cdot, \cdot)$ a distance in \mathbb{R}^n equivalent to the Euclidean one.

Let $\lambda_{s,p}^D$ be the first eigenvalue of the fractional p-Laplacian of order s in U with Dirichlet boundary conditions, that is, let us consider

$$\lambda_{s,p}^D := \inf \left\{ [u]_{s,p}^p : u \in \tilde{W}^{s,p}(U), \int_U |u|^p \, dx = 1 \right\}$$

where

$$[u]_{s,p}^p := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^p}{|x-y|^{n+sp}} \, dx \, dy$$

is the semi-norm of $W^{s,p}(\mathbb{R}^n)$ and

$$\tilde{W}^{s,p}(U) := \{ u \in W^{s,p}(\mathbb{R}^n) : u = 0 \text{ in } \mathbb{R}^n \setminus U \} .$$

For this problem Lindgren and Lindqvist in [18] proved that

$$\Lambda_{s,\infty}^D := \lim_{p \to +\infty} \left(\lambda_{s,p}^D \right)^{1/p} = \frac{1}{R^s}$$

Date: January 16, 2015.

Key words and phrases. Fractional p–Laplacian, eigenvalues, mass transport.

2010 Mathematics Subject Classification: 35J92, 35P30, 45C05.
where

\[R := \max_{x \in U} \text{dist}(x, \partial U) = \max_{x \in U} \min_{y \in \partial U} |x - y|. \]

Moreover, via a subsequence, the eigenfunctions \(u_p \) suitable normalized (a minimizer for \(\lambda_{s,p}^D \)) converge uniformly to a minimizer for \(\Lambda_{s,\infty}^D \).

Our first purpose in this work is to relate \(\Lambda_{s,\infty}^D \) to an optimal mass transport problem with cost function \(c(x, y) = |x - y|^s \). We prove the following result:

Theorem 1.1. There holds that

\[\frac{1}{\Lambda_{s,\infty}^D} = \sup_{\mu \in P(\overline{U})} W_s(\mu, P(\partial U)), \]

where

\[W_s(\mu, \nu) := \inf_\pi \int_U \int_U |x - y|^s \, d\pi(x, y). \]

Here \(P(A) \) is the set of probability measures on \(A \) and \(\pi \in P(U \times U) \) is a measure with marginals \(\mu \) and \(\nu \).

Note that \(W_s(\mu, \nu) \) is the total cost when we have to transport the measure \(\mu \) onto \(\nu \) using as cost for transporting one unit of mass from position \(x \) to position \(y \) the Euclidean distance to the power \(s \), that is \(|x - y|^s \). We refer to [20] and to Section 2 for precise definitions, notations and properties of optimal mass transport theory. Hence, our result says that the eigenvalue \(\Lambda_{s,\infty}^D \) is related to the problem of finding a probability measure supported inside \(U \), \(\mu \), that is far (in terms of the transport cost) from the set of probability measures supported on the boundary, \(\partial U \). One easy solution to this problem is the following: take \(B_R(x_0) \) a ball with maximum radius \(R \) inside \(U \) and let \(y_0 \in \partial U \cap \partial B_R(x_0) \) (there exists such \(y_0 \) due to the maximality of \(R \)). Then, \(\mu = \delta_{x_0} \) (with \(\nu = \delta_{y_0} \)) solves \(\sup_{\mu \in P(\overline{U})} W_s(\mu, P(\partial U)) \). Observe that from Theorem 1.1 we can recover that \(\Lambda_{s,\infty}^D = 1/R^s \).

Now, let us turn our attention to the case of the first nontrivial eigenvalue for Neumann boundary conditions, i.e., let us consider

\[\lambda_{s,p}^N := \inf \left\{ \left[u \right]_{s,p}^p : u \in C \right\}, \]

where

\[\left[u \right]_{s,p}^p := \int_U \int_U \frac{|u(x) - u(y)|^p}{d(x, y)^{n+sp}} \, dx \, dy \]

and

\[C := \left\{ u \in W^{s,p}(U) : \|u\|_{L^p(U)} = 1, \int_U |u|^{p-2} u \, dx = 0 \right\}. \]

For this problem, in the case \(d(x, y) = |x - y| \), Del Pezzo and Salort in [8] proved that

\[\Lambda_{s,\infty}^N := \lim_{p \to +\infty} \left(\lambda_{s,p}^N \right)^{1/p} = \frac{2}{(\text{diam}(U))^s}. \]
where \(\text{diam}(U) \) is the extrinsic diameter, i.e.
\[
\text{diam}(U) := \max_{x,y \in U} |x - y|.
\]

Their proof actually extends to the case in which we consider \(\lambda_{s,p}^N \) with \(d(x, y) \) any distance as above (for instance, for the geodesic distance in \(U \)). In this case, it holds that
\[
(1.2) \quad \lambda_{s,\infty}^N = \lim_{p \to +\infty} (\lambda_{s,p}^N)^{1/p} = \frac{2}{(\text{diam}_d(U))^s}
\]
where \(\text{diam}_d(U) \) is the diameter of \(U \) according to \(d \), that is
\[
\text{diam}_d(U) = \max_{x,y \in U} d(x, y).
\]

Moreover, as happens for the Dirichlet problem, via a subsequence the normalized eigenfunctions \(u_p \) (a minimizer for \(\lambda_{s,p}^N \)) converge uniformly to a minimizer for \(\lambda_{s,\infty}^N \).

In order to introduce the mass transport interpretation we need the following notations. We denote by \(M(U) \) the space of finite Borel measures over \(U \). Given \(\sigma \in M(U) \), we denote its positive and negative part by \(\sigma^+ \) and \(\sigma^- \) so that \(\sigma = \sigma^+ - \sigma^- \), and \(|\sigma| = \sigma^+ + \sigma^- \). Then we have,

Theorem 1.2. There holds
\[
(1.3) \quad \frac{2}{\lambda_{s,\infty}^N} = \max \{ W_s(\sigma^+, \sigma^-): \sigma \in M(U), \sigma^+(U) = \sigma^-(U) = 1 \}
\]
where \(W_s \) is as in Theorem 1.1.

