
THE CRITICAL HYPERBOLA FOR A HAMILTONIAN

ELLIPTIC SYSTEM WITH WEIGHTS

DJAIRO G. DE FIGUEIREDO, IRENEO PERAL, AND JULIO D. ROSSI

Abstract. In this paper we look for existence results for nontrivial
solutions to the system,
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:

−∆u =
vp

|x|α
in Ω,

−∆v =
uq

|x|β
in Ω,

with Dirichlet boundary conditions, u = v = 0 on ∂Ω and α, β < N . We
find the existence of a critical hyperbola in the (p, q) plane (depending
on α, β and N) below which there exists nontrivial solutions. For the
proof we use a variational argument (a linking theorem).

1. Introduction.

In this paper we study the existence of nontrivial solutions of the following
elliptic system,

(1.1)















−∆u =
vp

|x|α
in Ω,

−∆v =
uq

|x|β
in Ω,

with Dirichlet boundary conditions

u = v = 0 on ∂Ω.

Here Ω is a bounded smooth domain in R
N with 0 ∈ Ω and sp := sgn(s)|s|p.

We will assume that the exponents p, q are positive and that α, β < N .
Our main concern in this paper is to look at the role played by the two

weights when dealing with existence of solutions. We find the existence of
a critical hyperbola, given by,

(1.2)
N − α

p+ 1
+
N − β

q + 1
= N − 2.
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Below this hyperbola we find existence of nontrivial solutions. Remark that
when the two weights are not present, that is, for α = β = 0, we recover
the critical hyperbola for elliptic systems without weights that was found
independently in [15] and [31] (see also [17] and [20]). Also remark that
the hyperbola (1.2) is monotone with respect to α and β. The stronger the
weights the smaller the hyperbola.

The main result in this paper is the following theorem.

Theorem 1.1. Let us assume that p, q, α, β verifies

(1.3)
N − α

p+ 1
+
N − β

q + 1
> N − 2,

(1.4)
1

p+ 1
+

1

q + 1
< 1

and

(1.5) q + 1 <
2(N − β)

N − 4
and p+ 1 <

2(N − α)

N − 4
if N ≥ 5,

then there exist infinitely many strong solutions and at least one positive

strong solution of (1.1).

In the case α = β = 0 nonexistence on the critical hyperbola could be
obtained by some Pohozaev identities, see for instance [35]. Notice that if
α = β = 2 and p = q = 1 the existence result depends on a real parameter
λ. More precisely consider the linear problem

(1.6)











−∆u = λ
v

|x|2
in Ω,

−∆v = λ
u

|x|2
in Ω.

By adding both equation we have that if λ > (N −2)2/4 there is no positive
distributional solution. In this sense we could conjecture that the hyperbola
also is optimal in this case. Moreover, we have no sign restriction on α and
β, i.e., we are able to solve systems in which one equation (or both) are
of Hénon type. Notice that, if we take p = q, α = β < 0, the hyperbola
that we found gives the pioneering existence result in [30] above the critical
Sobolev exponent corresponding to the weight. This Sobolev exponent is
given by the corresponding Caffarelli-Kohn-Nirenberg estimate in [11]. For
scalar Hénon equations and properties we refer to [6], [30], [33], [34] and the
references therein.

Note that the system (1.1) has a variational structure. In fact, it can be
seen as a Hamiltonian system, since, if we consider

H(x, u, v) =
vp+1

(p+ 1)|x|α
+

uq+1

(q + 1)|x|β
,
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then we have

Hv(x, u, v) =
vp

|x|α
and Hu(x, u, v) =

uq

|x|β
.

The crucial point of our arguments is to find the proper functional setting
for (1.1) that allows us to treat our problem variationally. We accomplish
this by considering fractional powers of the self adjoint operator −∆ with
Dirichlet boundary conditions. The main ideas are taken from [17], [20], [23]
and [28]. We also use a linking theorem in a version that can be found in
[23]. See also the survey [18].

We observe that the same techniques used here can be applied to deal
with more general Hamiltonian systems (with adequate hypotheses on H)

{

−∆u = Hv(x, u, v) in Ω,
−∆v = Hu(x, u, v),

with Dirichlet boundary conditions. For example, we can consider, for two
different points, x1 6= x2 ∈ Ω,















−∆u =
vp

|x− x1|α
in Ω,

−∆v =
uq

|x− x2|β
in Ω.

To clarify the exposition we will state and prove our results for (1.1) and
leave the details of the general case to the reader.

