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Abstract. In this paper we study existence and multiplicity of non-
negative solutions to

(
∆u = up + uq in Ω,
∂u

∂ν
= λu on ∂Ω.

Here Ω is a smooth bounded domain of RN , ν stands for the outward unit
normal and p, q are in the convex-concave case, that is 0 < q < 1 < p.
We prove that there exists Λ∗ > 0 such that there are no nonnegative
solutions for λ < Λ∗, and there is a maximal nonnegative solution for
λ ≥ Λ∗. If λ is large enough, then there exist at least two nonnegative
solutions. We also study the asymptotic behavior of solutions when
λ → ∞ and the occurrence of dead cores. In the particular case where
Ω is the unit ball of RN we show exact multiplicity of radial nonnegative
solutions when λ is large enough, and also the existence of nonradial
nonnegative solutions.

1. Introduction

In the well-known paper [1], the following elliptic problem

(1.1)
{ −∆u = up + λuq in Ω,

u = 0 on ∂Ω,

was considered. Here λ > 0 is a parameter and the main point is that the
nonlinearity in the equation is a combination of a convex term and a concave
term, that is, the exponents verify

(1.2) 0 < q < 1 < p.

Among other results, it was shown in [1] that there exists a value Λ > 0 such
that problem (1.1) does not have positive solutions when λ > Λ, while it
has at least a positive solution for λ = Λ and at least two positive solutions
if 0 < λ < Λ (provided in addition that p is subcritical). These results
have been subsequently generalized to deal with more general operators
(cf. [11], [12] for the p-Laplacian or [8] for fully nonlinear operators) or
boundary conditions (see [9] for mixed-type boundary conditions and [13]
for a nonlinear boundary condition).

The purpose of this paper is to consider a related problem where the
presence of a convex and a concave term allows to have multiplicity of non-
negative nontrivial solutions. The problem we deal with is the following:

(1.3)

{
∆u = up + uq in Ω,
∂u

∂ν
= λu on ∂Ω,
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where Ω is a smooth C2,α domain or RN , ν stands for the outward pointing
unit normal and p and q verify (1.2).

Observe that an important feature in (1.3) is the presence of the parameter
λ in the boundary condition. Problems with bifurcation parameters in the
boundary conditions of the form (1.3) appear in a natural way when one
considers the Sobolev trace embedding H1(Ω) ↪→ L2(∂Ω) (see for instance
[10] and the survey [27]), but in spite of this they are not very frequent in
the literature. We quote the works [15], [16], [18] by the authors, which deal
with different elliptic problems with the same boundary condition and [4],
[5], [6], where the boundary conditions are more general.

By a nonnegative solution to (1.3) we mean a nonnegative nontrivial weak
solution in H1(Ω), that is, a function u ∈ H1(Ω), u  0, verifying

−
∫

Ω
∇u∇ϕ + λ

∫

∂Ω
uϕ =

∫

Ω
upϕ +

∫

Ω
uqϕ,

for every ϕ ∈ H1(Ω), where the last two integrals are assumed to be finite.
However, let us mention that weak solutions are indeed classical (they are
bounded thanks for instance to Lemma 5 in [17] and hence in C2,γ(Ω) by
Lemma 7 in [16], where γ = min{α, q}). Recall that the functional

(1.4) E(u) =
1
2

∫

Ω
|∇u|2 − λ

2

∫

∂Ω
|u|2 +

1
p + 1

∫

Ω
|u|p+1 +

1
q + 1

∫

Ω
|u|q+1

defines a natural energy functional for (1.3).
We come next to the statement of our results. Let us begin with the

questions of existence and nonexistence of nonnegative nontrivial solutions.

Theorem 1. Assume Ω ⊂ RN is a C2,α bounded domain and p and q verify
(1.2). Then there exists Λ∗ > 0 such that the following properties hold.

(a) There are no nonnegative nontrivial solutions to (1.3) for λ < Λ∗.
(b) For every λ ≥ Λ∗, there exists a maximal nonnegative nontrivial

solution u = uλ to (1.3).
(c) There exists Λ∗∗ ≥ Λ∗ such that (1.3) admits a second nontrivial

nonnegative solution u = vλ for λ > Λ∗∗. Moreover, vλ has nonneg-
ative energy for large λ, i.e. E(vλ) ≥ 0 for λ ≥ λ0.

In the literature on convex-concave problems, one actually has Λ∗ = Λ∗∗.
We remark that in those cases the second solution can be obtained directly
by means of the mountain pass theorem because the first solution can actu-
ally be obtained as a local minimum of the functional (1.4). To prove that
this actually happens an important tool is the strong maximum principle: if
u, u are respectively sub and supersolution with u ≤ u in Ω, then u < u in Ω
unless u ≡ u and both are solutions. In our present situation, this property
does not hold, due to the possible appearance of dead cores in the solutions
(see below). Thus in general it is difficult to prove that Λ∗ = Λ∗∗. This
can be shown in the particular case where the maximal solution u = uΛ∗ to
(1.3) corresponding to λ = Λ∗ is strictly positive on ∂Ω, (this occurs, for
instance, when Ω is a ball, cf. Theorem 4 below and Section 5).

Our next concern is the asymptotic behavior of solutions to (1.3) as λ →
+∞. We will show that there are essentially two behaviors: the maximal
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solution increases and converges to a boundary blow-up solution, while all
bounded solutions tend to zero at a precise rate.

Theorem 2. Under the assumptions of Theorem 1, the following properties
on the asymptotic behavior of (1.3) as λ →∞ hold true.

(a) The maximal solution uλ to (1.3) verifies uλ → U in C2
loc(Ω), where

U is the unique nonnegative solution to

(1.5)
{

∆U = Up + U q in Ω,
U = ∞ on ∂Ω.

(b) If {vλ}λ≥λ0 is a family of solutions to (1.3) such that supΩ vλ ≤ C
for λ ≥ λ0 then there exist positive constants C1, C2, such that

(1.6) C1λ
− 2

1−q ≤ max
Ω

vλ ≤ C2λ
− 2

1−q ,

for λ ≥ λ0.

Remarks 1.
a) Theorem 2 elucidates the behavior for large λ of two specific kinds of
solutions. Namely, those which became uniformly unbounded on ∂Ω as
λ →∞ (the family of maximal solutions uλ) and those solutions to (1.3) that
remain uniformly bounded on ∂Ω for large λ (notice that solutions to (1.3)
are subharmonic). Indeed, in the case where Ω is a ball and solutions are
radially symmetric the full asymptotic behavior of (1.3) is the one described
in Theorem 2. However, in the general case, asymptotic responses that are
a combination of the ones in cases a) and b) are possible (see Section 6).

b) An optimum version of estimate (1.6) on the asymptotic amplitude of
nonnegative solutions that stay bounded as λ → ∞ can be obtained in the
case of radially symmetric solutions (Theorem 4 (b) below).

As we have already mentioned, one of the difficulties that appear when
dealing with nonnegative solutions u to problem (1.3) is the possible ap-
pearance of dead cores, that is, the set O = {x ∈ Ω : u(x) = 0} could be
nonempty. We next state some conditions which ensure that nonnegative
solutions do or do not have dead cores.

Theorem 3. Assume that the hypotheses of Theorem 1 hold. Then,

(a) If {vλ}λ≥λ0 is a family of nonnegative solutions with nonnegative
energy, that is E(vλ) ≥ 0, then vλ exhibits a dead core for large
enough λ. Moreover, vλ(x) = 0 for all x ∈ Ω satisfying

(1.7) d(x)
2

1−q
+N−1 ≥ C

λ
,

with d(x) = dist (x, ∂Ω) and C > 0 a constant that does not de-
pend on λ. In particular, the family {vλ} obtained in Theorem 1 (c)
exhibits a dead core for large λ.

(b) If {vλ}λ≥λ0 is a family of nonnegative solutions with supΩ vλ ≤ C,
then vλ has a dead core for large enough λ. In this case, vλ(x) = 0
when

(1.8) d(x) ≥ C

λ
for large λ, where C > 0 does not depend on λ.
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(c) There exists R0 > 0 such that if Ω contains a ball BR with radius
R ≥ R0 then every nonnegative solution to (1.3) has a dead core
inside Ω.

(d) If Ω lies between parallel hyperplanes π1, π2 with dist(π1, π2) < 2R0,
R0 as in (c), then the maximal solution uλ is strictly positive when
λ is large enough.

Remark 2. Estimates (1.7) and (1.8) implies that in cases a) and b), dead
cores Oλ = {vλ(x) = 0} progressively fill Ω as λ → ∞. A more precise
version of estimate (1.8) can be obtained when (1.3) is radially symmetric
(Theorem 4 (b)).

Finally, we will concentrate in the particular case where Ω is a ball in RN .
In this case, we have more precise information, particularly when dealing
with radial solutions. We will show exact multiplicity of radial nonnegative
solutions to (1.3) when λ is large enough, and also the existence of nonradial
nonnegative solutions, in the spirit of [16].

Theorem 4. Under the same conditions as in Theorem 1, assume in ad-
dition that Ω = BR, the open ball in RN with radius R and center x = 0.
Then,

(a) There exists Λ∗ > 0 such that problem (1.3) has no nonnegative
nontrivial solutions for λ < Λ∗, while it has at least a nonnegative
nontrivial radial solution when λ = Λ∗ and at least two nonnegative
nontrivial radial solutions if λ > Λ∗, one of them being the maximal
solution uλ.

(b) There exists λ0 > 0 such that problem (1.3) has exactly two non-
negative nontrivial radial solutions uλ and zλ when λ > λ0, whose
asymptotic behavior is given by parts (a) and (b) in Theorem 2, re-
spectively. Moreover,

(1.9) zλ(R) = sup
BR

vλ ∼
(

2
q + 1

) 1
1−q

λ
− 2

1−q

as λ →∞ and

(1.10) ρ(λ) ∼ 2
(1− q)λ

,

as λ → ∞ where ρ(λ) stands for the distance from the dead core
{zλ = 0} to the boundary |x| = R of BR.