Here we relate \(\lambda_{s,\infty}^N \) to the problem of finding two probability measures, \(\sigma^+ \) and \(\sigma^- \), supported in \(U \), such that the cost of transporting one into the other is maximized. To obtain a solution to this problem one can argue as follows: take two points \(x_0 \) and \(y_0 \) in \(U \) that realize the diameter, that is, we have \(d(x_0, y_0) = \text{diam}_d(U) \). Then take \(\sigma^+ = \delta_{x_0} \) and \(\sigma^- = \delta_{y_0} \) as a solution to max \(\{ W_s(\sigma^+, \sigma^-): \sigma \in M(U), \sigma^+(U) = \sigma^-(U) = 1 \} \). Note that we can recover (1.2) from Theorem 1.2.

A different concept of Neumann boundary condition for fractional operators was recently introduced in [9]. More precisely, for \((-\Delta)^s_p \) the fractional \(p \)-Laplacian given by
\[
(-\Delta)^s_p u(x) = \text{P.V.} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{d(x, y)^{n+sp}} dy
\]
(the symbol P.V. stands for the principal value of the integral), we consider the following non-local non-linear fractional normal derivative
\[
\mathcal{N}_{s,p} u(x) = \int_{U} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{d(x, y)^{n+sp}} dy \quad x \in \mathbb{R}^n \setminus U.
\]
Associated with this operator, we consider the following eigenvalue problems

\[\begin{cases} (-\Delta)_p^s u = \lambda |u|^{p-2} u & \text{in } U, \\ \mathcal{N}_{s,p} u = 0 & \text{in } \mathbb{R}^n \setminus U. \end{cases} \]

Before stating our main result concerning these problems, we need to introduce some notations. Let \(W^{s,p}(U) \) be the set of measurable functions with finite

\[\|u\|_{W^{s,p}(U)}^p := \|u\|_{L^p(U)}^p + \mathcal{H}_{s,p}(u), \]

where

\[\mathcal{H}_{s,p}(u) := \iint_{\mathbb{R}^{2n} \setminus (U^c)^2} \frac{|u(x) - u(y)|^p}{d(x,y)^{n+ps}} \, dx \, dy, \]

and \((U^c)^2 = U^c \times U^c\). Let us also introduce

\[\mathcal{H}_{s,\infty}(u) := \sup \left\{ \frac{|u(x) - u(y)|}{d(x,y)^s} : (x, y) \in \mathbb{R}^{2n} \setminus (U^c)^2 \right\}. \]

Then, for (1.4) we have the following result.

Theorem 1.3. The first non-zero eigenvalue of (1.4) is given by

\[\lambda_{s,p} = \inf \left\{ \frac{\mathcal{H}_{s,p}(v)}{2\|v\|_{L^p(U)}^p} : v \in W^{s,p}(U) \setminus \{0\}, \int_U |v|^{p-2}v \, dx = 0 \right\}. \]

Concerning the limit as \(p \to +\infty \) of these eigenvalues we have

\[\lim_{p \to +\infty} \left(\lambda_{s,p} \right)^{1/p} = \frac{2}{(\text{diam}_d(U))^s} = \Lambda_{s,\infty} := \inf \left\{ \frac{\mathcal{H}_{s,\infty}(u)}{\|u\|_{L^\infty(U)}} : u \in A \right\}, \]

where

\[A := \left\{ v \in W^{s,\infty}(U) \setminus \{0\} : \sup_{x \in U} u(x) + \inf_{x \in U} u(x) = 0 \right\}. \]

Moreover, if \(u_p \) is a minimizer of \(\lambda_{s,p} \) normalized by \(\|u_p\|_{L^p(U)} = 1 \), then, up to a subsequence, \(u_p \) converges in \(C(U) \) to some minimizer \(u_\infty \in W^{s,\infty}(U) \) of \(\Lambda_{s,\infty} \).

Note that, since the limit of \(\left(\lambda_{s,p} \right)^{1/p}, \Lambda_{s,\infty} \), coincides with \(\Lambda_{s,\infty}^N \) (given in (1.2)), we get the same interpretation in terms of optimal mass transportation given in Theorem 1.2.

To end this introduction, let us briefly comment on previous results. The limit as \(p \to +\infty \) of the first eigenvalue \(\lambda_D^p \) of the usual local \(p \)-Laplacian with Dirichlet boundary condition was studied in [15, 16], (see also [3] for an anisotropic version). In those papers the authors prove that

\[\lambda_D^\infty := \lim_{p \to +\infty} \left(\lambda_D^p \right)^{1/p} = \inf \left\{ \frac{\|\nabla v\|_{L^\infty(U)}}{\|v\|_{L^\infty(U)}} : v \in W^{1,\infty}_0(\Omega) \right\} = \frac{1}{R}, \]

where \(R \) is, as before, the largest possible radius of a ball contained in \(U \). In addition, the authors show the existence of extremals, i.e. functions where
the above infimum is attained. These extremals can be constructed taking the limit as \(p \to +\infty \) in the eigenfunctions of the \(p \)-Laplacian eigenvalue problems (see [15]) and are viscosity solutions of the following eigenvalue problem (called the infinity eigenvalue problem in the literature):

\[
\begin{align*}
\min \{ |Du| - \lambda_D^p u, \Delta_\infty u \} &= 0 \quad \text{in } U, \\
u &= 0 \quad \text{on } \partial U.
\end{align*}
\]

The limit operator \(\Delta_\infty \) that appears here is the \(\infty \)-Laplacian given by \(\Delta_\infty u = -\langle D^2 u Du, Du \rangle \). Remark that solutions to \(\Delta_p v = 0 \) with a Dirichlet data \(v_p \to f \) on \(\partial U \) converge as \(p \to +\infty \) to the viscosity solution to \(\Delta_\infty v = 0 \) with \(v = f \) on \(\partial U \), see [2, 4, 6]. This operator appears naturally when one considers absolutely minimizing Lipschitz extensions in \(U \) of a boundary data \(f \), see [1, 2, 13].

Recently in [5], the authors relate \(\lambda_D^p \) with the Monge-Kantorovich distance \(W_1 \). Recall that the Monge-Kantorovich distance \(W_1(\mu, \nu) \) between two probability measures \(\mu \) and \(\nu \) over \(U \) is defined by

\[
W_1(\mu, \nu) := \max \left\{ \int_U v (d\mu - d\nu) : v \in W^{1,\infty}(U), \|\nabla v\|_{L^\infty(U)} \leq 1 \right\}.
\]

It was proved in [5] that

\[
\frac{1}{\lambda_D^\infty} = \sup_{\mu \in P(U)} W_1(\mu, P(\partial U)).
\]

Notice that this result is the analogous to Theorem 1.1 in the local case.