We end the introduction with some bibliographical discussion. Existence
results for nonlinear elliptic systems have deserved a great deal of interest
in recent years. For this type of results see, among others, [8], [12], [14],
[17], [19], [20], [22], [24] and the survey [16]. Results of existence, non-
existence and multiplicity for elliptic equations involving weights could be
found, among other papers, in [1], [2], [3], [4], [5], [9], [10], [25] and [27].

The rest of the paper is organized as follows, in Section 2 we establish
the functional setting in which the problem will be posed and in Section 3
we prove our main result, Theorem 1.1.

2. The functional setting

In this section we describe the functional setting that allows us to treat
(1.1) variationally. The natural functional associated to (1.1) is given by

(2.1) J(u, v) =

∫

Ω
∇u∇v −

∫

Ω

(

vp+1

(p+ 1)|x|α
+

uq+1

(q + 1)|x|β

)

,

in the natural space H1
0 (Ω) ×H1

0 (Ω). However, in order to have a C1 func-
tional one has to impose conditions on p, q, α, β that are too restrictive.
Therefore we use an idea from [17], [20] and [28] and use suitable fractional
powers of an operator on fractional Sobolev spaces to define the functional.
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Let us consider the Hilbert space L2(Ω) and the operator

−∆ : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) 7→ L2(Ω)

It is well known that there exists a sequence of eigenvalues of −∆, (λn) ⊂ R

with eigenfunctions φn ∈ H2(Ω) ∩ H1
0 (Ω) such that 0 < λ1 ≤ λ2 ≤ ... ≤

λn ≤ ...ր +∞.
Let us consider the fractional powers of −∆, namely for 0 < s < 1, let

As = (−∆)s,

that is,

As : D(As) ⊂ L2(Ω) 7→ L2(Ω)

is given by

Asu =

∞
∑

n=1

λs
nanφn,

when u has the expansion u =
∑

anφn. We call

Es = D(As) =

{

u ∈ L2(Ω) :
∞
∑

n=1

λ2s
n a

2
n <∞

}

,

which is a Hilbert space with inner product, that we denote by (·, ·)Es , given
by

(u, v)Es = 〈Asu,Asv〉.

These spaces Es are fractional Sobolev spaces, see [29]. In fact, we have

Es ⊂ H2s(Ω), 0 < s ≤ 1.

By the Sobolev embedding theorem we have that

Es →֒ Lr(Ω) if
1

r
≥

1

2
−

2s

N

and the embedding is compact if we have a strict inequality. Now, we use
Holder’s inequality to obtain

∫

Ω

uq+1

|x|β
≤

(
∫

Ω
ur

)(q+1)/r (∫

Ω
|x|−βr/(r−(q+1))

)(r−(q+1))/r

≤ C

(
∫

Ω
ur

)(q+1)/r

if
βr

r − (q + 1)
< N.

That is

(2.2) N(q + 1) < (N − β)r.

Therefore, if

q + 1 <
2(N − β)

N − 4s
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we can choose r such that
1

r
>

1

2
−

2s

N
and (2.2) hold. Hence, we have the following inclusions

Es ⊂ H2s(Ω) →֒ Lr(Ω) ⊂ Lq+1(Ω, |x|−β).

More precisely, we have proved the following proposition,

Proposition 2.1. Given q > 1, β > 0 and s > 0 so that

q + 1 <
2(N − β)

N − 4s

the inclusion map i : Es → Lq+1(Ω, |x|β) is well defined and compact.

Let us set E = Es ×Et where s+ t = 1, with the norm

‖(u, v)‖2
E = ‖u‖2

Es + ‖v‖2
Et .

Let the linear operator L : E → E be given by

L(u, v) = (A−sAtv,A−tAsu).

Next, we consider the eigenvalue problem Lz = λz. We can rewrite this as

A−sAtv = λu, A−tAsu = λv,

where z = (u, v). As As and At are isomorphisms, it follows that λ = 1 or
λ = −1. The associated eigenvectors are

for λ = 1, (u,A−tAsu) ∀u ∈ Es,

for λ = −1, (u,−A−tAsu) ∀u ∈ Es.

We can define the eigenspaces

E+ = {(u,A−tAsu) / u ∈ Es},

E− = {(u,−A−tAsu) / u ∈ Es},

which give a natural splitting

E = E+ ⊕ E−.

We can define the functional, H : E → R as

H(u, v) =

∫

Ω
H(x, u, v).