(c) There exists λ′0 > 0 such that problem (1.3) admits a nonradial non-
negative solution vλ when λ > λ′0.

The rest of the paper is organized as follows: in Section 2 we prove The-
orem 1. In Section 3 we study the asymptotic behavior of solutions when
λ → ∞, while dead core formation is analyzed in Section 4. Section 5 is
devoted to the problem in a ball of RN . Finally, Section 6 collects some
results on multiplicity of solutions.

2. Existence and nonexistence of solutions

In this section we prove Theorem 1, which will be split into a series of
lemmas. We begin by part (a), that is, nonnegative solutions do not exist



A CONVEX-CONCAVE ELLIPTIC PROBLEM 5

when λ is small. We are always assuming that Ω is a smooth bounded
domain and that p, q verify (1.2).

Lemma 5. There exists Λ > 0 such that there are no nonnegative nontrivial
solutions to (1.3) for λ < Λ.

Proof. Assume that u ∈ H1(Ω) is a nonnegative nontrivial weak solution,
then we have

λ

∫

∂Ω
u2 −

∫

Ω
|∇u|2 =

∫

Ω
(up+1 + uq+1).

Note that this implies that u 6≡ 0 on ∂Ω. Using that p and q verify (1.2),
we observe that sp+1 + sq+1 ≥ max{sp+1, sq+1} ≥ s2 for s ≥ 0 and hence we
get

λ

∫

∂Ω
u2 ≥

∫

Ω
|∇u|2 +

∫

Ω
u2.

Now we use the continuity of the Sobolev trace embedding H1(Ω) ↪→ L2(∂Ω)
to obtain the existence of a positive constant Λ such that

λ

∫

∂Ω
u2 ≥ Λ

∫

∂Ω
u2.

Therefore we conclude that λ ≥ Λ since u 6≡ 0 on ∂Ω. ¤

Now we recall that, since p > 1, Theorem 1 in [15] provides with a unique
solution to the problem

(2.1)

{
∆u = up in Ω,
∂u

∂ν
= λu on ∂Ω,

for every λ > 0, which will be denoted by Uλ (it is also worthy of mention
that Uλ > 0 in Ω, and is increasing and continuous in λ). This solution
provides with an upper bound for nonnegative nontrivial solutions to (1.3).
Indeed, it is easy to show that if u is a nonnegative nontrivial solution to
(1.3), then it is a subsolution to (2.1). Since MUλ is a supersolution for
large M , we obtain the following result:

Lemma 6. Let u be a nonnegative nontrivial solution to (1.3). Then

u ≤ Uλ in Ω.

Next let us face the question of existence of solutions. We begin by part
(b) of Theorem 1.

Lemma 7. There exists Λ∗ > 0 such that (1.3) has a maximal nonnegative
nontrivial solution for λ ≥ Λ∗, while no nonnegative nontrivial solutions
exist when λ < Λ∗.

Proof. Let us first prove that nonnegative nontrivial solutions exist for large
λ. To this end, consider the problem

(2.2)

{
∆u = 2uq in Ω,
∂u

∂ν
= λu on ∂Ω.

It follows from Theorem 1 in [16] that there exists a family of nonnegative
nontrivial solutions {Vλ}λ>0 to (2.2) verifying Vλ → 0 uniformly in Ω as
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λ → ∞. Let Λ1 be such that Vλ ≤ 1 in Ω for λ > Λ1. Then Vλ is a
subsolution to (1.3), since

{
∆Vλ = 2V q

λ ≥ V p
λ + V q

λ in Ω,
∂Vλ

∂ν
= λVλ on ∂Ω.

On the other hand, the unique positive solution Uλ to (2.1) is a supersolution
to (1.3). Since Uλ stays bounded away from zero while Vλ → 0 uniformly
in Ω as λ → ∞, we also have Vλ ≤ Uλ when λ is large enough, so that a
nonnegative nontrivial solution to (1.3) exists when λ is large enough.

Therefore, we may define Λ∗ as the infimum of those λ0 for which (1.3) has
a nonnegative nontrivial solution for every λ > λ0. Thanks to Lemma 5 we
have Λ∗ > 0. Let us next show that solutions do exist for every λ > Λ∗. To
this aim we momentarily change notation to make explicit the dependence
of (1.3) on λ and denote it as (1.3)λ.

Take λ > Λ∗. Thanks to the definition of Λ∗, there exists a value µ
with Λ∗ < µ < λ such that (1.3)µ admits a nontrivial nonnegative solution,
which will be denoted by uµ. Observe that uµ is a subsolution to (1.3)λ
since µ < λ, while, according to Lemma 2.1, uµ ≤ Uµ ≤ Uλ. Observing that
Uλ is a supersolution to (1.3)λ, we obtain at least a nonnegative nontrivial
solution to this problem, as we wanted to show.

We now observe that by Lemma 2.1, Uλ is a supersolution to (1.3)λ which
controls every possible nonnegative nontrivial solution. Thus it is standard
to obtain that (1.3)λ admits a maximal solution for every λ > Λ∗, and the
maximal solution is increasing in λ. To conclude the proof, we only need
to show that there exists a nontrivial nonnegative solution when λ = Λ∗ as
well. To this end we just have to take an arbitrary sequence λn ↓ Λ∗ and
consider the function

u := lim
n→∞uλn ,

where uλ is the maximal solution to (1.3)λ constructed above. Observe that
by the monotonicity of uλ, this limit exists pointwise. Moreover, a standard
compactness argument shows that the limit also holds in H1(Ω). Thus u
will be a nonnegative solution to (1.3)Λ∗ , and we only have to rule out the
possibility u = 0. Arguing by contradiction, assume that u = 0, and define
the functions vn = uλn/‖uλn‖L2(∂Ω), which verify





∆vn = ‖uλn‖p−1
L2(∂Ω)

vp
n + ‖uλn‖q−1

L2(∂Ω)
vq
n in Ω,

∂vn

∂ν
= λnvn on ∂Ω.

Then, we have

λn −
∫

Ω
|∇vn|2 = ‖uλn‖p−1

L2(∂Ω)

∫

Ω
vp+1
n + ‖uλn‖q−1

L2(∂Ω)

∫

Ω
vq+1
n .

This implies that vn is bounded in H1(Ω) and therefore we may assume that
vn → v weakly in H1(Ω) and strongly in L2(Ω), Lq+1(Ω) and L2(∂Ω). In
particular, ‖v‖L2(∂Ω) = 1. Moreover,

λn ≥ ‖uλn‖q−1
L2(∂Ω)

∫

Ω
vq+1
n ,
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and we obtain that v = 0, which is a contradiction since ‖v‖L2(∂Ω) = 1. This
concludes the proof. ¤

To complete the proof of Theorem 1 we have to prove part (c).

Lemma 8. There exists Λ∗∗ ≥ Λ∗ such that for every λ > Λ∗∗, there exist
at least two nonnegative nontrivial solutions to (1.3).

The proof of Lemma 8 is based in the mountain pass theorem (cf. [3], [22],
[25]). But observe first that the natural functional associated to solutions
of (1.3) is given by

E(u) =
1
2

∫

Ω
|∇u|2 − λ

2

∫

∂Ω
|u|2 +

1
p + 1

∫

Ω
|u|p+1 +

1
q + 1

∫

Ω
|u|q+1,

and in order to obtain a well-defined and differentiable functional in H1(Ω)
we should assume that p is subcritical. To get rid of this supplementary
undesirable hypothesis, we take advantage of the fact that every solution
verifies u ≤ Uλ and modify the functional accordingly. Introduce the trun-
cated functions

f(x, u) =





Up
λ u > Uλ,

up 0 ≤ u ≤ Uλ,
0 u ≤ 0,

and, for technical reasons, also

g(x, u) =





Uλ u > Uλ,
u 0 ≤ u ≤ Uλ,
0 u ≤ 0.

Let

F (x, u) =
∫ u

0
f(x, s) ds, G(x, u) =

∫ u

0
g(x, s) ds,

and consider the truncated functional

J(u) =
1
2

∫

Ω
|∇u|2 − λ

∫

∂Ω
G(x, u) +

∫

Ω
F (x, u) +

1
q + 1

∫

Ω
|u|q+1.

Notice that the sublinear term |u|q+1 has not been truncated, since it is not
necessary.

It is standard that J is a C1 functional in H1(Ω), whose critical points
are weak solutions to the problem

(2.3)

{
∆u = f(x, u) + |u|q−1u in Ω,
∂u

∂ν
= λg(x, u) on ∂Ω.

As a first step, let us check that weak solutions to (2.3) verify 0 ≤ u ≤ Uλ

and therefore are also weak solutions to (1.3).

Lemma 9. Let u ∈ H1(Ω) be a weak solution to (2.3). Then

0 ≤ u ≤ Uλ.

In particular, u is a weak solution to (1.3).
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Proof. Take u− = min{u, 0} as a test function in the weak formulation of
(2.3) to obtain

−
∫

Ω
|∇u−|2 + λ

∫

∂Ω
g(x, u)u− =

∫

Ω
f(x, u)u− +

∫

Ω
|u−|q+1.

Since f(x, u)u− = 0 and g(x, u)u− = 0 we have

−
∫

Ω
|∇u−|2 =

∫

Ω
|u−|q+1

and then we conclude that u− = 0, that is, u ≥ 0. Similarly, taking (u −
Uλ)+ = max{u− Uλ, 0} as test function we get,

−
∫

u>Uλ

|∇(u− Uλ)|2 + λ

∫

∂Ω∩{u>Uλ}
(g(x, u)− Uλ)(u− Uλ)

=
∫

u>Uλ

(f(x, u)− Up
λ)(u− Uλ) +

∫

u>Uλ

uq(u− Uλ).