For the Neumann problem for the local \(p \)-Laplacian we refer to [10, 19] where the authors prove the local analogous to Theorem 1.2. In this local case the distance that appears in the limit is the geodesic distance inside \(U \). This is, in contrast with the non-local case studied here, where we can consider any distance \(d \) equivalent to the Euclidean one, see (1.1).

For limits as \(p \to +\infty \) in non-local \(p \)-Laplacian problems and its relation with optimal mass transport we refer to [14]. Eigenvalue problems were not considered there.

The case of a Steklov boundary condition has also been investigated recently. Indeed, the authors in [12] (see also [17] for a slightly different problem) studied the behavior as \(p \to +\infty \) of the so-called variational eigenvalues \(\lambda_{k,p}^S, k \geq 1 \), of the \(p \)-Laplacian with a Steklov boundary condition. In particular they proved that

\[
\lim_{p \to +\infty} \left(\lambda_{1,p}^S \right)^{1/p} = 1 \quad \text{and} \quad \lambda_{2,\infty}^S := \lim_{p \to +\infty} \left(\lambda_{2,p}^S \right)^{1/p} = \frac{2}{\text{diam}(U)},
\]

and also identify the limit variational problem defining \(\lambda_{2,\infty}^S \).

The paper is organized as follows: in Section 2 we collect some preliminary results concerning optimal mass transport with cost \(d(x, y)^a \), in particular, we provide a statement of the Kantorovich duality result that will be used in
the proofs of our results; in Section 3 we deal with the Dirichlet problem and prove Theorem 1.1; in Section 4 we study the Neumann case (Theorem 1.2). Finally, in Section 5 we deal with problem (1.4) and we prove Theorem 1.3.

2. Kantorovich duality for the cost $c(x, y) = d(x, y)^s$

In this section we follow [20]. We first recall the definition of c-concavity and c-transform.

Definition 2.1 ([20, Definitions 5.2 and 5.7]). Let X, Y be two sets and $c : X \times Y \to \mathbb{R} \cup \{+\infty\}$. A function $\psi : X \to \mathbb{R} \cup \{+\infty\}$ is said to be c-convex if $\psi \not\equiv +\infty$ and there exists $\zeta : Y \to \mathbb{R} \cup \{\pm\infty\}$ such that

$$\psi(x) = \sup_{y \in Y} \zeta(y) - c(x, y) \quad \text{for all } x \in X.$$

Its c-transform is the function ψ^c defined by

$$\psi^c(y) = \inf_{x \in X} \psi(x) + c(x, y) \quad \text{for all } y \in Y.$$

A function $\phi : Y \to \mathbb{R} \cup \{-\infty\}$ is c-concave if $\phi \not\equiv -\infty$ and $\phi = \psi^c$ for some function $\psi : X \to \mathbb{R} \cup \{\pm\infty\}$. Then its c-transform ϕ^c is

$$\phi^c(x) = \sup_{y \in Y} \phi(y) - c(x, y) \quad \text{for all } x \in X.$$

Notice that ψ is c-convex iff $\psi = -\zeta^c$ for some function ζ. Moreover,

Proposition 2.2 ([20, Proposition 5.8]). For any ψ, $\psi^c = \psi^{ccc}$ and ψ is c-convex iff $\psi = \psi^{cc}$.

In the case where the cost function is $c(x, y) = d(x, y)^s$ for some $s \in \mathbb{R}^+$, we have the following characterization of c-convex function.

Lemma 2.3. Let $c(x, y) = d(x, y)^s$ and $X = Y = \overline{U}$. Then a function $\phi : \overline{U} \to \mathbb{R} \cup \{+\infty\}$ is c-concave iff

$$|\phi(x) - \phi(\tilde{x})| \leq d(x, \tilde{x})^s \quad \text{for all } x, \tilde{x} \in \overline{U}.$$

Moreover in that case, $\phi^c = \phi$.

Proof. Notice that

$$\phi^c(x) = \sup_{y \in \overline{U}} \phi(y) - d(x, y)^s \geq \phi(x)$$

and that the opposite inequality holds if (2.1) holds. Hence if ϕ satisfies (2.1) then $\phi^c = \phi$. So that in particular ϕ is c-concave.

Reciprocally, assume that ϕ is c-concave so that

$$\phi(x) = \psi^c(x) = \inf_{y \in \overline{U}} \psi(y) + d(x, y)^s$$

for some function \(\psi \). Since \(s \in (0, 1) \), we have \(d(x, y)^s \leq d(x, \tilde{x})^s + d(y, \tilde{x})^s \) for any \(x, \tilde{x}, y \in \overline{U} \). It follows that

\[
\phi(x) \leq \inf_{y \in \overline{U}} \psi(y) + d(y, \tilde{x})^s + d(x, \tilde{x})^s = \phi(\tilde{x}) + d(x, \tilde{x})^s,
\]

i.e. \(\phi(x) - \phi(\tilde{x}) \leq d(x, \tilde{x})^s \). The opposite inequality holds as well by switching \(x \) and \(\tilde{x} \). Thus (2.1) holds. \(\square \)

We recall the following result, see [20, Theorem 5.10].

Theorem 2.4. Let \((X, \mu)\) and \((Y, \nu)\) be two Polish spaces (i.e. metric complete separable) and let \(c : X \times Y \to \mathbb{R} \cup \{+\infty\} \) be a lower semicontinuous function such that

\[
c(x, y) \geq a(x) + b(y)
\]

for some real-valued upper semicontinuous functions \(a \in L^1(\mu) \) and \(b \in L^1(\nu) \). Then

\[
W_c(\mu, \nu) := \inf_{\pi \in \Pi(\mu, \nu)} \int_{X \times Y} c(x, y) \, d\pi(x, y) = \sup_{\phi \in L^1(\nu), c-\text{concave}} \int_Y \phi \, d\nu - \int_X \phi^c \, d\mu,
\]

and in the above sup, one might as well impose \(\phi \) to be \(c \)-concave. Moreover if \(c \) is real-valued, \(W_c(\mu, \nu) < \infty \) and

\[
c(x, y) \leq c_X(x) + c_Y(y)
\]

for some \(c_X \in L^1(\nu) \) and \(c_Y \in L^1(\mu) \), then the above sup is a max.