Proposition 2.2. The functional H defined above is of class C1 and its

derivative is given by

H′(u, v)(φ,ψ) =

∫

Ω
Hu(x, u, v)φ +

∫

Ω
Hv(x, u, v)ψ.

Moreover, H′ is compact.
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Proof. We have
∫

Ω

∣

∣

∣

∣

∂H

∂u
(x, u, v)φ

∣

∣

∣

∣

=

∫

Ω

(

|u|q

|x|β

)

|φ|.

By Holder’s inequality and Proposition 2.1 we have
∫

Ω

∣

∣

∣

∣

∂H

∂u
(x, u, v)φ

∣

∣

∣

∣

≤ C
(

‖u‖q
Es

)

‖φ‖Es .

In a similar way we obtain the analogous inequality for Hv.
Thus H′ is well defined and bounded in E. Next, a standard argument

gives that H is Fréchet differentiable with H′ continuous. The fact that H′

is compact comes from Proposition 2.1 (see [32] for the details). �

We consider the functional

I : E 7→ R

given by

(2.3)

I(u, v) =

∫

Ω
Asu,Atv −

∫

Ω

(

vp+1

(p+ 1)|x|α
+

uq+1

(q + 1)|x|β

)

=

∫

Ω
Asu,Atv −

∫

Ω
H(x, u, v).

Where we have selected s, t > 0 such that

s+ t = 1, q + 1 <
2(N − β)

N − 4s
and p+ 1 <

2(N − α)

N − 4t
.

Remark 2.1. Note that this selection of s, t is possible since we are below

the critical hyperbola (1.2). Moreover, there exists a positive selection of s
and t thanks to our last assumption on the exponents in Theorem 1.1, (1.5).

Let us now give the definition of weak solution of (1.1).

Definition 2.1. We say that z = (u, v) ∈ E = Es × Et is an (s, t)−weak

solution of (1.1) if z is a critical point of I. In other words, for every

(φ,ψ) ∈ E we have

(2.4)

∫

Ω
Asu,Atψ +

∫

Ω
Asφ,Atv −

∫

Ω

vp

|x|α
ψ −

∫

Ω

uq

|x|β
φ = 0.

Now, we prove a theorem that provides regularity of (s, t)-weak solutions.
In fact, every (s, t)-weak solution has two derivatives in some Lr(Ω) and
hence it is a strong solution.

Theorem 2.1. If (u, v) ∈ Es × Et is an (s, t)-weak solution of (1.1) then

u ∈W 2,a(Ω), v ∈W 2,b(Ω) for every

1 < a <
2N

p(N − 4t) + 2α
and 1 < b <

2N

q(N − 4s) + 2β
.

Hence (u, v) is in fact a strong solution of (1.1).
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Proof. Let us first consider ψ = 0 in (2.4), then

(2.5)

∫

Ω
Asφ,Atv −

∫

Ω

uq

|x|β
φ = 0,

for all φ ∈ Es. If we take φ ∈ H2(Ω) ∩H1
0 (Ω), we have

(2.6)

∫

Ω
Asφ,Atv = −

∫

Ω
∆φ v.

On the other hand, since u ∈ Es, by our previous calculations, we have

uq

|x|β
∈ Lb(Ω) if b <

2N

q(N − 4s) + 2β
.

Then, from basic elliptic theory (see [26]), there exists a function w ∈
W 2,b(Ω) such that







−∆w =
uq

|x|β
in Ω,

w = 0 on ∂Ω.

Now, integration by parts gives

(2.7) 0 = −

∫

Ω
∆wφ−

∫

Ω

uq

|x|β
φ = −

∫

Ω
w∆φ−

∫

Ω

uq

|x|β
φ.

Combining (2.5),(2.6) and (2.7), we obtain
∫

Ω
(v − w)∆φ = 0,

with v = w = 0 on ∂Ω. From where it follows that v = w and hence v
belongs to W 2,b(Ω). We argue similarly for u. �

Remark 2.2. Since we have

q + 1 <
2(N − β)

N − 4s
and p+ 1 <

2(N − α)

N − 4t
we get

1 <
2N

p(N − 4t) + 2α
and 1 <

2N

q(N − 4s) + 2β
.

3. Proof of Theorem 1.1

First, we prove that there exist infinitely many solutions to (1.1). To this
end, we present an abstract theorem from critical point theory from [23] (see
also [7]) that provides us with infinitely many critical points of a functional.
Next, we prove that this abstract result can be applied to our functional
setting stated in the previous section.