As g(x, u)− Uλ = 0 and f(x, u)− Up
λ = 0 when u > Uλ we obtain

−
∫

u>Uλ

|∇(u− Uλ)|2 =
∫

u>Uλ

uq(u− Uλ),

and it follows that u ≤ Uλ. This concludes the proof. ¤

The next step is to ensure that J has the desirable compactness properties.
We will use in H1(Ω) the norm

‖u‖H1 = ‖∇u‖L2(Ω)N + ‖u‖L2(∂Ω),

which is equivalent to the usual one. Then we have:

Lemma 10. The functional J verifies the Palais-Smale condition.

Proof. Let un ∈ H1(Ω) be a sequence such that J(un) ≤ C and J ′(un) → 0.
First, let us see that un is bounded in H1(Ω). Assume, by contradiction,
that ‖un‖H1 →∞. Since f(x, u) ≥ 0 and G(x, u) ≤ u2/2 we obtain

1
2

∫

Ω
|∇un|2 ≤ λ

2

∫

∂Ω
u2

n + C,

so that ‖un‖L2(∂Ω) → ∞. Define vn = un/‖un‖L2(∂Ω). Then ‖vn‖H1(Ω) is
bounded and we can extract a subsequence, denoted again by vn, such that
vn ⇀ v weakly in H1(Ω) and strongly in L2(∂Ω) and in Lq+1(Ω). Observe
that

1
2

∫

Ω
|∇vn|2 − λ

‖un‖2
L2(∂Ω)

∫

∂Ω
G(x, un) +

1
‖un‖2

L2(∂Ω)

∫

Ω
F (x, un)

+
‖un‖q−1

L2(∂Ω)

q + 1

∫

Ω
|vn|q+1 ≤ C

‖un‖2
L2(∂Ω)

.

Since
λ

‖un‖2
L2(∂Ω)

∫

∂Ω
G(x, un) → 0 and

1
‖un‖2

L2(∂Ω)

∫

Ω
F (x, un) → 0

we conclude that ∫

Ω
|vn|q+1 → 0.
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This implies v = 0, which contradicts ‖v‖L2(∂Ω) = 1. This contradiction
proves that un is bounded in H1(Ω), thus we can extract a subsequence,
still denoted by un, such that un ⇀ u weakly in H1(Ω), strongly in L2(∂Ω)
and Lq+1(Ω) and a.e. in Ω. Since f and g are bounded, we obtain by
dominated convergence∫

∂Ω
g(x, un)u ,

∫

∂Ω
g(x, un)un →

∫

∂Ω
g(x, u)u

and ∫

Ω
f(x, un)u ,

∫

Ω
f(x, un)un →

∫

Ω
f(x, u)u.

Finally, as J ′(un) → 0 we have J ′(un)(u− un) → 0. Since

J ′(un)(u− un) =
∫

Ω
∇un∇u−

∫

Ω
|∇un|2 − λ

∫

∂Ω
g(x, un)u

+λ

∫

∂Ω
g(x, un)un +

∫

Ω
f(x, un)u−

∫

Ω
f(x, un)un

+
∫

Ω
|un|q−1unu−

∫

Ω
|un|q+1

=
∫

Ω
∇un∇u−

∫

Ω
|∇un|2 + o(1),

it follows that ∫

Ω
|∇un|2 →

∫

Ω
|∇u|2.

Hence, we conclude that un → u strongly in H1(Ω), so that J verifies the
Palais-Smale condition. ¤

Finally, we need to check that J verifies the geometric conditions of the
mountain pass lemma. Let us prove first that u = 0 is a local minimum
of J .

Lemma 11. The functional J has a strict local minimum at u = 0.

Proof. We have J(0) = 0. Let us assume that there exists a sequence un → 0
with J(un) ≤ 0. Then, taking vn = un/‖un‖L2(∂Ω) (note that un 6≡ 0 on ∂Ω
since un 6≡ 0 in Ω and J(un) ≤ 0), we have

1
2

∫

Ω
|∇vn|2 ≤ λ

∫

∂Ω

G(x, un)
‖un‖2

L2(∂Ω)

≤ C

∫

∂Ω
v2
n = C,

for some positive constant C. Hence we can extract a subsequence, still
denoted by vn, such that vn ⇀ v weakly in H1(Ω), strongly in L2(∂Ω) and
Lq+1(Ω) and a.e. in Ω. In particular, we have that ‖vn‖L2(∂Ω) = 1, and then
v 6= 0. On the other hand,

1
2

∫

Ω
|∇vn|2 − λ

‖un‖2
L2(∂Ω)

∫

∂Ω
G(x, un) +

‖un‖q−1
L2(∂Ω)

q + 1

∫

Ω
|vn|q+1 ≤ 0,

which implies that
∫
Ω |vn|q+1 → 0, a contradiction. ¤

We can finally proceed with the proof of Lemma 8. This will also conclude
the proof of Theorem 1.
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Proof of Lemma 8. Since J verifies the Palais-Smale condition we can find a
second solution using the mountain pass theorem. In fact, using Lemma 11,
we only need to check the existence of u ∈ H1(Ω) such that J(u) < 0. This
is easily achieved by simply taking an arbitrary fixed function u ∈ H1(Ω)
which does not vanish identically on ∂Ω and considering a large enough λ.
Thus the mountain pass theorem implies the existence of a critical point u
of J such that J(u) > 0. It follows that u is a nontrivial solution to (2.3)
and by Lemma 9, u is a nontrivial nonnegative solution to (1.3).

Finally, notice that Theorem 3 (a), whose forthcoming proof is indepen-
dent of the present one, implies that the maximal solution has negative
energy for large enough λ. Indeed, it will be proven that if for some se-
quence λn → ∞ we had J(uλn) ≥ 0 then uλn → 0 pointwise in Ω, which
is impossible since the maximal solution is increasing in λ. In particular,
we can guarantee that the nonnegative nontrivial solution just constructed
does not coincide with the maximal solution.

To summarize, we have shown the existence of Λ∗∗ > 0 such that problem
(1.3) admits at least two nontrivial nonnegative solutions for λ ≥ Λ∗∗. The
proof is finished. ¤

3. behavior as λ →∞
In this section we analyze the behavior for large λ of nonnegative solutions

to (1.3).

Proof of Theorem 2. (a) First, notice that by comparison we have uλ ≤ U ,
where U is the unique nonnegative solution to (1.5). The existence of such
solution is implied by the results in [24], while the uniqueness follows by
Theorem 1 in [14] (see also Remark 3 below). Then it is standard to obtain
that for every sequence λn → ∞, there exists a subsequence such that
uλn → V in C2

loc(Ω), where V is a solution to ∆V = V p + V q in Ω.
Once we show that uλ →∞ on ∂Ω as λ →∞, it will follow that V = U ,

as we want to show. Choose m > 0 and let Vm be the unique solution to
the Dirichlet problem

{
∆v = vp + vq in Ω,
v = m on ∂Ω.

If we denote by λm = sup∂Ω |∇vm|/vm, it clearly follows that vm is a subso-
lution to (1.3) for λ ≥ λm. Since there exist arbitrarily large supersolutions,
we achieve uλ ≥ vm if λ ≥ λm. In particular, uλ ≥ m on ∂Ω if λ ≥ λm, as
we wanted to see. This concludes the proof of part (a).
(b) This proof uses a standard blow-up technique, in the same spirit as
Theorem 1-iii) in in [16], thus we do not provide complete details. Let {vλ}
be a family of nonnegative solutions to (1.3) with

Mλ := sup
Ω

vλ ≤ C.

Assume that for a sequence λn →∞ we have λ
2

1−q
n Mλn →∞. For simplicity,

let us denote Mn = Mλn and vn = vλn . Choose a point xn ∈ ∂Ω such that
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vn(xn) = Mn and introduce the scaled functions

wn(y) =
vn(xn + λ−1

n y)
Mn

,

which verify




∆wn =
1
λ2

n

(
Mp−1

n wp
n + M q−1

n vq
n

)
in Ωn,

∂wn

∂ν
= wn on ∂Ωn,

where Ωn = {y ∈ RN : xn + λ−1
n y ∈ Ω}. We may assume with no loss of

generality that xn → x0 ∈ ∂Ω. Then, a usual straightening of ∂Ω near x0

together with the fact that ‖wn‖∞ = 1, allow us to obtain bounds to pass to
the limit and obtain that, for a subsequence, wn → w in C(RN

+ ) ∩ C2(RN
+ ),

where w solves the problem



∆w = 0 in RN
+ ,

− ∂w

∂y1
= w on ∂RN

+ ,

and RN
+ = {y1 > 0}. Moreover, w(0) = 1. According to the discussion in

page 15 of [16], this is impossible. Hence the upper inequality in (1.6) is
proved.

To show the lower inequality, we assume that there exists a sequence

λn →∞ such that λ
2

1−q
n Mn → 0, and consider

zn(y) =
vn(xn + M

1/β
n y)

Mn
,

where β = 2/(1− q). Since zn solves
{

∆zn = Mp−q
n zp

n + zq
n in Ωn,

∂zn

∂ν
= M1/β

n λnzn on ∂Ωn

and verifies ‖zn‖∞ = 1, we can, as before, pass to the limit to obtain that
zn → z in C(RN

+ ) ∩ C2(RN
+ ), where z is a solution to




∆z = zq in RN
+ ,

− ∂z

∂y1
= 0 on ∂RN

+ .