In the particular case \(c(x, y) = d(x, y)^s \), \(X = Y = U \) with \(U \) bounded, we obtain in view of Lemma 2.3 the following result.

Theorem 2.5. For any \(\mu, \nu \in \mathcal{P}(U) \),

\[
\min_{\pi \in \Pi(\mu, \nu)} \int_{U \times U} d(x, y)^s \, d\pi(x, y) = \max_{\phi \in L^1(\nu), \text{c-convex}} \int_U \phi \, d\nu - \int_U \phi^c \, d\mu
\]

\[
= \max_{|\phi(x) - \phi(y)| \leq d(x, y)^s} \int_U \phi \, d\nu - \int_U \phi \, d\mu.
\]

3. The Dirichlet case

In this section, we borrow ideas from [5]. Let us consider

\[
G_p, G_\infty : C(U) \times M(U) \to \mathbb{R} \cup \{+\infty\}
\]

the functionals given by

\[
G_p(v, \sigma) = \begin{cases}
- \int_U v \sigma \, dx, & \text{if } \sigma \in L^p(U), \|\sigma\|_{L^p(U)} \leq 1, \\
+\infty & \text{and } v \in \widetilde{W}^{s,p}(U), [v]_{s,p} \leq (\lambda_{s,p}^D)^{1/p}, \\
\end{cases}
\]

otherwise,
and
\[G_\infty(v, \sigma) = \begin{cases} - \int_U v \, d\sigma, & \text{if } \sigma \in M(U), |\sigma|(U) \leq 1, \\ +\infty, & \text{otherwise.} \end{cases} \]

In the space \(M(U) \), we consider the weak convergence of measures, and in the space \(C(U) \) the uniform convergence.

First, we have that \(G_\infty \) is the limit as \(p \to +\infty \) of \(G_p \) in the \(\Gamma^- \) limit sense (we refer to [7] for the definition of \(\Gamma^- \) convergence).

Lemma 3.1. The functionals \(G_p \) \(\Gamma^- \)–converge as \(p \to +\infty \) to \(G_\infty \).

Proof. It follows as in [5]. \(\square \)

Now, we let \(f_p : \mathbb{R}^n \to \mathbb{R} \) defined as
\[f_p(x) := (u_p(x))^{p-1}, \]
where \(u_p \) is a nonnegative eigenfunction associated to \(\lambda_{s,p}^D(U) \) such that \(\|u_p\|_{L^p(U)} = 1 \). When we consider \(f_p \) as an element of \(M(U) \) together with \(u_p \) we obtain a minimizer for \(G_p \). The proof of this fact is immediate.

Lemma 3.2. The pair \((f_p, u_p)\) minimizes \(G_p \) in \(C(U) \times M(U) \) with \(G_p(f_p, u_p) = -1 \).

Now, let us show that we can extract a subsequence \(p_n \to +\infty \) such that \(f_p \) and \(u_p \) converge.

Lemma 3.3. There exists a sequence \(p_n \to +\infty \) such that
\[u_{p_n} \to u_\infty \]
uniformly in \(\mathbb{R}^n \). This limit \(u_\infty \) verifies
\[|u_\infty(x) - u_\infty(y)| \leq \Lambda_{s,\infty}^D|x - y|^s, \quad x, y \in \mathbb{R}^n. \]
Moreover, we have
\[f_{p_n} \rightharpoonup f_\infty \]
weakly-* in \(M(U) \) and \(f_\infty \) is a nonnegative measure that verifies \(f_\infty(U) \leq 1 \).

Proof. The convergence of \(u_{p_n} \), via a subsequence, is contained in [18]. Concerning \(f_{p_n} \), the conclusion follows from the inequality
\[\int_U f_p \, dx \leq \left(\int_U (u_p)^p \, dx \right)^{\frac{1}{p}} |U|^{1/p} = |U|^{1/p}, \]
that implies that \(f_p \) is bounded in \(M(U) \) and hence we can extract a sequence \(p_n \to +\infty \) such that \(f_{p_n} \rightharpoonup f_\infty \) weakly-* in \(M(U) \). That the limit \(f_\infty \) is a nonnegative measure that verifies \(f_\infty(U) \leq 1 \) also follows from (3.1). \(\square \)
From the main property of Γ–convergence we obtain the following corollary.

Corollary 3.4. The pair (f_∞, u_∞) minimizes G_∞ with
\[G_\infty(f_\infty, u_\infty) = -1. \]

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. As (f_∞, u_∞) minimizes G_∞ we obtain that
\[\left(f_\infty, u_\infty \frac{\Lambda_{D,s}}{\Lambda_{D,s,\infty}} \right) \]
minimizes
\[-\int_U v \, d\sigma, \]
with (v, σ) belonging to
\[A := \left\{ (v, \sigma) \in \tilde{W}^{s,\infty}(U) \times M(\overline{U}) : |\sigma|(U) \leq 1, |v(x) - v(y)| \leq d(x, y)^s \right\}. \]

Then
\[
\frac{1}{\Lambda_{D,s,\infty}} = \frac{1}{\Lambda_{D,s,\infty}} \int_U u_\infty \, df_\infty \\
= \max_{(v, \sigma) \in A} \int_U v \, d\sigma \\
= \max_{\mu \in P(\overline{U})} \max_{|w(x) - w(y)| \leq d(x, y)^s} \int_U w \, d\mu \\
= \max_{\mu \in P(\overline{U})} W_s(\mu, P(\partial U)),
\]
as we wanted to show. \hfill \Box

4. The Neumann case

Again, we follow ideas from [5], see also [19]. Let u_p be an extremal for $\lambda_{p,s}^N$ (that is, a minimizer for (1.1)) normalized by $\|u_p\|_{L^p(U)} = 1$. Then
\[f_p := |u_p|^{p-2}u_p \in L^{p'}(U) \] (where $p' = \frac{p}{p-1}$) satisfies
\begin{equation}
\|f_p\|_{L^{p'}(U)} = 1 \quad \text{and} \quad \int_U f_p \, dx = 0.
\end{equation}

The first step consists in extracting from $\{f_p\}_{p>1}$ a subsequence converging weakly to some measure $f_\infty \in M(\overline{U})$, the weak convergence meaning here that
\[
\lim_{p \to +\infty} \int_U \phi f_p \, dx = \int_U \phi \, df_\infty
\]
for any $\phi \in C(\overline{U})$.\]
Lemma 4.1. Up to a subsequence, the measures f_p converge weakly in measure in \overline{U} to some measure f_∞ supported in \overline{U} satisfying

(4.2) $f_\infty(U) = 0$ and $|f_\infty|(U) = 1$.