Let E be a Hilbert space with inner product (·, ·)E . Assume that E
has a splitting E = X ⊕ Y where X and Y are both infinite dimensional
subspaces. Assume there exists a sequence of finite dimensional subspaces
Xn ⊂ X, Yn ⊂ Y , En = Xn ⊕ Yn such that ∪∞

n=1En = E. Let T : E → E
be a linear bounded invertible operator.
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Let I ∈ C1(E,R). Instead of the usual Palais-Smale condition we will
require that the functional I satisfies the so-called (PS)∗ conditions with
respect to En, i.e. any sequence zk ∈ Enk

with nk → ∞ as k → ∞,
satisfying I|′Enk

(zk) → 0 and I(zk) → c has a subsequence that converges in

E.
Then we define the basic sets over which the linking process will take

place. For ρ > 0 we define

S = Sρ = {y ∈ Y | ‖y‖E = ρ}

and for some fixed y1 ∈ Y with ‖y1‖E = 1 and subspaces X1 and X2, we
consider

X ⊕ span{y1} = X1 ⊕X2.

Without loss of generality we may assume that y1 ∈ X2. Next, we define for
M,σ > 0

D = DM,σ = {x1 + x2 ∈ X1 ⊕X2| ‖x1‖E ≤M, ‖x2‖E ≤ σ}.

Now we can state our abstract critical point result whose proof can be found
in [23].

Theorem 3.1. Let I ∈ C1(E,R) be an even functional satisfying the (PS)∗

condition with respect to En. Assume that T : En → En, for n large. Let

ρ > 0 and σ > 0 be such that σ‖Ty1‖E > ρ. Assume that there are constants

α ≤ β such that

inf
S∩En

I ≥ α, sup
T (∂D∩En)

I < α and sup
T (D∩En)

I ≤ β

for all n large. Then I has a critical value c ∈ [α, β].

Next, we show how the functional setting introduced in Section 2 can be
used to apply Theorem 3.1.

Let φn be the eigenfunctions of −∆. Let

En = span{φ1, ..., φn} × span{φ1, ..., φn}.

It is easy to see that ∪∞
n=1En = E. Next, we prove that I satisfies the (PS)∗

condition with respect to the family En.

Lemma 3.1. The functional I satisfies the (PS)∗ condition with respect to

En.

Proof. Let (zk)k≥1 = (uk, vk)k≥1 ⊂ Enk
be a sequence such that

(3.1) I(zk) → c and I ′ |Enk
(zk) → 0.

Let us first prove that (3.1) implies that (zk) is bounded in E. From (3.1)
it follows that there exists a sequence εk → 0 such that

(3.2) |I ′(zk)w| ≤ εk‖w‖E ,
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for all w ∈ Enk
. Let us take

wk = ((wk)1, (wk)2) =
(q + 1)(p + 1)

p+ q + 2

(

1

q + 1
uk,

1

p+ 1
vk

)

.

Now, using (3.1) and (3.2), for k large

c+ 1 + εk‖wk‖E ≥ I(zk) − I ′(zk)wk

=

∫

Ω
AsukA

tvk −

∫

Ω
H(x, uk, vk) −

∫

Ω
Asuk, A

t(wk)2

−

∫

Ω
As(wk)1, A

tvk +

∫

Ω
Hu(x, uk, vk)(wk)1 +

∫

Ω
Hv(x, uk, vk)(wk)2

= −
(1 − p q)

p+ q + 2

∫

Ω
H(x, uk, vk).

Now, by (1.4) we get p q > 1 and hence we obtain

C(1 + ‖zk‖E) ≥

∫

Ω
H(x, uk, vk).

Therefore,

(3.3)

∫

Ω

|uk|
q+1

|x|β
+

|vk|
p+1

|x|α
≤ C(1 + ‖uk‖Es + ‖vk‖Et).

Next we consider w = (φ, 0) with φ ∈ Es
nk

. From (3.2) we have
∫

Ω
Asφ,Atvk ≤

∫

Ω

|uk|
q

|x|β
|φ| + εk‖φ‖Es .

Now, using Holder’s inequality,
∫

Ω

|uk|
q

|x|β
|φ| ≤ ‖uk‖

q
Lq+1(Ω,|x|−β)

‖φ‖Lq+1(Ω,|x|−β).

So, by Proposition 2.1, we get that

|〈Asφ,Atvk〉| ≤ C‖φ‖Es

(

‖uk‖
q
Lq+1(Ω,|x|−β)

+ 1
)

.

By duality (As is an isometry between Es and L2) we get

(3.4) ‖vk‖Et ≤ C
(

‖uk‖
q
Lq+1(Ω,|x|−β)

+ 1
)

.