Now we observe that this is impossible, since by the strong maximum princi-
ple z < z(0) = 1, and Hopf’s principle would imply − ∂z

∂y1
(0) > 0. Again we

have a contradiction, and therefore we conclude the existence of a constant
c such that Mλ ≥ cλ−2/(1−q) when λ is large enough. This shows the lower
inequality in (1.6). ¤

Remark 3. It is worth mentioning that the proof of Theorem 1 of [14] should
be clarified in a specific technical step. Such proof deals with uniqueness of
solutions to

(3.1)
{

∆u = f(u) in Ω,
u = ∞ on ∂Ω,
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under the assumption that f is a continuous function which is increasing
and such that f(t)/tp is increasing for large t and some p > 1. At some
point, the strong comparison principle is invoked and this requires f to be
locally Lipschitz (this of course does not hold in our present situation). This
difficulty can be overcomed as follows: assume that u is the minimal solution
to (3.1) and let v be another solution. For small ε > 0 let Dε = {x ∈ Ω :
(1 + ε)u(x) < v(x)} and choose η > 0 such that f(t)/t is increasing in
t ≥ infΩη u, where Ωη = {x ∈ Ω : d(x) := dist(x, ∂Ω) < η}. Notice that
Dε ∩ ∂Ω = ∅, since u/v → 1 as d(x) → 0 (see [7]). Then in Dε,η = Dε ∩ Ωη

we have ∆(v − (1 + ε)u) ≥ (f(v)− f((1 + ε)u)) ≥ 0 so that

v − (1 + ε)u ≤ max
∂Dε,η

(v − (1 + ε)u) in Dε,η.

On the other hand, ∂Dε,η = (∂Dε ∩ Ωη) ∪ (Dε ∩ ∂Ωη), and the maximum
cannot be achieved on ∂Dε, since this would imply v− (1 + ε)u ≤ 0 in Dε,η,
contrary to the definition of Dε. Then

(3.2) v − (1 + ε)u ≤ max
Dε∩{d=η}

(v − (1 + ε)u) in Dε,η.

Finally, observe that Dε is increasing as ε ↓ 0, so that denoting Ω̃ = ∪ε>0Dε

and letting ε → 0 in (3.2) we have

(3.3) v − u ≤ max
eΩ∩{d=η}

(v − u) ≤ max
{d=η}

(v − u) =: θ in Ω̃η,

where Ω̃η = Ω̃ ∩ Ωη. Taking into account that u = v in Ω \ Ω̃, as can be
easily checked, we may ensure that (3.3) holds in Ωη.

On the other hand, ∆(v−u) = f(v)−f(u) ≥ 0 in Ω\Ωη, so that v−u ≤ θ
in Ω \ Ωη by the maximum principle. Hence v − u ≤ θ in Ω and the strong
maximum principle implies v − u = θ, which is only possible if θ = 0, that
is, u = v. This proves uniqueness.

Remark 4. Observe that if {vλ} is a family of solutions to (1.3) with λ →∞
such that infΩ vλ ≥ c > 0 then ∆vλ = vp

λ + vq
λ ≤ (1 + cq−p)vp

λ in Ω, so

that the function (1 + cq−p)
1

p−1 vλ is a supersolution to (2.1) and uniqueness
implies

vλ ≥ (1 + cq−p)−
1

p−1 Uλ.

Then vλ → ∞ uniformly on ∂Ω when λ → ∞. It follows that vλ → U uni-
formly on compact subsets of Ω where U is the unique nonnegative solution
to (1.5).

4. Positivity vs. dead cores

In this section we prove Theorem 3. That is, we consider conditions
under which nonnegative solutions to (1.3) either are strictly positive or
have a dead core.

Proof of Theorem 3, (a) and (b). (a) Let {vλ}λ≥λ0 be a family of nonnega-
tive solutions with nonnegative energy, that is,

1
2

∫

Ω
|∇vλ|2 − λ

2

∫

∂Ω
v2
λ +

1
p + 1

∫

Ω
vp+1
λ +

1
q + 1

∫

Ω
vq+1
λ ≥ 0.
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Taking vλ as a test function in the weak formulation of (1.3) we have
∫

Ω
|∇vλ|2 − λ

∫

∂Ω
|vλ|2 +

∫

Ω
vp+1
λ +

∫

Ω
vq+1
λ = 0,

so that ∫

Ω
vp+1
λ ≤ (p + 1)(1− q)

(q + 1)(p− 1)

∫

Ω
vq+1
λ

and then

(4.1) ‖vλ‖Lp+1(Ω) ≤ C‖vλ‖θ
Lq+1(Ω),

with θ = (q + 1)/(p + 1) ∈ (0, 1) and a positive constant C which is inde-
pendent of λ. Hence,

‖vλ‖1−θ
Lp+1(Ω)

≤ C|Ω|(p−q)/(p+1)2

and so
‖vλ‖Lp+1(Ω) ≤ C.

Now, we just observe that from (1.3) we also have

λ

∫

∂Ω
vλ =

∫

Ω
vp
λ +

∫

Ω
vq
λ ≤ C,

so that

(4.2)
∫

∂Ω
vλ ≤ C

λ
.

Next notice that by comparison vλ ≤ zλ, where zλ is the harmonic function
in Ω which coincides with vλ on ∂Ω. Thanks to Green’s representation
formula:

zλ(x) =
∫

∂Ω
vλ(y)

∂G

∂ν
(x, y)dS(y),

where G(x, y) is the Green function of the domain Ω.
On the other hand ∣∣∣∣

∂G

∂ν
(x, y)

∣∣∣∣ ≤
A

|x− y|N−1
,

for x ∈ Ω, y ∈ ∂Ω with A = A(Ω) a positive constant. Hence

vλ(x) ≤ C

λ
d(x)1−N

with d(x) = dist (x, ∂Ω) and large λ. This implies that vλ → 0 uniformly in
compacts of Ω as λ →∞.

Consider now the auxiliary boundary value problem

(4.3)
{

∆w = wq in BR,
w = µ on ∂BR,

with BR = {|x| < R} and µ > 0. It has a unique solution w = wµ,BR
(r),

r = |x|, such that

wµ,BR
(r) ≤ B[(r − d)+]β, 0 ≤ r ≤ R,

with β = 2/(1− q), Bq−1 = β(β − 1), for µ ≤ BRβ and d = R− (µ/B)1/β.
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Given a small d0 > 0, for every ξ ∈ Ω such that d(ξ) = d0 we observe
problem (4.3) in the ball BR(ξ) with radius R = d0/2 and value

µ =
C

λ

(
d0

2

)1−N

.

Since µ is an upper bound for vλ in {d(x) ≥ d0/2} we obtain

vλ(x) ≤ wµ,Br(ξ)(x) x ∈ BR(ξ),

for every ξ such that d(ξ) = d0. In particular,

vλ(ξ) ≤ wµ,Br(ξ)(ξ) = 0

on {d(ξ) = d0} when

µ ≤ B

(
d0

2

)β

.

Therefore,
vλ = 0 in d(x) ≥ d0,

if

dβ+N−1
0 ≥ C

λ
,

for a certain positive constant C. This proves (1.7).
(b) It follows by Theorem 2 (b) that vλ → 0 uniformly in Ω. To show both
the existence of a dead core and estimate (1.8) we proceed as in part (a).
Specifically, we take problem (4.3) in BR(ξ) with R = d0 (small enough)
and

µ = C2λ
−β

the upper bound of the family according Theorem 2. Then, vλ vanishes in
{d(x) ≥ d0} provided

C2λ
−β ≤ Bdβ

0 ,

which is the estimate (1.8). ¤

Before completing the proof of Theorem 3 it is convenient to state some
basic features on certain radial initial value problems which will be instru-
mental for both the present and the next Section. Consider first the Cauchy
problem

(4.4)

{
(rN−1u′)′ = rN−1(up + uq) r ≥ 0,

u(0) = c, u′(0) = 0,

where c ≥ 0 is a parameter.

Lemma 12. For every c ≥ 0, problem (4.4) admits a unique solution

u = u(r, c),

which is defined for r ∈ [0, ω(c)) with ω(c) < ∞. In addition,
a) u(r, c) is increasing with respect to r in [0, ω(c)) and limr→ω(c) u(r, c) = ∞.
b) u(r, c) is increasing and differentiable with respect to c.
c) The function ω = ω(c) is continuous, decreasing and limc→∞ ω(c) = 0.
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Remark 5. In the one-dimensional case u = u(x, c) is given by the expression

(4.5)
∫ u

c

ds√
2(H(s)−H(c))

= x,

ω(c) being the value of the (finite) integral corresponding to u = ∞ (H is a
primitive of h = up + uq).

Another initial value problem of a different nature must be analyzed to
properly understand the dead core formation in problem (1.3). Namely,

(4.6)

{
(rN−1u′)′ = rN−1(up + uq) r ≥ d,

u(d) = u′(d) = 0,

where d ≥ 0 has the status of a parameter. It should be remarked that
such a problem exhibits infinitely many nontrivial nonnegative solutions.
However, it only admits a positive solution in r ≥ d. This fact and related
features concerning (4.6) are stated next.

Lemma 13. Problem (4.6) admits for every d ≥ 0 a unique solution u =
u(r, d) defined in an interval [d, ω0(d)), d < ω0(d) < ∞, when subject to the
property of being positive in r > d. Moreover,

a) u(r, d) is increasing in [d, ω0(d)) and limr→ω0(d) u(r, d) = ∞.
b) For d1 < d2, u(r, d1) > u(r, d2) for r ≥ d2.
c) u(r, d) is differentiable with respect to d.
d) The function ω = ω0(d) is continuous, increasing while

(4.7)
1√
N

(ω0(d)− d) ≤ L ≤ ω0(d)− d

for all d ≥ 0 with L =
∫∞
0

ds√
H(s)

.

Remarks 6.
a) In the one-dimensional case u(x, d) = u0(x−d), u0(x) being given by (4.5)
after setting c = 0.

b) It should be noticed that, following the notation given in the lemmas,
u(r, c)|c=0 = u(r, d)d=0 and so ω(0) = ω0(0). For immediate use we fix the
notation R0 = ω(0) and u0(r) = u(r, d)|d=0.