Proof. We claim that

(4.3) $\lim_{p \to +\infty} \int_U |f_p| \, dx = 1$.

First, in view of (4.1), we have that

$$
\int_U |f_p| \, dx \leq \|f_p\|_{L_p'(U)} |U|^{1-1/p'} = |U|^{1-1/p'} \to 1 \quad \text{as } p \to +\infty
$$

and then, recalling that $u_p \to u$ in $C(\overline{U})$ with $\|u\|_{L_\infty(U)} = 1$,

$$
1 = \int_U u_p f_p \, dx \leq \|u_p\|_{L_\infty(U)} \|f_p\|_{L^1(U)} = (1 + o(1)) \|f_p\|_{L^1(U)}.
$$

It follows in particular that the measures $|f_p|$ are bounded in $M(U)$ independently of p. Since \overline{U} is compact, we can then extract from this sequence a subsequence converging weakly to some measure $f_\infty \in M(\overline{U})$. Passing to the limit in (4.1) and (4.3) gives (4.2).

Consider the functionals $G_p, G_\infty : C(\overline{U}) \times M(\overline{U}) \to \mathbb{R} \cup \{+\infty\}$ defined by

$$
G_p(v, \sigma) = \begin{cases}
- \int_U v \sigma \, dx & \text{if } \sigma \in L^{p'}(U), \|\sigma\|_{L^{p'}(U)} \leq 1, \int_U \sigma \, dx = 0, \\
+\infty & \text{and } v \in W^{s,p}(U), \|v\|_{s,p} \leq (\lambda_{p,s})^{1/p},
\end{cases}
$$

and

$$
G_\infty(v, \sigma) = \begin{cases}
- \int_U v \, d\sigma, & \text{if } \sigma \in M(\overline{U}), |\sigma|(\overline{U}) \leq 1, \sigma(\overline{U}) = 0, \\
+\infty & \text{and } v \in W^{s,\infty}(U), |v(x) - v(y)| \leq \Lambda_{s,\infty}^\prime d(x, y)^s,
\end{cases}
$$

Remark that these functionals are similar to the ones considered for the Dirichlet case but the spaces involved change. In fact, here we consider $W^{s,p}(U)$ instead of $\tilde{W}^{s,p}(U)$ (that encodes the fact that we are considering functions that vanish outside U when dealing with the Dirichlet problem).

As for the Dirichlet case, we can prove as in [5, 19] that G_∞ is the limit of the G_p in the sense of Γ-convergence:

Lemma 4.2. The functionals G_p converge in the sense of Γ-convergence to G_∞.

The proof is similar as that of Proposition 3.7 in [5] and hence we omit it. As a corollary we obtain that
Lemma 4.3. Let \(u_p \) be an extremal for \(\lambda_{p,s}^N \), then \((u_p, f_p) \) is a minimizer for \(G_p \), and any limit \((u_\infty, f_\infty) \) along a subsequence \(p_j \to +\infty \) is a minimizer for \(G_\infty \), with

\[
G_\infty(u_\infty, f_\infty) = \lim_{p \to +\infty} G_p(u_p, f_p) = -1.
\]

Proof. Notice that the pair \((u_p, f_p) \) is a minimizer of \(G_p \). Indeed, given a pair \((v, \sigma) \) admissible for \(G_p \) take \(\bar{v} \in \mathbb{R} \) such that

\[
\int_U |v - \bar{v}|^{p-2}(v - \bar{v}) \, dx = 0.
\]

Then, recalling that \(\int_U \sigma \, dx = 0 \) and the definition of \(\lambda_{p,s}^N \), we have

\[
G_p(v, \sigma) = - \int_U (v - \bar{v}) \sigma \, dx \\
\geq -\|v - \bar{v}\|_{L^p(U)} \|\sigma\|_{L^{p'}(U)} \\
\geq -(\lambda_{p,s}^N)^{-1/p}[v - \bar{v}]_{s,p} \\
\geq -1 = G_p(u_p, f_p).
\]

Moreover \((u_p, f_p) \to (u_\infty, f_\infty) \) along a sequence \(p_j \to +\infty \). Then, it follows that

\[
\lim \inf_{p \to +\infty} \left(\inf_{B} G_p \right) = \inf_{B} G_\infty.
\]

Hence

\[
\lim_{p \to +\infty} \inf_{B} G_p = \lim_{p \to +\infty} G_p(u_p, f_p) = G_\infty(u_\infty, f_\infty) = \inf_{B} G_\infty.
\]

We can now relate \(\Lambda_{s,\infty}^N \) to \(W_s \). Recall that if \(\sigma \in M(U) \), then \(\sigma^\pm \in M(U) \) denote the positive and negative part of \(\sigma \). In particular, \(\sigma = \sigma^+ - \sigma^- \), and \(|\sigma| = \sigma^+ + \sigma^- \).

Proof of Theorem 1.2. The conditions \(\sigma(U) = 0 \) and \(|\sigma|(U) = 1 \) are equivalent to

\[
\sigma^+(U) = \sigma^-(U) = 1/2.
\]

We can therefore rewrite the fact that the pair \((u_\infty, f_\infty) \) is a minimizer of \(G_\infty \) as

\[
1 = \max_{\sigma \in M_{1/2}} \max_{v \in F_{\Lambda_{s,\infty}^N}} \int_U v \, d(\sigma^+ - \sigma^-),
\]
where
\[
M_t = \{ \sigma \in M(U) : \sigma(U) = \sigma(t) \},
\]
and
\[
F_R = \{ v \in W^{s,\infty}(U) : |v(x) - v(y)| \leq R d(x, y) \},
\]
that is,
\[
\frac{2}{\Lambda_{N,s}^{\infty}} = \max_{\sigma \in M_t} \max_{v \in F_t} \int_U v(\sigma^- - \sigma^+).
\]
Then, we obtain the conclusion (1.3), recalling the definition of W_s given by (1.5).

5. Eigenvalue problems with a different Neumann boundary condition

In this section we prove Theorem 1.3. For this purpose, first we present some previous results.