Analogously, we obtain

(3.5) ‖uk‖Es ≤ C
(

‖vk‖
p
Lp+1(Ω,|x|−α)

+ 1
)

.

Now combining (3.3), (3.4) and (3.5), we obtain

‖uk‖Es + ‖vk‖Et ≤ C
(

‖uk‖
q/(q+1)
Es + ‖vk‖

p/(p+1)
Et + 1

)

.

Since all the involved exponents are less than one, we conclude that zk in
bounded.

Now, by compactness and the invertibility of L we can extract a subse-
quence of zk that converges in E. Indeed, we can take a subsequence zkj
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that converges weakly in E, as H′ is compact, it follows that H′(zkj
) con-

verges strongly in E. Hence, using the fact that I ′(zkj
) → 0 strongly and

the invertibility of L, the result follows. �

Now we define the splitting of En. Fix k ∈ N and for n ≥ k let
(3.6)
Xn =

(

E−
1 ⊕ · · · ⊕E−

n

)

⊕
(

E+
1 ⊕ · · · ⊕ E+

k−1

)

and Yn =
(

E+
k ⊕ · · · ⊕ E+

n

)

,

where E+
j = span{(φj , A

−tAsφj)} and E−
j = span{(φj ,−A

−tAsφj)}. We
have En = Xn ⊕ Yn.

Lemma 3.2. There exist αk > 0 and ρk > 0 independent of n such that for

all n ≥ k
inf

z∈Sρk
∩Yn

I(z) ≥ αk

where Sρk
= {y ∈ E+ | ‖y‖ = ρk}. Moreover, αk → ∞ as k → ∞.

Proof. We first recall that by Proposition 2.1, Es is embedded in Lγ(Ω, |x|−̺)
for any γ such that

γ ≤
2(N − ̺)

N − 4s
.

Hence, there exists a = a(γ) such that

‖u‖Lγ (Ω,|x|−̺) ≤ a‖u‖Es for all u ∈ Es.

Also for z ∈ E+
k ⊕ · · · ⊕ E+

j ⊕ · · · we have

‖z‖E ≥ λ
min{s,t}
k ‖z‖L2(Ω)

with λk → ∞ as k → ∞.
Now consider z = (u, v) ∈ Yn. For a constant a independent of n, we

observe that there exists κ > 0 such that

‖u‖q+1
Lq+1(Ω,|x|−β)

≤ ‖u‖
2/κ
L2(Ω)

‖u‖
q+1−2/κ
Lγ (Ω,|x|−̺)

≤
a

λ
min{s,t}(2/κ)
k

‖u‖q+1
E

Analogously, we obtain

‖v‖p+1
Lp+1(Ω,|x|−α)

≤
a

λ
min{s,t}(2/θ)
k

‖v‖p+1
E

for some θ > 0. Then for z = (u, v) we have

I(z) ≥ ‖z‖2
E − C

(

a

λ
min{s,t}min{2/κ, 2/θ}
k

max{‖z‖q+1
E , ‖z‖p+1

E } + 1

)

Then we choose

ρ
max{p+1,q+1}
k = λ

min{s,t}min{2/κ, 2/θ}
k

and observe that ρk → ∞ as k → ∞.
Therefore, for z ∈ Sρk

∩ Yn we find that

(3.7) I(z) ≥ ρ2
k − C.
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Defining αk as the right hand side of (3.7) and noting that both ρk and αk

are independent of n ≥ k we complete the proof of the Lemma. �

Next we define, for z = (u, v) ∈ E

(3.8) Tσ(z) = (σµ−1u, σν−1v)

where µ and ν are such that

µ+ ν < min{µ(p+ 1), ν(q + 1)}.

This choice of µ and ν is possible since, by (1.4), we have p q > 1.

Lemma 3.3. There exist Bk > 0, σk and Mk > 0 independent of n such

that for all n ≥ k they satisfy σk > ρk,

sup
Tσk

(∂D∩En)
I ≤ 0 and sup

Tσk
(D∩En)

I ≤ Bk

where

D = {z ∈ E− ⊕ E+
1 ⊕ · · · ⊕ E+

k | ‖z−‖ ≤Mk, ‖z+‖ ≤ σk}.

Proof. Let us consider z = Tσ(u, v) with (u, v) ∈ D. Then we can write

z = (σµ−1u+, σν−1v+) + (σµ−1u−, σν−1v−).