Further auxiliary problems playing an important rôle in next section are
the radial Dirichlet problem

(4.8)

{
∆u = up + uq in BR,

u = µ on ∂BR,

for which the existence a unique nonnegative radial solution u = ũ(r, µ) for
all µ ≥ 0 is well-known, and the associated singular version

(4.9)

{
∆u = up + uq in BR,

u = ∞ on ∂BR.

Problem (4.9) admits a unique nonnegative radial solution U = Ũ(r) (see
the proof of Theorem 2 (a) and Remark 3).
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The main features concerning the Dirichlet problem (4.8) which are rele-
vant for our forthcoming purposes are collected in the following lemma.

Lemma 14. For µ ≥ 0 let u = ũ(r, µ) be the solution to (4.8) and U = Ũ(r)
the corresponding solution to (4.9). Then, the following properties hold.

A) Assume that R < R0 = ω(0). Then, the large solution Ũ is positive in
BR with

inf Ũ = ω−1(R).

In addition,
i) For µ ≥ µ0 := u0(R) there exists a unique 0 ≤ c(µ) < ω−1(R) such that

ũ(r, µ) = u(r, c(µ)) 0 ≤ r ≤ R.

The function c(µ) is increasing, differentiable, c(µ0) = 0 and c → ω−1(R)
as µ →∞.

ii) If 0 ≤ µ ≤ µ0 then a unique d = d(µ) exists such that

ũ(r, µ) = u(r, d(µ)) d(µ) ≤ r ≤ R.

The function d(µ) is decreasing, differentiable with d(0) = R, d(µ0) = 0. In
particular, ũ(·, µ) has Bd as dead core.

B) If on the contrary R ≥ R0 then the large solution Ũ possesses

Bω−1
0 (R) = {|x| ≤ ω−1

0 (R)}

as a dead core. Moreover, each µ ≥ 0 has associated a unique ω−1
0 (R) <

d(µ) ≤ R such that

ũ(r, µ) = u(r, d(µ)) d(µ) ≤ r ≤ R,

and so ũ(·, µ) has Bd as dead core. Furthermore, d = d(µ) is differentiable,
decreasing, d(0) = R while d(µ) → ω−1

0 (R) as µ →∞.
C) The distance R−d of the dead core of ũ(r, µ) to the boundary ∂BR satisfies
the asymptotic estimate,

(4.10) R− d ∼
√

β(β − 1)µ1/β,

as µ → 0 where β = 2/(1− q).

Before outlining a proof of Lemmas 12, 13 and 14 let us use them to finish
the proof of Theorem 3.

Proof of Theorem 3, (c) and (d). (c) Let R0 = ω(0) = ω0(0) (see Lemmas
12 and 13). If Ω ⊃ BR(x0) for certain R ≥ R0 and x0 ∈ Ω, then any
nonnegative solution u to (1.3) satisfies u ≤ Ũ in BR(x0), Ũ the solution
to (4.9) in BR(x0). Since Ũ possesses a dead core (Lemma 14), the same
happens to u.
(d) No generality is lost by assuming that π1, π2 coincide with x1 = −R
and x1 = R, respectively. Suppose that 0 < R < R0. Then the solution
Ũ(x1) to (4.9) corresponding to N = 1 is positive in (−R, R) (Lemma 14)
and the same happens to the solution u(x1, c) to (4.4), which is defined
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for x1 ∈ [R, R] and all 0 < c < Ũ(0). Fix any c0 in that range, put
u(x1) = u(x1, c0) and define u(x) = u(x1) for x ∈ Ω. If

λ0 = sup
0≤x1≤R

u′(x1)
u(x1)

,

then u defines a positive subsolution to (1.3) for λ ≥ λ0. This means that
the maximal solution uλ to (1.3) is positive in Ω for all λ ≥ λ0 what proves
(d). ¤

Proof of Lemma 12. We only deal now with c > 0, the more subtle case
c = 0 being studied in Lemma 13. By observing that any solution u initially
satisfies

(4.11) u′(r) =
∫ r

0

(s

r

)N−1
h(u(s)) ds, h(u) = up + uq,

then u must be increasing wherever defined. Standard theory, see [23], then
implies that a unique solution u(r, c) to (4.4) exists which is defined in a
maximal interval [0, ω(c)), u(r, c) →∞ as r → ω(c), while it is smooth with
respect to c (a further direct argument then says that u(r, c) increases with
c).

Let us show that ω is finite (reference to c is now omitted). By observing
that u(s) < u(r) in (4.11) we find that (cf. [24])

u′(r) ≤ r

N
h(u(r)),

which, together with the equation in (4.4) implies that

(4.12) u′′ ≥ 1
N

h(u) for 0 ≤ r < ω.

Multiplying by u′ and integrating yields

(4.13)
r√
N
≤

∫ u(r)

c

ds√
2(H(s)−H(c))

.

The finiteness of ω then follows by letting r → ω in the previous expression.
Continuous dependence of ω on c is more delicate. First, the uniqueness

of nonnegative solution to (4.9) implies that ω = ω(c) is increasing. Since
standard theory states that ω is lower semicontinuous in c ([23]) then ω(c) =
limc′→c+ ω(c′). On the other hand, ω(c′) → ω(c) as c′ → c−, otherwise

ω(c) < ω0 = inf ω(cn),

for a certain increasing cn → c. However, u(r, cn) < Ũ(r) for r < ω0, Ũ being
in this case the solution to (4.9) in BR with R = ω0. This is incompatible
with the fact that u(r, cn) diverges to ∞ at r = ω(c). Thus, the continuity
of ω = ω(c) is shown.

Finally, observe that (4.13) implies that

ω(c)√
N
≤

∫ ∞

c

ds√
2H(s)

,

and hence ω(c) → 0 as c →∞. ¤
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Proof of Lemma 13. As mentioned above, problem (4.6) admits infinitely
nonnegative solutions defined in r ≥ d (see [20]). Existence, uniqueness
and estimates near r = d of a positive local increasing solution u to (4.6) is
provided by Theorem 2.3 in [20] (see also [26] for existence). Ode’s standard
theory then allows us to obtain a global increasing continuation u(r, d) up
to a maximal interval [d, ω0(d)). Now it follows from the equation that

u′′u′ ≤ h(u)u′,

for r ∈ [d, ω0(d)) which together with (4.12) gives

(4.14)
r − d√

N
≤

∫ u(r)

0

ds√
2H(s)

≤ r − d, r ∈ [d, ω0(d)).

This implies both (4.7) and that ω0(d) < ∞. On the other hand that ω0

is continuous and increasing in d is shown as in Lemma 12, while (b) is
somehow standard.

The more subtle issue of the differentiability of u(r, d) with respect to d is
solved by Theorem 2.6 in [20]. As a consequence of it, w(t, d) := u(t + d, d),
0 ≤ t ≤ η is differentiable with respect d when d 7→ w(·, d) is regarded as a
mapping with values in C2[0, η] and d ≥ 0 (η can be taken not depending on
d thanks to (4.7)). Since r 7→ (u(r, d), u′(r, d)) takes values in R+ × R+ for
r > d then standard results on smoothness on initial data hold from r = d+η
ahead. Thus, a continuation argument shows that u(r, d) is globally smooth
with respect to d. It also follows from [20] that z(r) = (∂u/∂d)(r, d) solves
the initial value problem




z′′ +
N − 1

r
z′ = h(u(r, d))z,

z(d) = z′(d) = 0.

The proof is concluded. ¤

Proof of Lemma 14. Parts A) and B) are essentially a direct consequence of
Lemmas 12 and 13. As for C) observe that setting r = R in (4.14) gives

R− d√
N

≤
∫ µ

0

ds√
2H(s)

≤ R− d

while ∫ µ

0

ds√
2H(s)

∼
√

β(β − 1)µ1/β

as µ → 0. This suggests the choice τ = dµ−1/β, ρ = (R − d)µ−1/β and the
scaling

u(r) = µw(rµ−1/β − τ),

which leads to the initial value problem




w′′ +
N − 1
t + τ

w′ = wq + µp−qwp

w(0) = w′(0) = 0,

together with w(ρ) = 1. It is known that, for every η > 0, the unique positive
solution w = w(t, τ) to such problem converges in C2[0, η] as τ →∞ to the
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unique positive solution to the problem

(4.15)

{
w′′ = wq

w(0) = w′(0) = 0,

(see Theorem 2.5 in [20]). Such a solution is explicitly given by w(t,∞) =
Btβ with Bq−1 = β(β − 1). On the other hand, by our previous discussion,
ρ = (R − d)µ−1/β is bounded away from zero and from infinity as µ → 0.
Therefore,

lim
µ→∞ ρ = lim

µ→∞(R− d)µ−1/β = B−1/β,

since t = B−1/β is the only point where w(t,∞) achieves the value 1. This
finishes the proof. ¤

5. Problem (1.3) in balls

This section will be dedicated to the proof of our last result, Theorem
4. Thus we will be mainly dealing with radial solutions. Notice that for
nonnegative radial solutions u we have, according to the maximum principle,

(5.1) u(R) = max
BR

u.

Proof of Theorem 4 (a). Since the maximal solution to (1.3) is clearly radial,
only the existence of a second nonnegative radial solution remains to be
proved.

The existence of a second radial nonnegative solution follows by means
of the mountain pass theorem, as in Section 2, applied to the functional J
defined there but in the space of radial functions in H1(BR), which will be
denoted by H1

r (BR). We notice that if the maximal solution had nonpositive
energy, we could directly apply the mountain pass theorem as in the proof
of Theorem 1. However, this is not the case in general, so that we still need
to prove a further geometric property of J .

Lemma 15. Let λ > Λ∗. Then either problem (1.3) has two nonnegative
nontrivial radial solutions or the maximal solution uλ is a local minimum of
the functional J in H1

r (BR).