Theorem 5.1. The spaces
\[
W^{s,p}(U) := \{ u : \mathbb{R}^n \to \mathbb{R} \text{ measurable} : \|u\|_{L^p(U)}^p + \mathcal{H}_{s,p}(u) < +\infty \}
\]
and
\[
W^{s,\infty}(U) := \{ u : \mathbb{R}^n \to \mathbb{R} \text{ measurable} : \|u\|_{L^\infty(U)} + \mathcal{H}_{s,\infty}(u) < +\infty \}
\]
are Banach spaces with the norms
\[
\|u\|_{W^{s,p}(U)}^p := \|u\|_{L^p(U)}^p + \mathcal{H}_{s,p}(u)
\]
and
\[
\|u\|_{W^{s,\infty}(U)} := \|u\|_{L^\infty(U)} + \mathcal{H}_{s,\infty}(u),
\]
respectively.

The proof follows exactly as in the proof of [9, Proposition 3.1].

Remark 5.2. It holds that $W^{s,p}(U) \subset W^{s,\infty}(U)$.

Remark 5.3. The operator $I : W^{s,p}(U) \to E = L^p(U) \times L^p(\mathbb{R}^{2n} \setminus (U^c)^2)$ given by
\[
I(u) := \left(u, \frac{u(x) - u(y)}{d(x, y)^{\frac{s}{p} + s}} \right)
\]
is an isometry. Then $I(W^{s,p}(U))$ is a closed subspace of E due to the fact that $W^{s,p}(U)$ is a Banach space. Hence $I(W^{s,p}(U))$ is reflexive since E is reflexive. Then, $W^{s,p}(U)$ is reflexive.

Following the proofs of Lemmas 3.2 and 3.7 in [9], we have the following result.
Lemma 5.4. Let u and v be bounded C^2 functions in \mathbb{R}^n. Then the following formulae hold:

Divergence theorem
\[
\int_{U} (-\Delta)^s_p u(x) \, dx = -\int_{\mathbb{R}\setminus U} N_{s,p} u(x) \, dx.
\]

Integration by parts formula
\[
\frac{1}{2} \mathcal{H}_{s,p}(u,v) = \int_{U} v(x)(-\Delta)^s_p u(x) \, dx + \int_{\mathbb{R}\setminus U} v(x)N_{s,p}u(x) \, dx,
\]

where
\[
\mathcal{H}_{s,p}(u,v) := \int_{\mathbb{R}^{2n}\setminus \{U^c\}^2} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(v(x) - v(y))}{d(x,y)^{n+sp}} \, dxdy.
\]

This result leads us to the following definition.

Definition 5.5. A function $u \in W^{s,p}(U)$ is a weak solution of (1.4) if
\[
\frac{1}{2} \mathcal{H}_{s,p}(u,v) = \lambda \int_{U} |u|^{p-2} uv \, dx
\]
for all $v \in W^{s,p}(U)$.

In this context we have the following definition.

Definition 5.6. We say that λ is a fractional Neumann p–eigenvalue provided there exists a nontrivial weak solution $u \in W^{s,p}(U)$ of (1.4). The function u is a corresponding eigenfunction.

Let us observe the following: if $\lambda > 0$ is an eigenvalue and u is an eigenfunction associated to λ, then, taking $v \equiv 1$ as a test function in (5.1), we have
\[
\int_{U} |u|^{p-2} u \, dx = 0.
\]

In fact, we have that $\lambda = 0$ is the first eigenvalue of our problem.

Lemma 5.7. It holds that $\lambda = 0$ is an eigenvalue of (1.4) (with $u \equiv 1$ as eigenfunction), and it is isolated and simple.

Proof. Let u be an eigenfunction corresponding to $\lambda = 0$ in problem (1.4). From (5.1) taking $v = u$ as a test function we obtain that u is constant in U.

Now, if we have a sequence of eigenvalues $\lambda_k \to 0$ then the corresponding eigenfunctions, u_k, normalized by $\|u_k\|_{L^p(U)} = 1$, converge to some u. It is not difficult to show that u is an eigenfunction corresponding to $\lambda = 0$ (consequently, $u \equiv const$) with $\|u\|_{L^p(U)} = 1$ and $\int_{U} |u|^{p-2} u \, dx = 0$, a contradiction that shows that $\lambda = 0$ is an isolated eigenvalue. □
Thus, the existence of the first non-zero eigenvalue of (1.4) is related to the problem of minimizing the following non-local quotient
\[
\frac{\mathcal{H}_{s,p}(v)}{2\|v\|^p_{L^p(U)}}
\]
among all functions \(v \in W^{s,p}(U) \setminus \{0\} \) such that \(\int_U |v|^{p-2} v \, dx = 0 \).

We are now ready to prove Theorem 1.3. For simplicity, we divide the proof of this theorem into three parts contained in the following lemmas.

First, by a standard compactness argument and using that \(W^{s,p}(U) \subset W^{s,p}(U) \), we have that \(\lambda_{s,p} \) is the first non-zero eigenvalue of (1.4).

Lemma 5.8. It holds that \(\lambda_{s,p} \) is the first non-zero eigenvalue of (1.4).

Remark 5.9. Since \(W^{s,p}(U) \subset W^{s,p}(U) \) and \(J_u \leq \mathcal{H}_{s,p}(u) \), \(\forall u \in W^{s,p}(U) \), we have that \(\lambda^{N}_{s,p} \leq 2\lambda_{s,p} \).

Our next result shows the asymptotic behavior of \((\lambda_{s,p})^{1/p} \).

Lemma 5.10. We have
\[
\lim_{p \to +\infty} (\lambda_{s,p})^{1/p} = \frac{2}{(\text{diam}_d(U))^s} = \Lambda_{s,\infty} := \inf \left\{ \frac{\mathcal{H}_{s,\infty}(u)}{\|u\|_{L^\infty(U)}} : u \in A \right\},
\]
where
\[
A := \left\{ v \in W^{s,\infty}(U) \setminus \{0\} : \sup_{x \in U} u(x) + \inf_{x \in U} u(x) = 0 \right\}.
\]

Proof. For the reader’s convenience, we split the proof in four steps.

Step 1. We start showing that \(\Lambda_{s,\infty} \leq \frac{2}{(\text{diam}_d(U))^s} \).