Using the definition of the spaces E+ and E− we have
∫

Ω
Asu,Atv = σµ+ν−2(‖z+‖2 − ‖z−‖2).

On the other hand, we have
∫

Ω
H(x, z) =

∫

Ω
σ(q+1)(µ−1) |u

+ + u−|q+1

|x|β
+ σ(p+1)(ν−1) |v

+ + v−|p+1

|x|α
.

The functions u+ and u− can be written as

u+ =

k
∑

i=1

θiφi and u− =

k
∑

i=1

γiφi + ũ−,

where ũ− is orthogonal to φi, i = 1, ..., k in L2(Ω). Using Holder’s inequality
we get

k
∑

i=1

λs−t
i (θ2

i + θiγi) = 〈u+ + u−, As−tu+〉

≤ ‖u+ + u−‖Lq+1(Ω,|x|−β)‖A
s−tu+‖La′ (Ω,|x|θ).

Then there exists a constant Ck such that

(3.9)

k
∑

i=1

λs−t
i (θ2

i + θiγi) ≤ Ck‖u
+ + u−‖Lq+1(Ω,|x|−β)‖u

+‖L2(Ω).
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In a similar way, using that v+ = As−tu+ and v− = −As−tu− we have that
there exists a constant Ck such that

(3.10)

k
∑

i=1

λs−t
i (θ2

i − θiγi) ≤ Ck‖v
+ + v−‖Lp+1(Ω,|x|−α)‖v

+‖L2(Ω).

Depending on the sign of
∑k

i=1 λ
s−t
i θiγi we use (3.9) or (3.10) to conclude

that

‖u+‖L2(Ω) ≤ Ck‖u
+ + u−‖Lq+1(Ω,|x|−β)

or

‖u+‖L2(Ω) ≤ Ck‖v
+ + v−‖Lp+1(Ω,|x|−α).

Hence,

I(z) ≤ σµ+ν−2(‖z+‖2 − ‖z−‖2) − Ckσ
(q+1)(µ−1)‖u+‖q+1

L2(Ω)

or

I(z) ≤ σµ+ν−2(‖z+‖2 − ‖z−‖2) − Ckσ
(p+1)(ν−1)‖u+‖p+1

L2(Ω)
.

Thus we may choose ‖z+‖E = σk large enough in order to obtain σk > ρk

and, by the condition on µ and ν, I(z) ≤ 0.
Taking ‖z+‖ ≤ σk and ‖z−‖ = Mk, we get

I(z) ≤ σµ+ν−2
k

(

σ2
k −M2

k

)

and then choosing Mk large enough we find that

I(z) ≤ 0.

In this way we have finished with the proof of the first part of Lemma 3.3.
Next we choose Bk large so that the second inequality holds. �

Proof of Theorem 1.1. Existence of infinitely many solutions.

For k ≥ 1, Lemmas 3.2 and 3.3 allow us to use Theorem 3.1. As a
consequence the functional I has a critical value ck ∈ [αk, Bk]. Since αk → ∞
we get infinitely many critical values of I. Therefore we have infinitely many
solutions of (1.1). �

Now we turn our attention to the existence of a positive solution to (1.1).
We use ideas from [17] under the functional setting of Section 2. We start

by redefining the Hamiltonian. Let us define H̃ : ∂Ω × R × R → R by

(3.11) H̃(x, u, v) =















H(x, u, v) if u, v ≥ 0,
H(x, 0, v) if u ≤ 0, v ≥ 0,
H(x, u, 0) if u ≥ 0, v ≤ 0,
0 if u, v ≤ 0.

We observe that if (u, v) is a nontrivial strong solution of

(3.12)

{

−∆u = H̃v(x, u, v) in Ω,

−∆v = H̃u(x, u, v),
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with Dirichlet boundary conditions, then by the maximum principle we have
that u and v are strictly positive in Ω. Hence (u, v) is a positive strong
solution of (1.1).

To find a nontrivial solution of (3.12) we want to apply the results of

Section 3. By our assumptions, the new Hamiltonian H̃ is regular.
We have to adapt the proof of Theorem 1.1 to the functional I with the

Hamiltonian H replaced by H̃. We observe that the proof of the Palais-
Smale condition and the geometric conditions follows as before with some
minor modifications, see [17] for the details.

Proof of Theorem 1.1. Existence of a positive strong solution.

As a consequence of the previous results the modified functional I (with

the modified Hamiltonian H̃ instead of H) has a critical value c 6= 0. Hence,
by the maximum principle, we obtain a positive strong solution of (1.1). �
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