Proof. We may assume that the maximal solution uλ is the only nonnegative
radial solution to (1.3). Fix λ1 such that Λ∗ ≤ λ1 < λ. Let us check that
the function

(5.2) u = uλ1 − ε

is a subsolution to (2.3), where ε > 0 is chosen to have uλ1 > ε on ∂BR

(this is possible thanks to (5.1)). To see this, observe that ∆(uλ1 − ε) =
up

λ1
+ uq

λ1
= f(x, uλ1) + |uλ1 |q−1uλ1 ≥ f(x, uλ1 − ε) + |uλ1 − ε|q−1(uλ1 − ε)

in BR. Also, we have,
∂(uλ1 − ε)

∂ν
= λ1uλ1 ≤ λ(uλ1 − ε)

on ∂BR provided that ε ≤ (λ−λ1)uλ1/λ on ∂BR, which is certainly possible
if ε is small enough. Thus uλ1−ε is a subsolution to (2.3). We recall that the
unique positive solution to (2.1), denoted by Uλ, is a radial supersolution,
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verifying u ≤ Uλ. We truncate again the nonlinearities f(x, u) and g(x, u)
as follows:

f̃(x, u) =





Up
λ u > Uλ,
|u|p−1u u ≤ u ≤ Uλ,
|u|p−1u u ≤ u,

and

g̃(x, u) =





Uλ u > Uλ,
u u ≤ u ≤ Uλ,
u u ≤ u,

and define

J̃(u) =
1
2

∫

BR

|∇u|2 − λ

∫

∂BR

G̃(x, u) +
∫

BR

F̃ (x, u) +
1

q + 1

∫

BR

|u|q+1,

where F̃ and G̃ are primitives of f̃ and g̃ respectively. Since f̃ and g̃ are
bounded, it follows that J̃ is coercive. Also, J̃ is weakly sequentially lower
semicontinuous, so that there exists a global minimum u ∈ H1

r (BR). Arguing
as in Lemma 9, we can show that u ≤ u ≤ Uλ, thus u is a weak solution to

{
∆u = |u|p−1u + |u|q−1u in BR,
∂u

∂ν
= λu on ∂BR.

Indeed, u is a nonnegative solution to (1.3). To see this fact, assume that
infBR

u < 0, then there exists a point x0 ∈ BR such that u(x0) = infBR
u

(recall that u ≥ uλ1 − ε > 0 on ∂BR). Then, since ∆u(x0) ≥ 0, we would
have 0 ≤ |u(x0)|p−1u(x0)+|u(x0)|q−1u(x0), which is a contradiction. Thus u
is nonnegative, and by assumption, u = uλ, so that uλ is a global minimum
of J̃ in H1

r (BR). We claim that uλ is also a local minimum of J in the
C(BR) topology. Indeed, if v is such that ‖v − uλ‖∞ < δ < ε, then it
follows that v < Uλ for small enough δ, while v ≥ uλ − δ ≥ uλ1 − ε = u.
A straightforward calculation gives that J̃(v) = J(v) + C for some constant
C, so that uλ is a minimum of J in the ball of center uλ and radius δ in the
C(BR) topology. Then uλ is also a local minimum of J in H1

r (BR) (see for
instance Lemma 6.4 in [13]). This finishes the proof. ¤

Remark 7. Observe that the radial symmetry of the solutions is only used to
ensure that uλ1 > 0 on ∂BR, since uλ1 assumes its maximum and is constant
there. The above proof is indeed “nonradial”.

We can now conclude the proof of existence of a second nonnegative radial
solution as in the proof of Lemma 8, with the use of the mountain pass
lemma. Observe that, when J(uλ) ≤ 0, we can argue exactly as in that proof
to obtain the second solution. Thus only the case when J(uλ) > 0 needs
to be considered. Assume that uλ is the only radial nonnegative solution
for some λ > Λ∗. Then, according to Lemma 15, uλ is a local minimum of
J . Since J(0) = 0 < J(uλ), we can apply again the mountain pass theorem
to obtain a second nonnegative solution, which is a contradiction. This
concludes the proof of existence. ¤

Before performing the proof of parts (b) and (c) in Theorem 4, we need
some further auxiliary facts.
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Lemma 16. Let u = ũ(r, µ) be the solution to (4.8). Then

(5.3)
∂ũ

∂r
(R, µ) ∼

√
2

p + 1
µ

p+1
2 ,

as µ →∞.

Lemma 17. Assume that 0 < R < R0, R0 = ω(0) and for 0 ≤ c < ω−1(R)
let u = u(r, c) be the solution to (4.4) (Lemma 12). Then,

(5.4)
u′c(R, c)
uc(R, c)

∼ θA−
1
α µ

1
α

as c → ω−1(R) (i. e., as µ →∞), where subindex means partial differenti-
ation and

(5.5) α =
2

p− 1
, Ap−1 = α(α + 1), θ =

√
1 + 4pAp−1 − 1

2
.

Similarly, if R ≥ R0 and u = u(r, d) is the solution to (4.6) (Lemma 13)
then also

(5.6)
u′d(R, d)
ud(R, d)

∼ θA−
1
α µ

1
α ,

as d → ω−1
0 (R) (i. e., µ → ∞), subindex d meaning partial differentiation

with respect to d.

To show the preceding Lemmas we requiere an additional result that we
state next. Its proof is a minor modification of the one of Theorem 1.1 in
[19], and will be omitted.

Lemma 18. Let u = ũ(u, µ) be the nonnegative solution to (4.8). Then, for
every small ε > 0 and large u0 > 0, there exist positive δ, M and µ0 such
that

(5.7) u0 ≤ A− ε(
R− r +

(
A
µ

)1/α
)α −M ≤ ũ(r, µ)

≤ A + ε(
R− r +

(
A
µ

)1/α
)α + M

for all R− δ < r ≤ R and µ ≥ µ0, where α and A are given in (5.5).

Proof of Lemma 16. Given positive and small η, ε, there exist positive u0,
M , δ, µ0 such that

up ≤ h(u) ≤ (1 + η)up

for all u ≥ u0 together with (see (5.7))

h(ũ(r, µ)) ≤ (1 + η)(A + ε)p

(
R− r +

(
A
µ

)1/α
)αp

{
1 +

M

A

(
δ +

(
A

µ

)1/α
)α}p

,
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and

h(ũ(r, µ)) ≥ (A− ε)p

(
R− r +

(
A
µ

)1/α
)αp

{
1− M

µ

}p

,

for all R − r ≤ δ, µ ≥ µ0. Now observe that by conveniently diminishing δ
and enlarging µ0 we achieve

(5.8)
(1− η)(A− ε)p

(
R− r +

(
A
µ

)1/α
)αp ≤ h(ũ(r, µ)) ≤ (1 + η)2(A + ε)p

(
R− r +

(
A
µ

)1/α
)αp ,

provided R− r ≤ δ and µ ≥ µ0. Thus

ũ′(R, µ) =
∫ R

0

( s

R

)N−1
h(ũ) ds

=
(∫ R−δ

0
+

∫ R

R−δ

) ( s

R

)N−1
h(ũ) ds

≤ IR−δ + (1 + η)2(A + ε)
∫ R

R−δ

( s

R

)N−1 ds(
R− s + (A/µ)1/α

)αp

where

IR−δ =
∫ R−δ

0

( s

R

)N−1
h(ũ) ds.

On the other hand,

∫ R

R−δ

( s

R

)N−1 ds(
R− s + (A/µ)1/α

)αp ≤ µp− 1
α

∫ δµ1/α

0

dt

(t + A1/α)αp

≤ p− 1
p + 1

A
1
α
−pµ

p+1
2 ,

for µ ≥ µ0. Since for fixed δ > we have that IR−δ = O(1) as µ → ∞ then
we arrive at

lim
µ→∞µ−

p+1
2 ũ′(R, µ) ≤ (1 + η)2(A + ε)p p− 1

p + 1
A

1
α
−p.

Taking ε → 0+, η → 0+ we then obtain

lim
µ→∞µ−

p+1
2 ũ′(R, µ) ≤ p− 1

p + 1
A

1
α =

√
2

p + 1
.

The complementary estimate

lim
µ→∞

µ−
p+1
2 ũ′(R, µ) ≥

√
2

p + 1
.

is accomplished in an entirely similar way by employing instead the lower
inequality in (5.8). ¤

Remark 8. The exact estimate (5.3) obtained in Lemma 16 can be extended
to general smooth domains Ω ⊂ RN . Specifically, if u = ũ(x, µ) is the
positive solution to the Dirichlet problem (4.8) now regarded in Ω, then
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it can shown by the blow-up techniques used in [21] (see also the proof of
Theorem 2) that

∂ũ

∂ν
∼

√
2

p + 1
µ

p+1
2 ,

as µ → ∞, where ν stands for the outward unit normal at ∂Ω. Moreover,
the same approach permits showing in addition that

∂ũ

∂ν
∼

√
2

q + 1
µ

q+1
2 ,

as µ → 0+.