Let \(x_0, y_0 \in U \) such that \(d(x_0, y_0) = \text{diam}_d(U) \). Let \(u : \mathbb{R}^n \to \mathbb{R} \) be given by
\[
u(x) := -1 + \frac{2}{\text{diam}_d(U)} d(x, y_0)^s.\]
\[\sup_{x \in U} u(x) = -\inf_{x \in U} u(x) = 1\]
and
\[
\frac{|u(x) - u(y)|}{d(x, y)^s} = \frac{2}{(\text{diam}_d(U))^s} \frac{|d(x, y_0)^s - d(y, y_0)^s|}{d(x, y)^s} \leq \frac{2}{(\text{diam}_d(U))^s}
\]
for all \(x, y \in \mathbb{R}^n \). Then \(u \in A \), \(\|u\|_{L^\infty(U)} = 1 \) and
\[
\mathcal{H}_{s,\infty}(u) \leq \frac{2}{(\text{diam}_d(U))^s}.
\]
Therefore
\[\Lambda_{s,\infty} \leq \mathcal{H}_{s,\infty}(u) \leq \frac{2}{(\text{diam}_d(U))^s}. \]

Step 2. We now prove that
\[\Lambda_{s,\infty} \geq \frac{2}{(\text{diam}_d(U))^s}. \]

If \(u \in A \) then
\[
2\|u\|_{L^\infty(U)} = \sup_{x \in U} u(x) - \inf_{x \in U} u(x) \\
= \sup \{ |u(x) - u(y)| : x, y \in U \} \\
\leq (\text{diam}_d(U))^s \sup \left\{ \frac{|u(x) - u(y)|}{d(x, y)^s} : x, y \in U \right\} \\
\leq (\text{diam}_d(U))^s \mathcal{H}_{s,\infty}(u).
\]

Thus
\[
\frac{2}{(\text{diam}_d(U))^s} \leq \frac{\mathcal{H}_{s,\infty}(u)}{\|u\|_{L^\infty(U)}},
\]
for any \(u \in A \), that is,
\[\Lambda_{s,\infty} \geq \frac{2}{(\text{diam}_d(U))^s}. \]

Step 3. We show that
\[
\frac{2}{(\text{diam}_d(U))^s} \leq \liminf_{p \to +\infty} (\lambda_{s,p})^{1/p}.
\]

By (1.2) and Remark 5.9, we have that
\[
\frac{2}{(\text{diam}_d(U))^s} \leq \liminf_{p \to +\infty} (\lambda_{s,p})^{1/p} \\
\leq \liminf_{p \to +\infty} 2^{1/p} (\lambda_{s,p}(U))^{1/p} = \liminf_{p \to +\infty} (\lambda_{s,p}(U))^{1/p}.
\]

Step 4. Finally, we prove that
\[
\limsup_{p \to +\infty} (\lambda_{s,p})^{1/p} \leq \frac{2}{(\text{diam}_d(U))^s}.
\]

As in Step 1, let \(x_0, y_0 \in \overline{U} \) be such that \(d(x_0, y_0) = \text{diam}_d(U) \). Set \(\delta = \text{diam}_d(U) \),
\[
U_\delta := \left\{ x \in \mathbb{R}^n : \inf_{y \in U} d(x, y) \leq \delta \right\}
\]
and
\[
u(x) := \begin{cases} d(x, y_0) & \text{if } x \in U_\delta, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus U_\delta. \end{cases}
\]
Let $\varepsilon > 0$. Then
\[
\mathcal{H}_{s,p}(u) \leq 2 \int_{U \times U} \frac{|d(x, y_0) - d(y, y_0)|^p}{d(x, y)^{n+sp}} \, dx \, dy
\]
\[
+ 2 \int_{U \times (\mathbb{R}^n \setminus U)} \frac{d(x, y_0)^p}{d(x, y)^{n+sp}} \, dx \, dy
\]
\[
\leq 2 \int_{U \times U} \frac{d(x, y)^{p(1-s)-\varepsilon}}{d(x, y)^{n-\varepsilon}} \, dx \, dy
\]
\[
+ 2 \int_{U \times (\mathbb{R}^n \setminus U)} \frac{d(x, y_0)^p}{d(x, y)^{n+e+sp-\varepsilon}} \, dx \, dy.
\]
Thus, since d is a distance equivalent to the Euclidean one, if
\[
p > \max \left\{ \frac{\varepsilon}{(1-s)}, \frac{\varepsilon}{s} \right\},
\]
we get that $u \in W^{s,p}(U)$ and
\[
(5.2) \quad \mathcal{H}_{s,p}(u) \leq C(diam_d(U))^{p(1-s)} \left\{ (diam_d(U))^{-\varepsilon} + (diam_d(U))^\varepsilon \right\},
\]
where C is a constant independent of p.

We now choose $c_p \in \mathbb{R}$ such that
\[
w_p(x) = u(x) - c_p
\]
\[
satisfies \int_{U} |w_p|^{p-2}w_p \, dx = 0.
\]
Hence, if $p > \max \{\varepsilon/(1-s), \varepsilon/s\}$, by (5.2), we have that
\[
\lambda_{s,p} \leq \frac{\mathcal{H}(w_p)}{2\|w_p\|_{L^p(U)}}
\]
\[
= \frac{\mathcal{H}(u)}{2\|w_p\|_{L^p(U)}}
\]
\[
\leq C \frac{(diam_d(U))^{p(1-s)} \left\{ (diam_d(U))^{-\varepsilon} + (diam_d(U))^\varepsilon \right\}}{2\|w_p\|_{L^p(U)}}
\]
therefore
\[
(5.3) \quad \limsup_{p \to +\infty} (\lambda_{s,p})^{1/p} \leq \frac{(diam_d(U))^{1-s}}{\liminf_{p \to +\infty} \|w_p\|_{L^p(U)}}.
\]

On the other hand, in [10] it is proved that
\[
(5.4) \quad \liminf_{p \to +\infty} \|w_p\|_{L^p(U)} \geq \frac{2}{diam_d(U)}.
\]
Thus, by (5.3) and (5.4), we get
\[
(5.5) \quad \limsup_{p \to +\infty} (\lambda_{s,p})^{1/p} \leq \frac{2}{(diam_d(U))^s}.
\]
This concludes the proof.