Proof of Lemma 17. Let us proceed to prove estimate (5.4) (the notation
h(u) = up + uq will be kept in what follows). According to Lemma 12 the
solution u = u(r, c) to (4.4) can be differentiated with respect to c and

v(r) =
∂u

∂c
(r, c)

solves the initial value problem{
(rN−1v′)′ = rN−1h′(ũ(r, µ))v 0 ≤ r ≤ R,

v(0) = 1, v′(0) = 0,

where, in view of part A) in Lemma 14 u(r, c) = ũ(r, µ) for µ = µ(c) → ∞
as c → ω−1(R). Therefore we are having in mind that v(r) = v(r, µ) (very
often, explicit reference either to c or µ will be avoided below whenever
possible). In addition, it should be remarked that

v(r, µ) → V (r) as µ →∞,

in C2[0, R), where v = V (r) is the solution to{
(rN−1v′)′ = rN−1h′(Ũ(r))v 0 ≤ r < R,

v(0) = 1, v′(0) = 0,

and Ũ is the positive solution to (4.9).
Fix now 0 < r0 < R and set v0 = v(r0, µ), v′0 = v′(r0, µ). By performing

the change
v(r) = w(t),

where

(5.9) t =





log
(

R

r

)
N = 2

1
N − 2

(
1

rN−2
− 1

RN−2

)
N ≥ 3,

we get
dw

dt
= −rN−1v,

and so w = w(t) satisfies the initial value problem

(5.10)

{
w′′ = r2(N−1)h′(ũ)w 0 ≤ t ≤ t0,

w(t0) = v0, w′(t0) = −rN−1
0 v′0,

where the value of t0 corresponding to r0 will be suitably chosen in the
course of the proof.
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Next, given a positive and small η, there exists u0 > 0 such that

(1− η)pup−1 ≤ h′(u) ≤ (1 + η)pup−1

for u ≥ u0. By proceeding in a similar way as in the proof of Lemma 16 and
by employing Lemma 18 it is possible to ensure that for small ε > 0 there
exist a small δ > 0 and a large µ0, such that

(5.11)
(1− η)2p(A− ε)p−1

(
R− r +

(
A
µ

)1/α
)2 ≤ h′(ũ(r, µ)) ≤ (1 + η)2p(A + ε)p−1

(
R− r +

(
A
µ

)1/α
)2 ,

for R− r ≤ δ and µ ≥ µ0.
On the other hand, it follows from (5.9) that

t ∼ 1
RN−1

(R− r),

as r → R. Thus, by reducing δ if necessary we have

(1− η)RN−1t ≤ R− r ≤ (1 + η)RN−1

if r0 ≤ r ≤ R with R− r0 < δ.
As a consequence of the preceding assertions we achieve that w(t) satisfies

w(t) ≤ w+(t), w′(t) ≤ w′+(t)

for 0 ≤ t ≤ t0, where w = w+(t) is the solution to the problem

(5.12)





w′′ =
D

(t + b)2
w 0 ≤ t ≤ t0

w(t0) = v0, w′(t0) = −rN−1
0 v′0,

and D = D(ε, η) and b = b(µ) are given by

D =
(

1 + η

1− η

)2

p(A + ε)p−1, b =
1

(1− η)RN−1

(
A

µ

) 1
α

.

We now introduce in problem (5.12) the change

w(t) = z(τ), τ = log(t + b),

and so z(τ) defines the solution to

(5.13)

{
z′′ − z′ = Dz τ∗ ≤ τ ≤ τ0,

z(τ0) = z0, z′(τ0) = z′0,

where,

τ∗ = log b, τ0 = log(t0 + b), z0 = v0, z′0 = −rN−1
0 (t0 + b)v′0.

The solution to (5.13) is explicitly given by

z(τ) =
1

θ1 + θ2

{
(z0θ2 + z′0)e

−(θ2+1)τ0eθ1τ + (z0θ1 − z′0)e
(θ1−1)τ0e−θ2τ

}
,

where

θ1 =
1 +

√
1 + 4D
2

− θ2 =
1−√1 + 4D

2
.
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Therefore, since τ∗ → −∞ as µ →∞ we achieve

lim
µ→∞

−z′(τ∗)
z(τ∗)

= θ2.

On the other hand

v(R, µ) = w(0) ≤ w+(0) = z(τ∗),

together with

−RN−1v′(R,µ) = w′(0) ≤ w′+(0) =
z′(τ∗)

b
.

Thus
v′(R, µ)
v(R, µ)

≥ 1
RN−1b

−z′(τ∗)
z(τ∗)

,

and so

lim
µ→∞

µ−
1
α

v′(R, µ)
v(R, µ)

≥ (1− η)A−
1
α θ2.

By letting ε → 0+ and η → 0+ in the precedent expression we finally arrive
at

lim
µ→∞

µ−
1
α

v′(R, µ)
v(R, µ)

≥ A−
1
α θ,

where θ is given in (5.5).
The complementary asymptotic estimate

lim
µ→∞µ−

1
α

v′(R, µ)
v(R, µ)

≤ A−
1
α θ,

is obtained by using in problem (5.10) the lower estimate for h′(ũ) given in
(5.11). We find in this way the lower estimate

w(t) ≥ w−(t), w′(t) ≥ w′−(t), 0 ≤ t ≤ t0,

where w = w−(t) solves instead



w′′ =
D−

(t + b−)2
w 0 ≤ t ≤ t0,

w(t0) = v0, w′(t0) = −rN−1
0 v′0,

with,

D− =
(

1− η

1 + η

)2

p(A− ε)p−1, b− =
1

(1 + η)RN−1

(
A

µ

) 1
α

.

The analysis then proceeds in the same lines as in the lower estimate. This
concludes the proof of (5.4).

To show the asymptotic estimate (5.6) first observe that Lemma 14 ensure
us that ũ(r, µ) = u(r, d) with µ → ∞ as d → ω−1

0 (R). On the other hand,
smoothness of u(r, d) with respect to d provided in Lemma 13 implies that

v(r) =
∂u

∂d
(r, d)

satisfies the initial value problem{
(rN−1v′)′ = rN−1h′(ũ(r, µ))v d ≤ r ≤ R,

v(d) = v′(d) = 0.
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Then, the argument in the preceding proof of (5.4) can be repeated to
achieve (5.6). ¤

We now come to the conclusion of the proof of Theorem 4.

Proof of Theorem 4 (b). According to Theorem 2, there are only two pos-
sibilities for a sequence of nonnegative radial solutions un to (1.3) corre-
sponding to λn → ∞ (passing to a subsequence): either un(1) → ∞ or
un(1) → 0.

Let us first prove that in the first case we necessarily have un = uλn , that
is, the maximal solution is the only family of nonnegative radial solutions
which becomes unbounded as λ →∞. To this aim, we consider the solution

u = ũ(r, µ)

to problem (4.8) and the function

z(µ) :=
ũ′(R, µ)
ũ(R, µ)

=
ũ′(R,µ)

µ
,

which is C1 in µ ≥ 0 (Lemmas 12, 13 and 14). We claim that the following
assertions hold:

i) limµ→∞ z(µ) = ∞,

ii)
dz

dµ
> 0 for µ ≥ µ0 and large µ0.

These facts imply the desired uniqueness, for if un1 and un2 are solutions to
(1.3) with corresponding maxima µ1 and µ2, respectively, µi ≥ µ0, i = 1, 2,
then

z(µ1) = z(µ2) = λ,

that implies µ1 = µ2 and hence un1 = un2 .
Let us show now claims i) and ii). That z(µ) diverges as µ → ∞ is a

consequence of the estimate (5.3)(see Lemma 16):

ũ′(R, µ) ∼
√

2
p + 1

µ
p+1
2 ,

as µ →∞.
As for ii) notice that

dz

dµ
=

µũ′µ(R, µ)− ũ′(R, µ)
µ2

(the subindex µ denotes ∂
∂µ). Let us see that

(5.14) ũ′µ(R, µ) =
u′c(R, c)
uc(R, c)

,

for R < R0 and large µ. Indeed, (5.14) is obtained by taking into account
that ũ′(R, µ) = u′(R, c(µ)) (Lemma 14), hence ũ′µ(R, µ) = u′c(R, c(µ))c′(µ).
Since µ = u(R, c(µ)), differentiating we obtain 1 = uc(R, c(µ))c′(µ), and
(5.14) follows. Similarly,

ũ′µ(R,µ) =
u′d(R, d)
ud(R, d)

,
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when R ≥ R0 and µ is large also in virtue of Lemma 14. In either case, (5.4)
and (5.6) in Lemma 17 yield the asymptotic estimate

(5.15) ũ′µ(R,µ) ∼ θA−
1
α µ

1
α

as µ → ∞, the values of constants α, A and θ being those given in (5.5).
Since √

2
p + 1

=
√

α

α + 1

then θA−
1
α >

√
α

α+1 and so, combining (5.3) and (5.15), we have that

µũ′µ(R, µ)− ũ′(R,µ) > 0

for large µ. This proves assertion ii).
Let us consider now the case of a sequence of nonnegative radial solutions

{un} verifying un(R) → 0. To deal with this situation take a general family
{ûλ} of radial nonnegative solutions such that ûλ(R) → 0 as λ →∞. Then
ûλ possesses a dead core Bd, d = dλ, for large λ, while Lemma 14 implies
that dλ → R as λ →∞. Moreover,

(5.16) 0 < R− dλ ≤ C

λ
,

for large λ and a certain positive constant C (see Theorem 3 (b), or alter-
natively, estimate (4.10) together with the fact that µ ≤ C2λ

−β).
On the other hand, if u = u(r) is an arbitrary nonnegative solution to

(1.3) with a dead core Bd then it can be written as

u(r) = λβw(t),

with β = 2
1−q , t = λ(r − d) and where w = w(t) defines a positive solution

in 0 < t < Rλ− d̄, d̄ = λd, to the initial value problem

(5.17)

{
((t + d̄)N−1w′)′ = (t + d̄)N−1(wq + λ−β(p−q)wp)
w(0) = w′(0) = 0.

In addition, w = w(t) satisfies the boundary condition

(5.18) w′(Rλ− d̄) = w(Rλ− d̄).