Remark 5.11. By (1.2) and Lemma 5.10, we have that

\[
\Lambda_{s,\infty}^N = \lim_{p \to +\infty} \left(\Lambda_{s,p}^N \right)^{1/p} = \frac{2}{(\text{diam}_d(U))^s} = \lim_{p \to +\infty} \left(\lambda_{s,p} \right)^{1/p} = \Lambda_{s,\infty}.
\]

Concerning the convergence as \(p \to +\infty \) of the eigenfunctions we have the following result.

Lemma 5.12. If \(u_p \) is a minimizer of \(\lambda_{s,p} \), normalized with \(\| u_p \|_{L^p(U)} = 1 \), then, up to a subsequence, \(u_p \) converges in \(C(U) \) to some minimizer \(u_{\infty} \in W^{s,\infty}(U) \) of \(\Lambda_{s,\infty}^N \).

Proof. For any \(p \in (1, \infty) \), we consider \(u_p \in W^{s,p}(U) \) such that

\[
\| u_p \|_{L^p(U)} = 1, \quad \int_U |u_p|^{p-2} u_p \, dx = 0 \quad \text{and} \quad \frac{1}{2} \mathcal{H}_{s,p}(u_p) = \lambda_{s,p}.
\]

Then, by Lemma 5.10, there exists a constant \(C \) independent of \(p \) such that

\[
(5.5) \quad \left(\frac{\mathcal{H}_{s,p}(u_p)}{2} \right)^{\frac{1}{p}} \leq C
\]

for all \(p \in (1, \infty) \).

Let us fix \(q \in (1, \infty) \) such that \(sq > 2n \). If \(p > q \) then, by Hölder’s inequality, we have that

\[
(5.6) \quad \| u_p \|_{L^q(\Omega)} \leq |U|^\frac{1}{q} \frac{1}{p} \| u_p \|_{L^p(\Omega)} \leq |U|^\frac{1}{q} \frac{1}{p} \quad \forall p \geq q,
\]

and taking \(r = s - n/q \in (0, 1) \), again by Hölder’s inequality, we get

\[
(5.7) \quad \left[u_p \right]_{r,q}^q = \int_U \int_U \frac{|u_p(x) - u_p(y)|^q}{d(x,y)^{sq}} \, dxdy \leq |U|^{2(1-\frac{q}{p})} \left(\int_U \int_U \frac{|u_p(x) - u_p(y)|^p}{d(x,y)^{sp}} \, dxdy \right)^{\frac{q}{p}} \leq 2^{\frac{q}{p}} (\text{diam}_d(U))^\frac{n^q}{p} |U|^{2(1-\frac{q}{p})} \left(\frac{\mathcal{H}_{s,p}(u_p)}{2} \right)^{\frac{q}{p}}.
\]

Then, by (5.5), we get

\[
\left[u_p \right]_{r,q} \leq 2^{\frac{1}{p}} (\text{diam}_d(U))^\frac{n}{p} |U|^{2\left(\frac{1}{s} - \frac{1}{p} \right)} C^q \quad \forall p \geq q,
\]

where \(C \) is a constant independent of \(p \). Hence \(\{ u_p \}_{p \geq q} \) is a bounded sequence in \(W^{r,q}(U) \). Then, since \(rq = sq - n > n \), by fractional compact embedding theorems (see [11, Theorem 4.54]), there exist a function \(u_{\infty} \in C(U) \) and a subsequence \(\{ u_{p_j} \}_{j \in \mathbb{N}} \) of \(\{ u_p \}_{p \geq q} \), such that

\[
\begin{align*}
 u_{p_j} &\to u_{\infty} \quad \text{uniformly in} \ U, \\
 u_{p_j} &\rightharpoonup u_{\infty} \quad \text{weakly in} \ W^{r,q}(U).
\end{align*}
\]
Hence, by (5.6), \(\|u_\infty\|_{L^q(\Omega)} \leq |U|^{\frac{1}{q}} \), and by (5.7) and Remark 5.11, we get
\[
\|u_\infty\|_{r,q} \leq \liminf_{j \to \infty} \|u_{p_j}\|_{r,q}
\leq \liminf_{j \to \infty} 2^{\frac{1}{p_j}} (\text{diam}_d(U))^{\frac{n}{p_j}} |U|^{\frac{2(1-\frac{1}{p_j})}{2}} \left(\frac{H_{s,p_j}(u_{p_j})}{2} \right)^{\frac{1}{p_j}}
= |U|^{\frac{2}{s}} \Lambda_s^{N,\infty}.
\]
Letting \(q \to +\infty \), we obtain
\[
\|u_\infty\|_{L^\infty(\Omega)} \leq 1
\]
and
(5.8)
\[
\|u_\infty\|_{s,\infty} \leq \Lambda_s^{N,\infty}.
\]
On the other hand,
\[
1 = \|u_{p_j}\|_{L^{p_j}(U)} \leq |U|^{\frac{1}{p_j}} \|u_{p_j}\|_{L^\infty(U)} \quad \forall j \in \mathbb{N},
\]
then
\[
1 \leq \|u_\infty\|_{L^\infty(U)}.
\]
Hence
\[
\|u_\infty\|_{L^\infty(U)} = 1
\]
and by (5.8) we get
(5.9)
\[
\|u_\infty\|_{s,\infty} \leq \Lambda_s^{N,\infty}.
\]
Finally, in [10, 19] it was proved that the condition
\[
\int_U |u_{p_j}|^{p_j-2} u_{p_j} \, dx = 0
\]
leads to
\[
\sup_{x \in U} u_\infty(x) + \inf_{x \in U} u_\infty(x) = 0
\]
in the limit as \(p \to +\infty \). Then, using (5.9), we have that \(u_\infty \) is a minimizer of \(\Lambda_s^{N,\infty} \). \(\square \)

References

(L. M. Del Pezzo, J. D. Rossi, N. Saintier, A. Salort)
CONICET and DEP. DE MATEMÁTICA, FCEyN, UNIVERSIDAD DE BUENOS AIRES, CIUDAD UNIVERSITARIA, PAB 1 (1428), BUENOS AIRES, ARGENTINA.

E-mail address:
ldpezzo@dm.uba.ar
jrossi@dm.uba.ar
nsaintier@dm.uba.ar
asalort@dm.uba.ar

URL:
http://cms.dm.uba.ar/Members/ldpezzo
http://mate.dm.uba.ar/~jrossi/