Let us recall now some basic features of (5.17). For every η > 0 there exists
λ = λ(η) such that (5.17) exhibits a unique positive solution w = w(r, d̄, λ)
for all d̄ ≥ 0, λ ≥ λ(η) while the mapping (d̄, λ) 7→ w(·, d̄, λ), observed
as taking values in C2[0, η] is continuous and C1 with respect to d̄ (see
Theorems 2.3, 2.5 and 2.6 in [20]). In addition,

v(r) =
∂w

∂d̄
(r, d̄, λ)

satisfies the problem



v′′ +
N − 1
t + d̄

v′ = (qwq−1 + pλ−β(p−q)wp−1)v +
N − 1

(t + d̄)2
w

v(0) = v′(0) = 0,

and the decaying estimate

(5.19) |v(t)| ≤ Ctβ.
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Furthermore, for every η > 0, w(·, d̄, λ) → w∞(·) in C2[0, η] as d̄ → ∞,
λ →∞ where w = w∞(t) is the positive solution to problem (4.15). Recall
that such solution is explicitly provided by

w∞(t) = Btβ

with β = 2
1−q and Bq−1 = β(β − 1) (Theorem 2.5 in [20]). Notice that in

particular, w∞ is defined in the whole of [0,∞). Similarly, for every η > 0,
v(r) = (∂w/∂d̄)(r, d̄, λ) converges in C2[0, η] as d̄ → ∞, λ → ∞ to the
solution of the linear problem{

v′′ = qwq−1∞ (t)v,

v(0) = v′(0) = 0,

with satisfies in addition condition (5.19). Therefore,

lim
d̄,λ→∞

∂w

∂d̄
(r, d̄, λ) = 0,

in C2[0,∞).
Let us examine now the fulfillment of the boundary condition (5.18). It

can be equivalently expressed as

(5.20) w′(T, d̄, λ)− w(T, d̄, λ) = 0,

together with

(5.21) T = Rλ− d̄.

Taking into account that w(t,∞,∞) = w∞(t) = Btβ, equation (5.20) is
uniquely solved by T = T0 := β as d̄ = λ = ∞. Since w′′∞(β) − w∞(β) =
w∞(β)q(1 − w∞(β)1−q) 6= 0, then the implicit function theorem implies
that equation (5.20) is uniquely solved in the form T = T (d̄, λ), where
T : [d̄1,∞) × [λ1,∞) → R is a continuous function which is class C1 with
respect to d̄ and satisfies

(5.22) lim
d̄,λ→∞

T (d̄, λ) = T0.

Moreover,

lim
d̄,λ→∞

∂T

∂d̄
= 0,

since
∂T

∂d̄
=

wd̄(T (d̄, λ), d̄, λ)− w′̄
d
(T (d̄, λ), d̄, λ)

w′′(T (d̄, λ), d̄, λ)− w′(T (d̄, λ), d̄, λ)
,

where subindex d̄ means partial differentiation with respect d̄.
Finally, the uniqueness assertion is ensured provided d̄ ≥ d̄1, λ ≥ λ1 and

(5.23) |T − T0| ≤ ε,

for certain small positive ε.
Now, solving (5.18) amounts to solving (5.21) with T replaced by T (d̄, λ).

In other words, to solve

(5.24) Rλ = d̄ + T (d̄, λ).

with respect to (d̄, λ). Due to (5.22), the function Iλ(d̄) = d̄ + T (d̄, λ)
is one to one in [d̄2,∞) for λ ≥ λ2 for certain conveniently large d̄2, λ2.
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Therefore, equation (5.24) is uniquely solved by a continuous function d̄ =
d̄(λ) provided d̄, λ are suitably large.

Let us return to our original setting and assume ûλ is a family of nonneg-
ative radial solutions to (1.3) with sup ûλ → 0 as λ →∞. Thus,

ûλ(r) = λ−βw(λr − d̄λ, d̄λ, λ)

for dλ ≤ r ≤ R, with d̄λ = λdλ. Moreover,

Tλ = Rλ− d̄λ,

solves (5.20) corresponding to d̄ = d̄λ. Now, in view of estimate (5.16), it
follows that Tλ keeps bounded as λ →∞. Hence, necessarily

lim
λ→∞

Tλ = T0.

This means that solutions (Tλ, d̄λ, λ) to (5.20) satisfy the uniqueness condi-
tion (5.23) and so

Tλ = T (d̄λ, λ)
for large λ. Therefore d̄λ = d̄(λ) and family ûλ coincides, for large λ, with
zλ where

zλ(r) =

{
0 0 ≤ r ≤ d(λ),
λ−βw(λr − λd(λ), λd(λ), λ) d(λ) < r ≤ R,

being d(λ) = d̄(λ)/λ. This shows both the announced uniqueness and the
existence of the family of radial nonnegative solutions zλ satisfying sup zλ →
0 as λ →∞.

Observe also for its use below that the constructed solution zλ verifies

(5.25)

∫

BR

zq+1
λ ∼ Cλ−β(q+1)−1,

∫

BR

zp+1
λ = o(λ−β(q+1)−1),

as λ → +∞

for some positive constant C, as can be easily seen from the previous dis-
cussion. ¤

We finally conclude the proof of Theorem 4.

Proof of Theorem 4 (c). Let us see that the solution obtained in part (a) is
not radial. For this aim, choose a function ψ ∈ C1

0 (BR) with ψ > 0 in BR,
and for some γ > 0, define

φ(x) = λ−βψ(λγ(x− x0))

where x0 ∈ ∂BR is fixed. Let us check that J(tφ) < 0 for some positive t if
λ is large enough. Notice that tφ ≤ Uλ if λ is large, so that

J(tφ) =
t2

2

∫

BR

|∇φ|2 − λt2

2

∫

∂BR

φ2 +
tp+1

p + 1

∫

BR

φp+1 +
tq+1

q + 1

∫

BR

φq+1

∼ Aγ2−N t2λ−2β−N+2 −Bγ1−N t2λ−2β−N+2 + Ctp+1γ−Nλ−β(p+1)−N

+Dtq+1γ−Nλ−β(q+1)−N

∼ t2γ−Nλ−2β−N+2
(
Aγ2−N −Bγ1−N + Dtq−1

)
,
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where A, B, C and D are positive constants. If γ < B/A, we can select a
value of t, which we will fix and denote by t0, such that J(t0φ) < 0 if λ is
large enough. Observe also that

sup
0≤t≤t0

J(tφ) ≤ Kλ−2β−N+2

for some positive constant K. Thus, according to Lemmas 10 and 11, we can
use the mountain pass theorem to obtain a nonnegative solution v ∈ H1

r (BR)
to (1.3) with

(5.26) 0 < J(v) ≤ Kλ−2β−N+2.

This solution is different from the maximal solution uλ since J(uλ) < 0 for
large enough λ.

Finally, for the radial solution zλ constructed in part (b) above, we have

J(zλ) =
(

1
q + 1

− 1
2

) ∫

BR

zq+1
λ −

(
1
2
− 1

p + 1

) ∫

BR

zp+1
λ ∼ Cλ−β(q+1)−1

as λ →∞, thanks to (5.25). According to (5.26), the solution v just obtained
cannot be radial. This finishes the proof. ¤

6. Some remarks on multiplicity of solutions

Theorem 1 provides two nonnegative solutions to (1.3), the maximal so-
lution u = uλ, which exits for all λ ≥ Λ∗, and an extra nonnegative energy
solution u = vλ whose existence is only ensured for large λ. As will be
described next, additional solutions can be built from uλ and vλ when ∂Ω
possesses more than a single connected component.

Assume Γi is a component of ∂Ω (thus Γi constitutes a closed submanifold
of ∂Ω). Take δ > 0 small and λ so that λ ≥ Cδ−(β+N−1) (see (1.7)). Then

v
(i)
λ (x) =

{
vλ(x) dist (x,Γi) < δ,

0 dist (x,Γi) ≥ δ,

defines a new solution to (1.3) if ∂Ω has more than a single component.
Suppose now that Γi is a component of ∂Ω such that Ω is not too thin

around Γi. More precisely, it is said that Ω has thickness greater than R0

(the value introduced in (c), (d) of Theorem 2) near the component Γi if
for each x ∈ Γi there exists an inner ball BR(ξ) ⊂ Ω — R and ξ depending
on x— such that BR(ξ) ∩ Γi ⊃ {x} together with R ≥ R0 for all x ∈ Γi.
Associated to such a component Γi a new solution to (1.3) can be obtained
from the maximal solution uλ. Namely,

u
(i)
λ (x) =

{
uλ(x) dist (x,Γi) ≤ R0,

0 dist (x,Γi) > R0.

If ∂Ω exhibits more than a single component, and one of them, say Γi,
satisfies the previous thickness condition then u

(i)
λ furnishes a solution to

(1.3) that does not satisfy (a) nor (b) of Theorem 2 (see Remark 1 (a)).
It would be interesting to ascertain the possible existence of a family of
nonnegative solutions not satisfying (a) and (b) when ∂Ω is connected.
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Finally observe that further solutions to (1.3) can be constructed from
u

(i)
λ and v

(i)
λ if ∂Ω has enough components. Specifically, suppose that ∂Ω

splits up in two groups {Γi : i = 1, . . . , M1} and {Γ′j : j = 1, . . . ,M2} so
that all the members of the first one satisfy the thickness condition. Then,

(6.27) u
(σ̄,η̄)
λ (x) =

M1∑

i=1

σiw
(i)
λ (x) +

M2∑

j=1

ηjv
(j)
λ (x),

with σ̄ ∈ {0, 1}M1 , η̄ ∈ {0, 1}M2 , w
(i)
λ ∈ {u(i)

λ , v
(i)
λ } constitutes a new family

of solutions to (1.3) for each of the possible choices of σ̄, η̄ and w
(i)
λ (of

course, one of them giving the null solution should be ruled out!).
As a further remark, in the case that Ω is an annulus with radii R1 < R2

and R2−R1 > R0 the family (6.27) can be enlarged. Indeed choices 0, uλ, zλ

and vλ (see Theorem 4) are now possible on each component |x| = Ri,
i = 1, 2, of the boundary to construct (6.27).
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[16] J. Garćıa-Melián, J. D. Rossi, J. Sabina, A bifurcation problem governed by the
boundary condition II, Proc. London Math. Soc. 94 (1) (2007), 1–25.
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